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Abstract. Inverse form finding – as a type of shape optimization – aims in determining the optimal preform design of 
a workpiece for a specific forming process, whereby the desired target geometry is known. Recently, a novel 
parameter-free and heuristic approach was developed to tackle this nonlinear optimization problem. Benchmark tests 
already delivered promising results. As a particular note-worthy feature of the approach, a coupling to an arbitrary 
finite element software is feasible in a non-invasive fashion. The aim of this contribution is to investigate the effect of 
kinematic hardening and cyclic loading on the convergence behavior of the algorithm. 

1 Introduction and related works 
Within the metal forming industry, trial-and-error 
methods of earlier days have since long been replaced by 
simulative predictions and simulation based optimization 
strategies. This leads not only to a cost reduction and an 
acceleration in the development process of new products, 
but is nowadays also a cornerstone for the manufacturing 
of highest quality and near-net-shaped functional 
components. Optimization in order to improve product 
properties is thereby often the main purpose of numerical 
forming simulations and consequently a key point in the 
field of future research, see Andrietti et al. [1]. Thereby, 
the main issue of optimization, besides the inverse 
problem of parameter identification, is the determination 
of an optimal tool and workpiece design, see 
Chenot et al. [2].  

The latter constitutes the investigated type of 
optimization in this contribution and is also frequently 
denoted as inverse form finding. It aims in determining 
the optimal preform design of a workpiece for a specific 
forming process, whereby the desired target shape is 
known a priori. Especially in the context of sheet and 
bulk metal forming, or forging respectively, several 
concepts have been developed since decades to solve this 
non-linear optimization problem. Since path-dependency 
is occurring in plasticity, a similar iterative procedure of 
all shape optimization approaches can be recognized. It 
consists of updating the geometry of the material space, 
before re-starting a new simulation and comparing again 
the forming results of the spatial space to the desired 
target shape. 

Form finding strategies are commonly distinguished 
between parameter-free and parameter-based approaches. 
In the former, a computer aided design (CAD) geometry 
is given and its control points serve as design variables, 

as initially proposed by Braibant and Fleury [3]. For 
example, Fourment and Chenot [4] already proposed a 
parameter-based optimization approach for determining 
an optimal workpiece and die design in non-steady-state 
forming processes. Within parameter-free approaches, as 
considered in this contribution, the geometry is given in a 
discretized setting as a finite element (FE) model and its 
nodal positions serve as design variables. This leads to a 
larger number of design parameters. Furthermore, nodal-
based mesh moving strategies often suffer from distorted 
elements when updating the material configuration so 
that regularization and filter techniques have to be 
deployed, see Bletzinger et al. [5] and Scherer et al. [6]. 

As a further distinction, different strategies can be 
found for sheet and for bulk metal forming. Within sheet 
metal forming, the sought optimal material configuration 
renders commonly a planar sheet pre-cut and the aim is to 
determine an optimal cut-out contour, e.g. described by 
spline functions as in Kim et al. [7]. Before re-starting the 
forming simulation in the iterative optimization 
procedure, the surface inside the cut-out contour is 
automatically re-meshed in most cases, which is a 
feasible task for two-dimensional structural elements like 
shells. A different strategy which repositions the nodal 
coordinates of a discretized planar sheet pre-form without 
remeshing is presented by the inverse approach of 
Gou and Batoz [8]. In contrast, within bulk metal forming 
simulations three dimensional geometries can only be 
remeshed automatically with great difficulties, so 
parameter-free mesh moving strategies are predominated 
in this context. 

It should be emphasized that several types of 
sensitivity analyses (see Haftka and Adelmann [9] for an 
overview) exist within both, parameter-based and 
parameter-free approaches, and have already been 
successfully adopted to the context of inverse form 

 �  
 

 
 

 
DOI: 10.1051/matecconf/201MATEC Web of Conferences ,80 68011007

NUMIFORM  2016

 11007 (2016)

 © The Authors,  published  by EDP Sciences.  This  is  an  open  access  article  distributed  under  the  terms  of  the Creative  Commons Attribution
 License 4.0 (http://creativecommons.org/licenses/by/4.0/). 



  

finding. Michaleris and Tortorelli [10] for example 
provided a general framework for the calculation of 
elasto-plastic tangent operators or
Archajee and Zabaras [11] already presented a sensitivity 
approach for three-dimensional contact problems. 
However, in most cases it is cumbersome to compute the 
required sensitivity derivations of the system responses. 

A further interesting and promising approach is 
proposed by Germain et al. [12] for elasto-plastic 
problems. Here an inverse mechanical formulation, 
parametrized with spatial coordinates, is solved with 
respect to the material coordinates, as introduced by 
Govindjee et al. [13] for elasticity. For the extension to 
plasticity, the internal plastic variables are recursively 
transferred to circumvent the path-dependency.

Recently, a novel heuristic and parameter-free 
approach was developed for inverse form finding 
problems, see Landkammer and Steinmann [14]. The 
updating operation is thereby performed by a reverse 
tangent mapping after analyzing the nodal distances to 
the target shape in the final deformation stage. As a 
benefit of the algorithm, a coupling by subroutines to any 
desired external FE code is feasible. Benchmark tests 
already demonstrated an excellent numerical efficiency. 
Also the applicability to metal forming processes have 
been already successfully shown [15]. The main goal of 
this contribution is to evaluate, whether a sophisticated 
hardening model or cyclic loading with reverse strain 
path changes affect the convergence behavior. This is 
realized by a case study with computational examples. 

The paper is structured as follows: Sec. 2 explains the 
functional principle of the non-invasive form finding 
algorithm. Afterwards, Sec. 3 reiterates some basics from 
plasticity regarding isotropic and kinematic hardening, 
before the benchmark model for the computational 
examples is presented. A subsequent parameter study 
regarding the constitutive behavior and the loading path 
is conducted to demonstrate the applicability to combined 
hardening and cyclic loading. Finally, Sec. 4 draws a 
conclusion to summarize the findings.  

2 Functional principle of the iterative 
update procedure  

In this section, the basic framework of the update 
operation is explained, while a more detailed description 
is presented in Landkammer and Steinmann [14]. The 
iterative optimization algorithm is purely based on the 
nodal positions of the material and the spatial 
configurations. Almost every FE software provides 
options to export these data by subroutines. After the 
determination of improved material nodal positions 
within the update procedure, they are imported again and 
the next re-computation of the forming simulation starts 
automatically until suited spatial nodal positions are 
computed. Due to the ability of coupling the optimization 
program as a black box to the user’s habitual forming 
software without interfering with the FE code of the 
simulation itself, the approach is denoted as non-invasive. 

 Figure 1 additionally illustrates the nodal based 
inverse form finding strategy.  

Figure 1. The idea of the non-invasive optimization strategy is 
to update the mesh of the material configuration (A) until the 
nodal positions computed by a forming simulation are close 
enough to the nodal positions of a target mesh in the discretized 
spatial configuration (B)

Mathematically, the forming process of a body 
renders a mapping from the material to the spatial 
configuration. With respect to a FE simulation, this can 
be formulated by a map � of the coordinates �� of a 
discretized material configuration ℬ�� to the coordinates 
�� of the spatial configuration ℬ��:  

�� = �	��
: ℬ�� → ℬ�� (1) 

As an objective for the optimization, a discretized 
target configuration with spatial coordinates ��
�  has to be 
defined a priori. The optimal material coordinates are 
then determined, if the nodal distances between both 
spatial configurations are close enough for all element 
nodes (� = 1, ⋯ , ������). This is evaluated by the 
objective function ����, which renders the root mean 
square over all spatial nodal distances, whereby ��  refers 
to the nodal difference vectors in the spatial setting. 

����	��
� , ���� 
 = � �
�!"#$%

& |�'|()!"#$%
'*+ < -./. (2) 

with  �� = ��
� − ���� (���� ) (3) 

For a suited repositioning of the material coordinates, 
the final deformation state after the forming simulation 
has to be analyzed. The idea is to exploit the linear 
tangent map  4�, which arises from the derivative of the 
deformation map � with respect to the design parameters 
��, for a node-wise fixed-point iteration to minimize the 
objective function ����(��
� , ���� ). 

4� = ∇�6 �	��
: 7ℬ�� → 7ℬ�� (4) 

However, the tangent map cannot be computed 
directly at the nodal positions ��, but the deformation 
gradient 48 is only given at the Gauss points. The 
computation of the deformation gradient is feasible with 
the Jacobian matrices of the material and the spatial 
configurations, whereby 9;(>8) refers to isoparametric 
shape functions evaluated at the ?-th Gauss point:

48 = @�8 ⋅ B@�
8 CD�  (5) 

��
���������

Discrete material 
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with  @�
8 = ∑ �;�$!;F� ⊗ ∇>9;(H8)   

and  @�8 = ∑ �;�$!;F� ⊗ ∇>9;(H8)  

To achieve an approximation 4I of the deformation 
gradient at the nodal positions, a least squares smoothing 
is performed, as described by Hinton and Campbell [16]. 
This smoothing technique is also commonly used in FE 
codes for mapping the entries of a stress tensor from the 
Gauss points to the element nodes. With the inverse of 
the smoothed nodal deformation gradient, a difference 
vector �� can be mapped from the spatial configuration 
ℬ�� to the discretized material configuration ℬ��.

J� = B4ICD� ⋅ �� (6) 

The update of the material configuration is then 
performed by adding all mapped difference vectors J� to 
their material nodal positions: 

�� ← �� + MJ� (7) 

In order to control the update procedure in the case 
of mesh distortions, a global relaxation parameter α is 
introduced in Eq. (7). Before importing the updated 
material nodal positions and restarting the FE simulation, 
the mesh quality is analyzed by an elementwise
evaluation of discrete Jacobian matrices as proposed in 
Knupp et al. [17]. If needed, the relaxation parameter is 
then automatically reduced, which helps to render the 
algorithm more robust. 

3 Example: Tension and compression of 
a cuboid with a cylindric hole  
The investigated model is a cuboid with a cylindric hole 
in its center and has already been used for benchmark 
tests within inverse form finding problems in [14] and 
[18]. 
 The aim in this contribution is to analyze the effect of 
a material law with kinematic hardening to the 
convergence behavior of the algorithm. The dual phase 
steel DP600, which is a typical material in automotive 
industries or for Sheet-Bulk metal formed components 
[20] respectively, is used for the simulative 
investigations. 

3.1. The material model of DP600 steel with 
isotropic and kinematic hardening  

Some basics from plasticity theory are firstly reiterated. 
Within an elasto-plastic analysis, a yield function  

Φ	PQ, PR
 = PQ(S, T) − PR(UV) (8) 

has to be evaluated for the current stress state to prove if 
plastic flow occurs. Herein, the equivalent stress PQ is 
compared to the current yield stress PR and the yield 
condition Φ = 0 has to be satisfied at any time in case of 
plasticity. The equivalent stress renders e. g. for the 
commonly used orthotropic Hill yield criterion 

PQ(S, T) = �X
YZ[S − T]⊤: ℍ: [S − T] (9) 

with the Cauchy stress tensor S, the back stress tensor T and 
the fourth order Hill tensor ℍ (respectively ℍ = _��`

�R� for 
the isotropic v.Mises yield criterion with the symmetric 
deviatoric fourth order unit tensor _��`

�R�). For the sake of 
an accurate modelling of the physical behavior of elasto-
plastic materials, two main types of hardening are usually 
considered in the context of metal forming. 
 Firstly, isotropic hardening is used to model an 
expansion of the yield surface. Thereby, the hardening 
function PR(UV) of the current yield stress with respect to 
the current equivalent plastic strain UV is evaluated. A 
frequently used model for isotropic hardening is for 
example the Voce type saturation law:  

PR(UV) = P� + P�a�[1 − exp(−bUV)] (10) 

Secondly, kinematic hardening is used to model a 
translation of the yield surface in the stress space. Here, 
the back stress tensor has to be determined 
simultaneously by an additional evolution equation: 

c�T = d fgh
PQ  dev(S − T) − Tj c-Up (11) 

Kinematic hardening has to be considered to capture 
the so-called Bauschinger effect. This refers to a differing 
yield stress in case of a reverse strain path change when 
loading is applied in the opposite direction than before, as 
illustrated in Figure 2.  
 The parameters for the DP600 dual phase steel, see 
Table 1, are determined by Bouvier et al. [19] by 
weighting the results of several mechanical tests. 
Oliveira et al. [21] further utilized the parameter set for 
analyzing the springback prediction of sheets, in which 
the modelling of the Bauschinger effect has a major 
impact. As a feature, the parameter sets are thereby 
separately identified in [19] on the one hand for a pure 
isotropic hardening (T = k) with the Voce law, see Eq. 
(10) and on the other hand for a combined hardening 
model. In the latter, the Voce law is again used for the 
isotropic hardening and the Frederick-Armstrong law, see 
Eq. (11), is additionally applied for modelling the 
kinematic hardening effect. 

Table 1. Material parameters of DP600 high strength steel 
determined by experimental test in Bouvier et al. [19]

Material data Isotropic Combined 

Voce,  
see Eq. (1) 

P� = 330.3 MPa, 
b = 16.3, 
P�a� = 516.4 MPa 

P� = 308.3 MPa, 
b = 6.75, 
P�a� = 365.6 MPa 

Frederick 
Armstrong, 
see Eq. (2) 

- Pw = 225.3 MPa, 
d = 73.7 

The Bauschinger effect is additionally demonstrated 
for the material parameters of the isotropic and the 
combined material law by a cyclic loading (tension / 
compression / tension) applied to a single element within 
a displacement controlled computation. In the case of a
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pure isotropic material model, the absolute value of the 
yield stress stays constant (blue curve, 790.4 MPa) when 
applying the displacement load in the opposite direction. 
In contrast, in case of a combined hardening model a
lower absolute value of the yield stress (green curve,

453.5 MPa instead of 678.7 MPa) is observed upon 
reverse loading due to the translation of the yield surface 
by the back stress tensor (red curve, 225.2 MPa), see 

Figure 2.

Figure 2. The effect of both material models can be 
demonstrated by a displacement controlled simulation of a 
single element (A) with a cyclic loading (B). Only the combined 
hardening law is able to capture the Bauschinger effect (C) 

3.2 Simulation  

For evaluating the influence of an isotropic and a 
combined material modelling on the convergence 
behavior of the form finding algorithm, the benchmark 
model of a cuboid with a cylindric hole is analyzed. 
Figure 3 depicts the dimension of the workpiece and 
illustrates the symmetry planes, which corresponds to the 
boundary conditions. The geometry is discretized in the 
FE model with 150 solid elements (264 nodes). In the 
subsequent optimization the material start configuration 
equals the desired spatial target configuration. 

Figure 3. The material start configuration (A) equals the 
desired spatial target configuration (B). The dimensions of the 
FE model are stated and the symmetry planes are depicted 

The material model of the DP600 steel is adopted 
according to Table 1. The computation is carried out with 
multiplicative large strain plasticity with the commercial 
FE software MSC.MarcMentat. 
 For a comparison of the convergence behavior, the 
simulations are performed four times combining both 
hardening models with two different loadings, as listed in 
Table 2. Firstly, a monotonic loading of a pure 
compression (displacement of -4 mm in x-direction, 0-1 
s) is applied for the isotropic and the combined material 
model. Secondly, a cyclic loading by a changing 
compression and tension (displacements of -4/ 4/ -4 mm 
in x-direction, 0-5 s) is applied for the hardening models. 
The according load path of the displacement controlled 
forming simulation is depicted in Figure 4. 

Figure 4. The path for the monotonic (0-1 s) and cyclic loading 
(0-5 s) of the displacement controlled forming simulation 

Table 2. Case study: Combinations of an isotropic and a
combined hardening law, respectively a monotonic and a cyclic 
loading are investigated in order to evaluate the effects on the 

convergence rate of the form finding algorithm

Case Hardening law Loading path (time)
1 Isotropic Monotonic (0-1 s)
2 Combined Monotonic (0-1 s)
3 Isotropic Cyclic (0-5 s)
4 Combined Cyclic (0-5 s)

3.3 Optimization  

The optimization algorithm is implemented in Matlab. 
For the update of the material configuration of the 
workpiece, a constant relaxation parameter (M = 1) is 
used in all iterations and for all four modelled variants. 
 Figure 5 shows the determined optimal material 
configuration for the pure compression (monotonic 
loading, 4 mm in x-direction) with the underlying 
isotropic (A) and the combined hardening model (B). 
Inputting the determined optimal material configurations, 
subsequent forming simulations compute the desired 
spatial nodal positions of the given target configuration 
(C, D).  
 For comparison, Figure 6 shows the determined 
optimal material configuration for the cyclic loading with 
reverse strain path changes (-4/ 4/ -4 mm in x-direction) 
with the underlying isotropic (A) and the combined 
hardening model (B). Subsequent forming simulations 
after inputting the determined optimal material 
configurations compute again the desired spatial nodal 
positions of the given target configuration (C, D). The 
equivalent plastic strains UV, the equivalent stresses PQ and 
the equivalent back stresses dQ are uniformly scaled and 
depicted.  
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The computed maximal equivalent plastic strains vary 
between 0.265 and 0.287, whereas the maximal 
equivalent stresses range from 772 MPa to 848 MPa.  

Figure 5. Comparison of the determined optimal material 
configurations (A, B) with the isotropic and the combined 
hardening model and their corresponding spatial configurations 
(C, D) with equivalent strains and stresses after applying a 
monotonic loading (see Figure 4, 0-1 s) 

In all cases, the algorithm continuously decreases the 
objective functions ����, which can also be interpreted as 
the nodal standard deviation between the computed and 
the target configuration.  

Furthermore, nearly linear convergence rates can be 
observed, see Figure 7. The investigation demonstrates 
that applying a combined hardening model and a cyclic 
loading does not poses problems to the optimization 
approach.

Figure 6. Comparison of the determined optimal material 
configurations (A, B) with the isotropic and the combined 
hardening model and their corresponding spatial configurations 
(C, D) with equivalent strains and stresses after applying a 
cyclic loading (see Figure 4, 0-5 s)

A minimal error value ���� close to 10D�z is achieved 
after 25 (case 1: isotropic hardening / monotonic loading) 
to 30 iterations (case 3: isotropic hardening / cyclic 
loading). In the case of employing the combined 
hardening model no tendency regarding the efficiency is 
apparent (slightly more iterations for monotonic loading, 
but less iterations for cyclic loading).  
 In contrast, a slight difference can be observed, when 
applying a cyclic loading (more iterations are needed) in 
comparison to the case of a monotonic loading. A clear 
relation between the amount of the equivalent stresses, or 
equivalent plastic strains respectively, and the 
convergence rates is not recognizable. 
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Table 3 lists additionally the error values of the 
objective function and shows again clearly the excellent 
efficiency of the non-invasive approach.

Figure 7. For all cases the objective function ���� of the root 
mean square of nodal distances decreases continuously within a 
nearly linear convergence rate during the optimization 
procedure 

Table 3. The error values of the objective function }~�� show a 
good agreement of the computed and the target spatial 

configuration within only a few optimization steps 

Ite
r.

Objective function ����: Root mean square error in mm
Isotropic / 
Monotonic

Combined / 
Monotonic

Isotropic / 
Cyclic

Combined / 
Cyclic

1 3.34 3.38 3.46 3.53 
2 1.1⋅ 10D� 1.4⋅ 10D� 1.6⋅ 10D� 1.6⋅ 10D� 
3 1.2⋅ 10DY 1.9⋅ 10DY 2.7⋅ 10DY 3.1⋅ 10DY 
4 2.0⋅ 10DX 3.6⋅ 10DX 6.4⋅ 10DX 6.9⋅ 10DX 
5 3.6⋅ 10D� 7.3⋅ 10D� 8.8⋅ 10D� 1.8⋅ 10DX 
6 6.4⋅ 10Dz 1.4⋅ 10D� 2.1⋅ 10D� 4.2⋅ 10D� 
⋮ ⋮ ⋮ ⋮ ⋮ 

30 5.0⋅ 10D�� 6.0⋅ 10D�� 1.6⋅ 10D�z 1.1⋅ 10D�z 

4 Conclusion 
Kinematic hardening is of crucial importance when the 
forming of a workpiece includes strain-path changes, as 
typically occurring e. g. in bulk forming of a sheet-metal. 
Therefore, the convergence behavior of a non-invasive 
iterative approach for inverse form finding, whose 
operating principle is briefly summarized, is investigated 
by a case study with a pure isotropic and a combined 
(isotropic and kinematic) hardening law. It is 
demonstrated that different hardening models does not 
affect the performance of the algorithm. Furthermore, 
only slightly more iterations are needed when applying a 
cyclic instead of a monotonic loading. 
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