
 

 
 
 
 
 
 
Al-Mubarak, H., Vallatos, A., Gallagher, L., Birch, J., Gilmour, L., Foster, J., Chalmers, 
A.J. and Holmes, W.M. (2019) Stacked in-plane histology for quantitative validation of 
non-invasive imaging biomarkers: application to an infiltrative brain tumour model. 
Journal of Neuroscience Methods, 326, 108372. 

 
   
There may be differences between this version and the published version. You are 
advised to consult the publisher’s version if you wish to cite from it. 
 
 
 

http://eprints.gla.ac.uk/191840/     
      

 
 
 
 
 
 

Deposited on: 5 August 2019 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk  

  

http://eprints.gla.ac.uk/191840/
http://eprints.gla.ac.uk/


1 
 

Stacked In-plane Histology for Quantitative Validation of 1 

Non-invasive Imaging Biomarkers: Application to an 2 

Infiltrative Brain Tumour Model 3 

 4 

 5 

H. Al-Mubaraka,b*, A. Vallatosc, L. Gallaghera, J. Birchd, L. Gilmourd, J. Fosterf,   6 

A.J. Chalmersd, W.M. Holmesa 7 

 8 
aGlasgow Experimental MRI centre, Institute of Neuroscience and Psychology, University 9 

of Glasgow, G61 1QH, U.K. 10 
bDepartment of Physics, College of science, University of Misan, Iraq. 11 
cCentre for Clinical Brain Sciences, University of Edinburgh, EH16 4SB ,UK. 12 
dWolfson Wohl Translational Cancer Research Centre, Institute of Cancer Sciences 13 

University of Glasgow, G61 1QH, UK. 14 
fDepartment of Clinical Physics and Bioengineering, Greater Glasgow Health Board and 15 

University of Glasgow, B15 2GW,U.K. 16 

 17 

 18 

*Haitham Al-Mubarak e-mail: h.al-mubarak.1@research.gla.ac.uk. 19 

Antoine Vallatos e-mail: antoine.vallatos@ed.ac.uk. 20 

Lindsay Gallagher e-mail: Lindsay.Gallagher@ glasgow.ac.uk 21 

Joanna Birch e-mail : Joanna.Birch@ glasgow.ac.uk 22 

Lesley Gilmour e-mail : Lesley.Gilmour@glasgow.ac.uk 23 

John Foster e-mail: john.foster@ glasgow.ac.uk 24 

Anthony Chalmers e-mail: Anthony.Chalmers@glasgow.ac.uk 25 

William Holmes e-mail: William.Holmes@glasgow.ac.uk 26 

 27 

 28 

 29 

Corresponding author: Haitham. Al-Mubarak*  30 

Mailing address:  31 

Mobile phone:++(44)7436852487 32 

E-mail: h.al-mubarak.1@research.gla.ac.uk 33 

 34 

mailto:h.al-mubarak.1@research.gla.ac.uk
mailto:h.al-mubarak.1@research.gla.ac.uk


2 
 

Abstract 35 
 36 

While it is generally agreed that histopathology is the gold standard for assessing non-invasive 37 
imaging biomarkers, most validation has been by qualitative visual comparison. . To date, the 38 
difficulties involved in accurately co-registering histology sections with imaging slices have 39 
prevented a voxel-by-voxel assessment of imaging modalities. By contrast with previous studies, 40 
which focus on improving the registration algorithms, we have taken the approach of improving 41 
the quality of the histological processing and analysis.  42 
 43 
New method: To account for imaging slice orientation and thickness, multiple histology sections 44 
were cut in the MR imaging plane and averaged to produce stacked in-plane histology (SIH) 45 
maps. When combined with intensity sensitive staining this approach gives histopathology maps, 46 
which can be used as the gold standard to validate imaging biomarkers.  47 
 48 
Results: We applied this pipeline to a patient-derived mouse model of glioblastoma multiforme 49 
(GBM). Increasing the number of stacked histology sections significantly increased SIH measured 50 
tumour volume. The SIH technique proposed here resulted in reduced variability of volume 51 
measurements and this allowed significant improvements in the quantitative volumetric 52 
assessment of multiple MRI modalities. Further, high quality registration enabled a voxel-wise 53 
comparison between MRI and histopathology maps. 54 
 55 
Previous approaches to the validation of imaging biomarkers with histology, have been either 56 
qualitative or of limited accuracy. Here we propose a pipeline that allows for a more accurate 57 
validation via co-registration with SIH maps, potentially allowing validation in a voxel-wise mode. 58 
 59 
Conclusion: This work demonstrates that methodically produced SIH maps facilitate the 60 
quantitative histopathologic assessment of imaging biomarkers.  61 
 62 
Keywords: Imaging Biomarker, Registration, Mutual information, histology, MRI, validation. 63 
 64 
 65 
 66 
 67 
 68 
 69 
 70 
 71 
 72 
 73 
 74 
 75 



3 
 

1 Introduction 76 
The use of non-invasive imaging modalities for clinical diagnosis continues to advance rapidly. A 77 
variety of methods are now available including Magnetic Resonance Imaging (MRI), Positron 78 
Emission Tomography (PET), Single Photon Emission Computerised Tomography (SPECT), 79 
Ultrasound (US), and x-ray Computed Tomography (x-ray CT). Often, the source of image 80 
contrast is related only indirectly to the underlying biology. This is especially true for MRI, where 81 
the signal intensity can depend upon many physical parameters including water content, local 82 
structure, tumbling rates, diffusion and hypoxia (Dominietto et al.,2014). There has been 83 
considerable interest in identifying whether such biologically indirect image contrasts can be used 84 
as non-invasive imaging biomarkers, either for normal biological functions, pathogenic processes 85 
or pharmacological responses to therapeutic interventions (Atkinson et al.,2001). 86 
 87 
Histopathology is generally considered to be the ground thruth when considering the 88 
characterisation of diseased tissue (Kiessling et al.,2011). For histology, a post mortem or biopsy 89 
specimen is cut into thin sections to reveal its internal morphology and then stained to observe 90 
complex differentiated structures at the cellular level (Kiessling et al.,2011). The cutting process 91 
inherently yields 2D sections, which is the manner by which most histology is analysed. However, 92 
considerable work has been undertaken to reconstruct 3D histological volumes from serial 2D 93 
sections (Pichat et al.,2018). Though difficult, this allows knowledge of the 3D environment to be 94 
regained, while still accessing microscopic information (Stille et al.,2013). 95 
 96 
When new imaging modalities are proposed as imaging biomarkers for particular diseases 97 
(Price,2011), it is difficult or impossible to validate them in human patients for ethical reasons. 98 
Validation against histopathology is limited to biopsy (Madabhushi et al.,2005) and later post-99 
mortem comparisons (Kimt et al.,2000). In the case of biopsy, the size and number of samples 100 
taken is very limited and difficult to localise on images. Comparison of in-vivo non-invasive 101 
imaging and later post-mortem histology would be compromised by disease progression between 102 
imaging and death. Further, comparison of post-mortem imaging and post-mortem histology, 103 
would be compromised by the ex-vivo state of the tissue (Fagan et al.,2008). 104 
Nevertheless, biomarker validation can be performed in preclinical disease models, where the 105 
animal can be terminated immediately following imaging for histological analysis. In principle, co-106 
registration of imaging biomarkers with histopathology would allow direct validation. Indeed, there 107 
is a considerable literature describing such image registration algorithms and their application 108 
(Dauguet et al.,2007, Pichat et al.,2018). However, in practice, most preclinical validation is 109 
qualitative, limited to visual comparisons with sample histology sections, with little attempt made 110 
to match these to the corresponding imaging slice (Henning et al.,2007, Langer et al.,2009, 111 
Coquery et al.,2014). The reason for this is that accurate co-registration of non-invasive images 112 
with histology sections is challenging.  113 
 114 
The processing, cutting and staining of histology sections can result in complex deformations 115 
such as fixation shrinkage, tears and cutting artefacts (Stille et al.,2013, Agarwal et al.,2018), 116 
which are difficult for registration algorithms to handle.  117 
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Examples of quantitative comparison of imaging biomarkers with histology include Stille et al., 118 
which used rigid registration and selected anatomical landmarks with a rodent stroke model (Stille 119 
et al.,2013). This approach requires an expert to identify the control points, which can be a difficult 120 
task due to internal distortions. Similarly, Ou et al. (2009) used non-rigid registration with selected 121 
anatomical landmarks to register histology to MRI of prostate tumours, using two criteria: 122 
maximization of landmark similarities and maximization of cancer region overlap. Jardim-Perassi 123 
et al. (2019) used MRI-guided 3D printed tumour moulds to facilitate registration in a murine 124 
breast tumour model. However, the accuracy of these approaches was limited by not accounting 125 
for imaging slice thickness and often slice orientation too.  126 
 127 
In this paper, we have tried to achieve high quality registration of histology with non-invasive 128 
imaging data, not by improving on current image registration algorithms, but by focusing on 129 
improving the quality of the histology used. This was done in five ways: 130 
 131 

1. The use of a “flash-freeze” method for fixation instead of transcardial fixation with paraffin 132 
embedding. With care and experience this helps to preserve tissue morphology, reducing 133 
macroscopic distortions associated with extracting, cutting, and staining (Peters,2003, Ou 134 
et al.,2009).  135 

2. Histology was cut in relatively thick 20 μm sections, to reduce the risk of tears/distortions. 136 
3. Histology sections were carefully cut in the image acquisition plane (e.g. the MRI plane), 137 

guided by thin slice T2-weighted MRI. This is particularly important in order to maximise 138 
spatial correlation between MRI and histology (cf. Figure 1). 139 

4. A protocol was developed to register and stack multiple in-plane histology sections in 140 
order to reflect the imaging slice thickness. For example, the thickness of an MRI slice 141 
(~1-2 mm) is approximately 100 times thicker than a histology section (~10 to 20 µm) (cf. 142 
Figure 2). This is crucial where the pathology is heterogeneous, with variations occurring 143 
on the length scale of the imaging slice thickness. 144 

5. The use of histological stains that exhibit signal intensities proportional to the observed 145 
phenomenon, in order to produce semi-quantitative maps. This facilitates intensity based 146 
registration, thus avoiding overfitting limitations of commonly used affine transformations 147 
(Wells et al.,1996).  148 
 149 

 150 
To evaluate the ability of this overall approach to provide a quantitative histopathologic 151 
assessment of in-vivo imaging biomarkers, we applied it to a patient-derived mouse model of 152 
glioblastoma multiforme. In GBM, a major factor contributing to treatment failure is the ability of 153 
tumour cells to infiltrate adjacent normal brain tissue (Price,2011), with low tumour cell density 154 
extending far beyond the bulk of the tumour. Identifying the full extent of infiltration is important for 155 
both radiotherapy planning and to achieve complete surgical resection. Here, we present the 156 
different steps leading to the production of a 3D data matrix, from co-registration of multiple MRI 157 
modalities with stacked in-plane histology. We show how the resulting matrix allows MRI 158 
modalities to be assessed, both in terms of tumour volume detection and via direct voxel-wise 159 
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comparison. Such an approach should become the accepted gold standard for validating non-160 
invasive imaging biomarkers. 161 
 162 

2 Materials and Methods  163 

2.1  Animal preparation 164 
Experiments were performed on ten immunocompromised CD1 nude mice (20 to 25g, Charles 165 
River Laboratories), which were acclimatized at least one week prior to any experimental 166 
procedure. Animals that did not exhibit tumour growth (n=1) were removed from the study. G7 167 
human glioblastoma cells were cultured in stem-like conditions (Advanced DMEM:F12, containing 168 
20µM EGF/FGF, 1% B27, 0.5% N2, heparin, 1% L-Glut) on Matrigel coated plates. The animals 169 
were intracranially injected with G7 cells (105 cells per mouse) into the sub-ventricular zone using 170 
stereotactic equipment (Gomez-Roman et al.,2017). This cell line produces a tumour bulk with 171 
infiltrative edges in-vivo that replicates the human disease (Ahmed et al.,2015). To avoid 172 
unnecessary animal use, this work is based on data produced by a brain tumour infiltration study 173 
where animals were scanned using MRI at weeks 9 and 12 after GBM injection (Vallatos et 174 
al.,2018a). Experiments were carried out in accordance with the local ethical review panel, the UK 175 
Home Office Animals (Scientific Procedures) Act 1986 and the United Kingdom National Cancer 176 
Research Institute guidelines for the welfare of animals in cancer research (Workman et al.,2010). 177 
Study outcomes are reported according to the ARRIVE guidelines (Kilkenny et al.,2011). 178 
 179 

2.2 MRI set up 180 
MRI experiments were performed on a 7Tesla Bruker Biospec Avance system (Bruker Biospin, 181 
Ettlingen, Germany). Homogeneous radiofrequency excitation was achieved using a 72mm 182 
birdcage volume resonator, with the signal detected using an actively decoupled 4-channel 183 
phased array receive-only head surface coil (Rapid Biomedical, Wurzburg, Germany). The mice 184 
were initially anaesthetized using 5% isoflurane and a 30:70 O2/N2O ratio and were positioned 185 
prone on an MRI cradle. A hot water circulation jacket was used to regulate the animal 186 
temperature (37±1 °C) , which was monitored using a rectal probe. The head was secured 187 
laterally using conical ear rods and longitudinally by the nose cone used for anaesthetic gas 188 
delivery. The animals breathed spontaneously through a facemask delivering a constant flow of 189 
isoflurane mixed with a 40:60 ratio of O2/N2O (1 L min-1). Isoflurane concentration varied from 1.5 190 
% to 3 %, in order to maintain stable respiration rates within normal physiological ranges (40-70 191 
bpm). Respiration was monitored throughout the experiment using a pressure sensor connected 192 
to an air-filled balloon placed under the animal abdomen (Biotrig software, Bruker, Ettlingen, 193 
Germany).  194 
 195 

2.3 MRI experiments 196 
Following a geometry correction scan, a series of MRI experiments were performed (field of view 197 
2×2 cm, five 1.5 mm thick coronal imaging slices centred at 4 mm from the rhinal fissure). T2-198 
weighted imaging (T2W) was performed using a rapid acquisition with relaxation enhancement 199 
(RARE) sequence (TE=47 ms, TR=4,300 ms, matrix=176×176, in-plane resolution 113 μm x113 200 
μm, 9 min). A second set of T2-weighted images were acquired (T2WHistology), with the same 201 
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parameters as above but with fifteen 0.5 mm thick slices, for the specific purpose of guiding the 202 
cutting of histology sections. Diffusion-weighted imaging (DW) was performed using a 4-shot spin-203 
echo planar imaging DW scan (TE=37ms, TR=4,500 ms, matrix=128×128, 1.5 mm slice 204 
thickness, 6 directions, b-values = 0, 1000 s mm-2, 10 min). Perfusion weighted imaging (PW) was 205 
performed using a multiple boli Arterial Spin Labelling sequence (mbASL) (Vallatos et al.,2018b), 206 
labelling with a train of twenty hyperbolic-secant inversion pulses (duration=3.3 ms, dimensionless 207 
amplitude parameter μ=8, angular modulation β=760 s-1) evenly distributed over a 5 s labelling 208 
duration. The inversion slice width was 8.5 mm and the offset from the imaging slice was 15 mm. 209 
Image acquisition was achieved using an EPI module (TE=12 ms, TR=7 s, matrix=96×96, 4 210 
acquisition segment, partial FT=1.4, 12 averages, 9 min). T1 weighted imaging was performed 211 
using a RARE acquisition (TE=12.3 ms, TR=800 ms, matrix=176×176,RT=4, 8 min. Following in-212 
vivo scanning, a doped water phantom was scanned using the above sequences, for use in 213 
correcting the receiver coil bias. MRI data were exported in DICOM format. 214 
 215 

2.4 Histology protocol 216 
Following MRI scanning, the animal was taken to deep anaesthesia then removed from the MRI 217 
cradle to a nearby bench and decapitated. The skin was peeled back and the brain removed from 218 
the skull. The brain was then fresh-frozen for 2 minutes at -45 ˚C using an isopentane solution 219 
tube immersed in dry ice. The frozen brains were then embedded in Cryomatrix and protected in 220 
an M-1 embedding matrix to prevent dehydration (Thermo Fisher Scientific, UK). Freezing was 221 
favoured in order to avoid the unpredictable macroscopic tissue deformation related to perfusion-222 
fixation and paraffin embedding (Petersen et al.,2001). Brain slicing was performed manually on 223 
an OTF 5000 Bright cryostat (-16 ˚C) equipped with a rotary knife (Bright, Criostato-OTF-5000). A 224 
relatively thick section thickness of 20 μm was chosen, to reduce the risk of tears/distortions. Care 225 
was taken to cut the sections in planes parallel to the MRI imaging plane. For this, sectioning was 226 
guided by T2WHistology images (slice thickness = 0.5 mm), see Figure 1. Common brain structures 227 
identified by an experienced neuroscience research technician (L. Gallagher) were used to 228 
iteratively orientate the sectioning plane parallel to the MRI plane. Five pairs of adjacent sections 229 
within the MRI thickness were cut at 300 μm intervals and then lifted onto to poly-L-lysine slides, 230 
see Figure 2. The sections were then stained using either haematoxylin and eosin (H&E) or 231 
Human Leukocyte Antigen (HLA) to identify the human tumour cells. The 20 μm cryosections 232 
were fixed in ice cold acetone and washed in PBS before blocking in 3% BSA/TBS-tween for 30 233 
mins at room temperature. A 1:500 dilution HLA antibody (abcam ab70328) in blocking buffer was 234 
added and incubated for 2 hours at room temperature. Sections were washed three times with 235 
TBS-Tween before the addition of 1:1000 anti-mouse Alexa Fluor 647-conjugated secondary 236 
antibody (Thermo Fisher Scientific, UK - A21236) for 1 hour incubation in the dark. Sections were 237 
washed 3 times with TBS-Tween and mounted in a ProLong Diamond Antifade mount with DAPI 238 
(Thermo Fisher Scientific, UK - P36966). Whole brain section tile scans were conducted using a 239 
Zeiss 710 upright confocal microscope at x 10 magnification (Far red filters- 638 – 747. Beam 240 
splitters- MBS : MBS 488/561/633, MBS_InVis : Plate, DBS1 : Mirror). Histology images 241 
(~1300×1000 pixels) were exported as .tiff files. 242 
 243 

*** Figure1 and 2 to appears near here*** 244 
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 245 

2.5 Data processing pipeline 246 
 247 
Both MRI and histology data were processed using Matlab code developed in-house (Matlab 248 
R2015a , MathWorks Ltd., U.K.). The overall processing pipeline is summarised in Figure 3. 249 
 250 

***Figure 3 appears near here*** 251 
 252 

2.6 MRI data analysis 253 
 254 
To remove any bias that could arise due to differences in the image intensity values for the 255 
different modalities, the DICOM images were normalised (0-1 range). Furthermore, non-uniform 256 
detection sensitivity associated with the use of a surface receiver coil was corrected, as it can 257 
adversely affect the registration processes: T1W, T2W and DW images were normalised 258 
(removing the sensitivity of the surface coil) using corresponding phantom MRI images acquired 259 
using the same parameters (Axel et al.,1987). Apparent diffusion coefficient (ADC) maps were 260 
calculated by fitting the DWI data to the mono-exponential equation of the Stejskal and Tanner 261 
model (Stejskal et al.,1965). Normalized relative perfusion maps (PW) were produced from the 262 
MRI signal of the control image (Mcontrol) and labelled image (Mlabel), using the equation (Mcontrol - 263 
Mlabel )/Mcontrol. Prior to comparison, all data (T1W, DWI, ADC, ASL, and SIH) were resized to the 264 
T2W in-plane resolution (176 x 176).To reduce processing time, the brain region was separated 265 
from the background by the application of an active contour method following manual delineation 266 
(Caselles et al.,1997). 267 
 268 

2.7 Histology data analysis 269 

 270 

Following digital scanning of whole brain histology sections, the histology images were rotated by 271 
a small angle to remove differences in orientation of the brain due to the laying out on glass 272 
microscope slides. Histology images were then resampled from their original resolution using the 273 
cubic spline method to match the resolution of the T2W images (176x176). Signal intensity 274 
inhomogeneity due to a difference in staining across the image were automatically corrected for 275 
each section by using a histogram equalization method (Belsare,2012). Further, a threshold value 276 
was selected, creating a brain mask to remove the background signal. Stacked In-plane Histology 277 
(SIH) maps were generated first by co-registration of multiple histology sections, then by taking a 278 
voxel-wise average of the signal intensities. Registration used non-rigid Mutual Information (MI) 279 
based transformation with global translation, rotation, scaling and shearing for optimal 280 
registration. In one histology section with greater tissue deformations, a B-spline method was 281 
applied to improve the registration. 282 

 283 
2.8 Histology to MRI co-registration and 3D matrices production 284 

Registration of histology sections with MR images is typically challenging due to a significant 285 
variation of image properties, such as resolution, field of view and contrast (Madabhushi et 286 
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al.,2005). Here, the SIH maps, allowed intensity based registration with MRI images to be 287 
undertaken using the Mutual Information registration method. For consistent registration, the 288 
histology sections were transformed so they had the same resolution and dimensions as the MR 289 
images.  290 
 291 

2.9 Segmentation protocol  292 
For both histology and MRI, tumour related abnormal regions of interest (ROI) were manually 293 
drawn by 3 observers (with more than 3 years’ experience). Histology ROIs were selected on the 294 
basis of HLA stain intensity on SIH maps. MRI ROI delineation was performed without prior 295 
knowledge of the histology data, to avoid selection bias. Care was taken not to include non-296 
infiltration related enhancement (e.g. ventricle compression). Inter-observer reproducibility of ROI 297 
selection was evaluated using the coefficient of variation (100 ×standard deviation/mean), 298 
resulting in 10% for histology and 12-21% for the different MRI modalities.  299 
 300 
 301 

2.10 Statistical analysis 302 
ROC curve analysis (Garcia-Lorenzo et al.,2013) was used to compare tumour volume 303 
dependence on number of sections used to produce the SIH maps, with 5-section SIH maps 304 
being the gold standard: voxels correctly identified as tumour are true positive (TP): voxels 305 
incorrectly identified as tumour are false positive (FP): voxels correctly identified as non-tumour 306 
are true negative (TN) and voxels identified incorrectly as non-tumour are false negative (FN). 307 
These values are then used to calculate Sensitivity, Specificity, Accuracy and Dice, 308 
 309 
   310 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

  ………..(1) 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁
𝑇𝑃+𝑇𝑁

 ………..(2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃+𝑇𝑁
𝑇𝑃++𝐹𝑃+𝐹𝑁+𝑇𝑁

 ..…(3) 𝐷𝑖𝑐𝑒 = 2∗𝑇𝑃
𝐹𝑃+𝐹𝑁+2∗𝑇𝑃

 ………….(4) 

 311 
 312 
Additional comparison between single- and multiple-section histology was conducted using Bland 313 
Altman plots. The two-tailed Student’s t-test was used for comparisons between MR 314 
measurements of tumour volume and histology measurements of tumour volume (SSH or SIH), 315 
using a Bonferroni correction (Graph Pad prism 6, Ver.6.01, 2012). All values are reported as 316 
means ± standard deviation. * Statistically significant p<0.01, ** statistically significant p<0.001, 317 
*** statistically significant p<0.0001 and NS not statistically significant. Statistical power analysis 318 
was performed using G-Power (version 3.1) software (Erdfelder et al.,1996). 319 
 320 
 321 
 322 

3 Results & Discussion 323 

 324 

 325 
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We present a quantitative method for validating imaging-based biomarkers by registration with 326 
stacks of in-plane histology. 327 
While it is generally agreed that histopathology is the gold standard for assessment, in practice 328 
most preclinical validation is limited to visual comparisons with sample histology sections, with 329 
little attempt made to spatially match the histology section to the corresponding imaging slice. By 330 
improving the quality of the histology processing and analysis, we have been able to produce 331 
stacked in-plane histology (SIH) maps. These high quality SIH maps can then be co-registered 332 
with non-invasive imaging modalities, allowing more direct and quantitative validation of imaging 333 
biomarkers than has previously been possible. 334 
 335 
To demonstrate this methodology, we applied it to a patient-derived mouse model of glioblastoma 336 
multiforme (GBM). In the case of GBM patients, an imaging biomarker capable of identifying the 337 
full extent of GBM cell infiltration would be valuable for both radiotherapy planning and in 338 
achieving complete surgical resection. Below, we assess the optimal number of histology sections 339 
for SIH maps and the quality of SIH with MRI registration. Finally, potential MRI biomarkers are 340 
assessed, both by volumetric and voxel-wise comparison with SIH maps. 341 
 342 

 343 

3.1 Tumour volume measurement via single-section Histology (SSH) 344 

 345 

Figure 4A shows examplary H&E and HLA stained sections, obtained from within the 1.5 mm MRI 346 
slice. The heterogeneity in tumour shape and size is readily apparent at this length scale. The 347 
commonly applied method of arbitrarily selecting a single-section of histology (SSH) to estimate 348 
tumour volume inevitably leads to significant measurement variation. For example, the 349 
percentage difference between the minimum tumour volume (Vmin) and maximum tumour volume 350 
(Vmax) for each series of sections was found to be 46% for H&E and 50% for HLA (Figure 4B). 351 
While tumours can be identified on H&E sections due to a much higher density of cell nuclei, 352 
there is less sensitivity in detecting regions of low-density GBM infiltration. However, Human 353 
Leukocyte Antigen (HLA) staining is very specific in the mouse model, as it only stains cells that 354 
originated from the implanted human tumour cells. Hence, in the following analysis we define 355 
tumour volume as the maximum extent of GBM cell infiltration identified using the HLA sections.  356 
 357 

*** Figure 4 appears near here*** 358 
 359 

3.2 Determining optimal number of histology sections for SIH maps  360 

 361 

It is clear that increasing the number of histology sections (20 μm thick) used to generate a SIH 362 
map will make the SIH map more representative of the corresponding imaging slice (1500 μm 363 
thick). However, this comes at the expense of longer processing time (histology preparation / 364 
analysis time). In applying the SIH method, the optimal number of sections will be disease 365 
specific, depending on the length scale of heterogeneities and the corresponding imaging slice 366 
thickness.  367 
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 368 
For the GBM tumours, we assessed how tumour volume measurements were improved by using 369 
more HLA sections to generate the SIH maps. In 6 out of 9 mice, where five quality HLA sections 370 
were available, SIH maps were produced with one, two, three, four and five sections (Figure 5A-371 
E), using all possible combinations of the sections. The measured tumour volume reaches a 372 
plateau when 3 or more sections are used to produce the SIH map, with no significant difference 373 
found between using 3, 4 or 5 sections (Figure 5F). These volume measurements are analogous 374 
to numerical integration where the more sections used to calculate a volume, the more accurate 375 
the result will be, eventually converging at the true value.   376 
 377 

To further investigate the effect of using multiple histology sections, we performed a ROC curve 378 
analysis (Garcia-Lorenzo et al.,2013) comparing SIH maps produced with 1, 2, 3 and 4 HLA 379 
sections to maps produced with 5 HLA sections. This assumed the 5-section map was the 380 
‘ground thruth’ for the assessment of the other maps, To avoid bias in the selection of sections, 381 
maps were produced from all possible combinations of sections for each mouse. ). It should be 382 
noted that the values of Dice, sensitivity, and accuracy indices will be dependent on the number 383 
of sections used in the gold standard. However, Figure 5G-J does show a diminishing increase of 384 
these indices with the number of sections used, and their standard deviation decreases markedly. 385 
As expected, specificity measures were not affected by this evaluation, as smaller numbers of 386 
sections tended to underestimate the tumour region. A Bland-Altman analysis showed that the 387 
number of sections required is inversely proportional to the tumour size, see supplemental 388 
information (Figure 1S).  389 
 390 
Given the above analysis, as a trade-off between improved accuracy and expanded processing 391 
time, we settled on using three histology sections for the remaining analysis. After excluding poor 392 
quality sections, the three sections with the largest tumour area were selected. It is crucial to note 393 
that the choice of three sections is very specific to this particular disease model (mouse model of 394 
glioblastoma). If the SIH method is to be applied to different disease models or different species, 395 
then the optimum number of slices will be different and will need to be assessed. 396 
 397 
 398 
 399 
***Figure 5 appears near here*** 400 
 401 
 402 

3.3 SIH to MRI registration quality  403 
 404 

Registration of histology with MRI was qualitatively and quantitatively evaluated at each stage of 405 
the process. The qualitative evaluation consisted of a visual inspection of the overlay of the inner 406 
and outer contours of the T2W image and histology section (Figure 6). Accurate alignment was 407 
observed between borders and internal structures. Excellent post-registration overlays were 408 
found; with Dice values above (0.96±0.011). The resized and co-registered data were used to 409 
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create a 3-dimensional data matrix, which allowed the MRI modalities to be assessed against 410 
histology, both in terms of tumour volume detection and via direct voxel-wise comparison.  411 
 412 
 413 
***Figure 6 appears near here*** 414 
 415 
 416 

3.4 Volumetric assessment of MR biomarkers.  417 

 418 

The proposed SIH approach was used to quantitatively validate different MRI modalities as 419 
imaging biomarkers of GBM infiltration. For this, both the SSH and SIH approaches were used to 420 
measure the “ground thruth” tumour volume (i.e. the volume of GBM infiltrated tissue) for the 421 
same dataset. Given the analysis in section 3.3, as a trade-off between improved accuracy and 422 
expanded processing time, we settled on using three HLA sections to produce the SIH maps. In 423 
all 9 mice, after excluding poor quality sections, the three sections with the largest tumour area 424 
were selected. 425 
 426 
Figure 7A shows representative manual ROI selections for each imaging modality in the same 427 
animal. Figure 7B shows tumour volumes obtained from manual delineation of the various MRI 428 
modalities, compared with tumour volumes measured from five individual single sections of 429 
histology (SSH). Clearly, the large standard deviation of the SSH tumour volume measurements 430 
(±6.022) makes it a poor ‘ground thruth’ for validating the MR tumour volume measurements, with 431 
no significant differences found between any of the MRI modalities and the SSH measurements.  432 
 433 
However, tumour volume measurements made using SIH maps show a much lower standard 434 
deviation (±0.81) (Figure 7C), allowing better validation of the different MRI modalities. A 435 
statistically significant difference was found between the SIH measured tumour volume and those 436 
measured with T2W, DW and ADC, whereas both T1W and ASL measurements showed no 437 
significant difference and, hence, can be evaluated as better biomarkers for tumour cell infiltration 438 
in this animal model.  439 
 440 
The lower standard deviation of SIH tumour volume measurements has important implications, as 441 
it allows statistical significance to be achieved without requiring an increase in the number of 442 
animals used. To further examine this, we performed power analysis using the results presented 443 
in Figure 7 (Figure 2S). For example, to achieve a statistically significant difference (p<0.05) 444 
between T2W and SSH tumour volume measurements, would require between 72 and 800 mice. 445 
By contrast, using SIH maps as the ground thruth, required only 9 mice to achieve p<0.01. Such 446 
an impressive reduction in animal usage is a stated aim of the UK government, via its policy of 447 
Replacement, Refinement and Reduction of Animals in Research (NC3Rs) and should arguably 448 
feature in future guidelines for reporting in-vivo experiments (Kilkenny et al.,2011).  449 
 450 
***Figure 7 appears near here*** 451 
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3.5 Towards voxel-by-voxel assessment 452 
 453 
The ideal approach to validating imaging biomarkers would involve voxel-by-voxel comparison 454 
with co-registered histology. To date, the difficulties involved in accurately co-registering histology 455 
sections with imaging slices have prevented this. However, we believe that the methodological 456 
pipeline we have outlined overcomes many of these difficulties, yielding a co-registered multi-457 
dimensional data matrix (T1W, T2W, DWI, ADC, ASL and SIH map).  458 
 459 
In the case of HLA, the staining intensity is proportional to the density of tumour cell membranes. 460 
Therefore, by averaging multiple histology sections, the resulting SIH maps represent a semi-461 
quantitative measure of tumour cell density in the MRI slice. This allows the MRI modalities to be 462 
more accurately evaluated against histology in a direct voxel-by-voxel analysis. For example, 463 
Figure 8A-C shows scatter plots of different MRI modalities against SIH intensity. Here the 464 
pathogenic regions identified by the ‘ground thruth’ histology ROIs can be highlighted, allowing 465 
the relationship between the MRI signal and the underlying histopathology to be assessed. 466 
Furthermore, it enables the assessment of multi-spectral analysis approaches on a voxel-by-voxel 467 
basis, investigating and validating combinations of MRI parameters against histology. 468 
 469 
***Figure 8 appears near here*** 470 

4 Conclusion 471 
 472 
We have introduced a novel methodological pipeline to improve the validation of non-invasive 473 
imaging biomarkers. In contrast to most previous studies, which focus on improving the 474 
registration algorithms, we have taken the approach of improving the quality of the histology 475 
processing and analysis. In an infiltrative brain tumour model we have demonstrated how stacked 476 
in-plane histology (SIH) maps, co-registered with multiple MRI modalities, provide a ‘ground truth’ 477 
for quantitative comparisons. Our results demonstrate that, in cases of small and heterogeneous 478 
tumours the use of this multi-section approach is crucial, as conventional assessment using 479 
single-section histology is prone to significant errors. Finally, the development of robust three-480 
dimensional registration with non-invasive imaging modalities could lead to the emergence of 481 
voxel-by-voxel histopathologic assessment of new imaging biomarkers.  482 
 483 
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 493 
 494 
 495 
 496 
 497 
 498 
 499 
 500 
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 502 
 503 
 504 
 505 
 506 
 507 
 508 

 509 
Figure 1. Effect of cutting angle (M) on MRI to histology comparison: (A) MRI (1.5 mm thickness) 510 
and histology (20 Pm thickness) cutting angles. (B) The effect of cutting angle discrepancies on 511 
the overall volume and voxel-wise overlap between MRI and stacked histology.  512 
 513 
 514 
 515 
 516 



14 
 

 517 
Figure 2. The cutting of histology section was guided by 0.5 mm thick T2-weighted images 518 
(T2WHistology), matching the cryo-section plane to the MRI acquisition plane. Five evenly distributed 519 
histology sections (20 µm) were cut (red) to cover the 1.5 mm thickness of the T2W scans.  520 
 521 
 522 
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 523 
 524 
Figure 3. Simplified diagram of the image processing pipeline leading to the production of 3D 525 
matrices combining MRI modalities and SIH data.  526 
 527 
 528 
 529 
 530 

 531 
 532 
Figure 4. Examples of histology sections for a GBM mouse and volume error comparison: (A) 533 
Five corresponding histology sections (H&E and HLA) cut within the 1.5 mm thickness of one MRI 534 
slice (B) Percentage volume error between maximum and minimum tumour volumes (Vmax and 535 
Vmin respectively) in the five sections for each animal, calculated using (Vmax - 536 
Vmin)/Vmax.)*100. 537 
 538 
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 539 
 540 
 541 
 542 
Figure 5. (A,B,C,D and E): SIH maps generated using one section (SIH1), two sections (SIH2), 543 
three sections (SIH3), four sections (SIH4) and five sections of HLA (SIH5).  (F) Measured tumour 544 
volume against number of sections used to produce the SIH map (n=6). Evaluation of the ability 545 
of SIH maps to probe the tumour related abnormal area in comparison with the 5-section SIH 546 
map: (G) sensitivity, (H) specificity, (I) Dice similarity coefficient and (J) accuracy indices. 547 
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 548 
 549 
Figure 6. Example of non-rigid co-registration of histology with MRI using the Mutual Information 550 
method: (A) a T2-weighted image (T2W) (B) Stacked in-plane histology (SIH). (C) co-registration 551 
fusion image with false colour showing similarities (purple) and difference (green). (D) 552 
checkerboard comparison between registered MRI and SIH maps. 553 
 554 

 555 
 556 
Figure7. Volumetric analysis: (A) Examples of Regions of interest (ROIs) for MRI modalities and 557 
histology from the same animal. (B) Comparison of tumour volume measurements made using 558 
MRI modalities and single sections of histology (SSH). (C) Comparison of tumour volume 559 
measurements made using MRI modalities and stacked in-plane histology (SIH) maps generated 560 
using 3 sections.  561 
 562 
 563 
 564 
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 565 
 566 
Figure8. Voxel-wise scatter plots of MRI and SIH normalised data, showing the overlap between 567 
normal tissue and voxels infiltrated by GBM cells. (A) T2W against SIH and (B) ADC against SIH. 568 
(C) 3-D plot of T2W and ADC against SIH map. 569 
 570 
 571 
 572 
 573 
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Online Supplemental Information 710 
 711 
To evaluate the errors resulting from a single-section assessment in this case where at least three 712 
sections where required, Bland-Altman plots were used to compare tumour volume 713 
measurements in single-section and 3-section SIH maps. These show significant biases between 714 
the two assessment methods (A). The average bias was of 4.77 mm3 more for histologic maps, 715 
about 35% of the observed volume. Interestingly, the bias appear to increase with decreasing 716 
tumour volume. This highlights the fact that single-section approaches are more likely to fail when 717 
characterising small tumours.  718 
 719 
As arbitrary section selection for imaging assessment is common in the literature, it is interesting 720 
to consider two extreme single-section cases where the sections with the greatest and smallest 721 
tumour volumes are arbitrarily selected (Vmax and Vmin respectively): While bias reaches 54% of 722 
the observed volume for sections with the smallest areas, a significant bias is found even if 723 
histologic maps are compared with the single-sections showing the greatest abnormal area (9%).  724 
 725 

 726 
 727 

Figure 1S. Bland–Altman plots for tumour volumes identified on single-section histology (SSH) 728 
and stacked in-plane histology (SIH) maps using 3 sections.  729 
 730 
 731 
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 736 
 737 
Figure 2S: Power calculation of number of animals that would have been required for achieving a 738 
given significance with the single-slice or the SIH approach for two different single slice groups 739 
(A) section SSH1 (B) section SSH2. 740 
 741 
 742 


