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Chronic myeloid leukemia (CML) is a hematopoietic stem cell disorder characterized by
BCR-ABL1, an oncogenic fusion gene arising from the Philadelphia chromosome. The
development of tyrosine kinase inhibitors (TKIs) to overcome the constitutive tyrosine
kinase activity of the BCR-ABL protein has dramatically improved disease management
and patient outcomes over the past 20 years. However, the majority of patients are not
cured and developing novel therapeutic strategies that target epigenetic processes are
a promising avenue to improve cure rates. A number of epigenetic mechanisms are
altered or reprogrammed during the development and progression of CML, resulting
in alterations in histone modifications, DNA methylation and dysregulation of the
transcriptional machinery. In this review these epigenetic alterations are examined and
the potential of epigenetic therapies are discussed as a means of eradicating residual
disease and offering a potential cure for CML in combination with current therapies.
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INTRODUCTION

Chronic myeloid leukemia (CML) is a rare clonal hematopoietic stem cell disorder, with an annual
incidence varying from 0.6 to 2 cases per 100,000 individuals (Rohrbacher and Hasford, 2009).
CML is characterized by a genetic abnormality, termed the Philadelphia chromosome (Nowell and
Hungerford, 1961), caused by a reciprocal translocation between the long arms of chromosomes 9
and 22, t(9;22)(q34;q11) (Rowley, 1973). This leads to the fusion of the BCR and ABL genes and
the resultant BCR-ABL1 fusion protein, with its constitutive tyrosine kinase activity (Daley et al.,
1990), transforms a hematopoietic stem cell (HSC) into a leukemic stem cell (LSC). The oncogenic
BCR-ABL1 protein can activate multiple signaling pathways including RAS/RAF, PI3K/Akt, JUN
kinase, and STAT which cause malignant transformation and drive the development of CML. This
has been extensively reviewed previously (Deininger et al., 2000; Ren, 2005). Additionally, there are
also multiple signaling pathways subverted in CML LSCs that promote their survival specifically
(reviewed elsewhere; Holyoake and Vetrie, 2017).

Chronic myeloid leukemia is a tri-phasic disease consisting of a chronic phase (CP), accelerated
phase (AP), and lymphoid or myeloid blast phase (BP) (Baccarani et al., 2013). At diagnosis,
patients in CP have typically <10% blast cells (immature undifferentiated progenitors) in their
peripheral blood and bone marrow, and their blood cells remain differentiated and minimally
invasive (Faderl et al., 1999). Due to the complexity of the disease, progression varies between
patients, with some progressing to more advanced stages within a few months and others remaining
in CP for many years. Generally, if left untreated, the natural history of the disease is for the vast
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majority of cases to present in CP, with progression to AP and
then to BC within 5 years (Giralt et al., 1995). In AP, there
are increased numbers of blast cells in the blood and bone
marrow (typically 15–29%), >20% basophils in the peripheral
blood and bone marrow, persistent thrombocytopenia, and
clonal chromosome abnormalities in Ph+ cells (Kantarjian
et al., 1988, 1993; Baccarani et al., 2013). BP is characterized
by the rapid expansion of a population of either myeloid or
lymphoid blast cells to >30% of the peripheral blood and bone
marrow, and extramedullary blast proliferation (Kantarjian et al.,
1987; Baccarani et al., 2013). Patients in BP have a very poor
prognosis and a reported median survival rate of 3–6 months
(Kantarjian et al., 1987).

The treatment of CML was revolutionized by the introduction
of the TKI, imatinib, in 1996 which displays significant anti-
leukemic effects and can target CML cells in peripheral blood and
bone marrow (Druker et al., 1996, 2001). Since the introduction
of TKIs into the clinic, the number of patients achieving a
major molecular response has dramatically increased (O’Brien
et al., 2003), and the development of imatinib was followed by
second and third generation TKIs such as dasatinib (Lombardo
et al., 2004; Shah et al., 2004), nilotinib (Weisberg et al., 2005;
Kantarjian et al., 2006), bosutinib (Khoury et al., 2012), and
ponatinib (O’Hare et al., 2009). Unsurprisingly, the prevalence of
CML has increased due to the introduction of TKIs as the main
form of treatment, making CML a manageable, chronic disease
(Rohrbacher and Hasford, 2009).

However, whilst TKI therapy has transformed the treatment
of CML, 25–30% of CP-CML patients fail TKI therapy, where
half of these cases have mutations in the BCR-ABL1 kinase
domain (Baccarani et al., 2013), while the reason for failure in
the remaining 50% of patients is unclear. Residual BCR-ABL1+
progenitor cells have been consistently detected in patients who
have responded well to TKI and achieved complete cytogenetic
responses (Bhatia et al., 2003), demonstrating that the disease
persists in patients despite long-term TKI treatment (Chomel
et al., 2011, 2016; Chu et al., 2011). It is a widely held view
that this minimal residual disease is maintained by the survival
of a sub-population of LSCs in the bone marrow (Holyoake
et al., 1999; Chomel et al., 2011; Chu et al., 2011). Approximately
60% of CP-CML patients who respond well to TK have an
LSC persistence phenotype. Whilst 10–20% of patients who
achieve deep molecular responses following TKI therapy can
discontinue treatment, half of these patients will have disease
recurrence with 12 months – further supporting the presence
of persisting LSC in residual disease (Mahon et al., 2010;
Ross et al., 2013).

Due to the low cure rate and risk of disease recurrence and
progression, understanding the mechanisms that underpin CML
cell survival is integral to identifying novel drug targets and
developing new treatments for the disease. A number of pathways
that the LSCs use for survival have been studied and reviewed
elsewhere (Holyoake and Vetrie, 2017), and novel therapies that
target some of these are currently being developed. Here, we
will focus on the evidence for epigenetic dysregulation and re-
programming in CML, and its relevance to developing novel
therapeutic strategies.

THE POLYCOMB COMPLEXES IN HSC
AND CML LSC

Since the first links between cancer and epigenetic
reprogramming were established in 1983 (Feinberg and
Vogelstein, 1983), mounting evidence suggests that cancers are
driven by both genetic and epigenetic alterations, and some
of these alterations may precede the development of frank
leukemia as a pre-leukemic states (see below). Furthermore, the
consequences of epigenetic reprogramming may have a greater
influence in stem cells, as many epigenetic processes are required
for stem cell maintenance and embryonic development (Feinberg
et al., 2006; Avgustinova and Benitah, 2016a,b). Pertinent to
CML, the acquisition of the BCR-ABL1 mutation not only
transforms the HSC to an LSC, but it also drives epigenetic
reprogramming. One group of epigenetic regulators that are
known to be deregulated in CML LSC are the Polycomb-group
(PcG) proteins. These proteins are involved in gene silencing and
have been shown to play an essential role in development, stem
cell biology and differentiation, and are particularly important
in hematopoiesis (Di Carlo et al., 2019). The PcG proteins
comprise two complexes: Polycomb Repressive Complex 1 and 2
(PRC1 and PRC2).

PRC2 Complex
PRC2 is responsible for methylation of histone H3 on lysine
27 (H3K27), one of the main features of silenced chromatin.
In mammals, PRC2 is composed of three core components,
an Enhancer of Zeste ortholog (EZH1 or EZH2), Suz12 and
an isoform of EED (EED1–4). The EZH proteins, which have
a conserved SET domain, are responsible for the histone
methyltransferase activity of the complex, while SUZ12 and EED
allow binding to the nucleosome. In addition, the complex can
contain a number of other cofactors that include JARID2, PHF1,
PHF19, RBBP5, and RBBP7 with recent evidence suggesting
that JARID2, which contains a DNA binding site, may play
a role in the activity and recruitment of PRC2 (Shen et al.,
2009; Herz and Shilatifard, 2010; Li et al., 2010). EZH1-
PRC2 and EZH2-PRC2 complexes are mutually exclusive but
as a general rule EZH2-PRC2 appears to be responsible for
global H3K27 di- and tri-methylation, while EZH1-PRC2 has
weaker activity and mediates H3K27 mono- and di-methylation
(Margueron et al., 2008; Hidalgo et al., 2012).

Studies into the role of PRC2 components in HSC have been
somewhat contradictory. While gain-of-function studies suggest
that EZH2 is an important regulator of self-renewal (Kamminga
et al., 2006; Herrera-Merchan et al., 2012), knockout of EZH2 in
mice had no effect on the HSC compartment, although B and T
cell development were affected (O’Carroll et al., 2001). Indeed
further reports suggest EZH2, EED and SUZ12 have inhibitory
effects on HSCs (Lessard et al., 1999; Majewski et al., 2008).
While the reason for these conflicting results is unclear, a recent
report has shown that in adult HSCs, EZH1 can compensate for
EZH2 loss (Mousavi et al., 2012) which may help to explain these
discrepancies. Indeed, while loss of EZH2 had no effect on HSCs,
EZH1 was found to be essential for adult HSC maintenance, with
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loss leading to senescence (Hidalgo et al., 2012). Here EZH1 was
shown to be responsible for mono- and di-methylation of H3K27
which may be required for EZH2 and PRC1 activity. Clearly the
composition of the PRC2 complex and the levels of each of its
components plays a key role in its activity.

EZH2 has been shown to be upregulated in multiple solid
tumors, including breast, ovarian, pancreas, prostate and lung,
and is often associated with poor prognosis (Crea et al., 2012).
In hematological malignancies, the situation is somewhat more
complicated as EZH2 appears to have both oncogenic and tumor
suppressor activities (Lund et al., 2014). While no mutations in
the PRC2 proteins have been identified in CML, a number of
studies using cell lines, primary cells and mouse models have
shown that the expression of PRC2 components are dysregulated
(Nishioka et al., 2016; Scott et al., 2016; Xie et al., 2016).
In CML LSCs from chronic phase patients, EZH1 expression
levels were low relative to normal HSCs, while EZH2 and a
number of co-factors including Suz12, Jarid2, and PHF19 were all
upregulated (Scott et al., 2016). This was shown to be associated
with a reprogramming of H3K27me3 at PRC2 target genes,
resulting in altered dependency on EZH2 for survival in CML
LSCs compared to normal cells (Scott et al., 2016; Xie et al.,
2016; Figure 1). Interestingly, recent evidence from Agarwal
et al. (2019) demonstrates that CXCL12 levels in mesenchymal
stromal cells (MSCs) may influence EZH2 and EZH1 expression
levels in CML stem cells indicating a role for the bone marrow
microenvironment (BMM) on this effect. In addition, delay
of induction of CML in an EZH2 knock out mouse model

suggests EZH2 is also required for initiation of the disease (Xie
et al., 2016). Whether this means that pre-leukemic epigenetic
reprogramming of PRC2 is required for disease initiation has yet
to be established.

Given the increasing evidence for a role of PRC2 in cancer,
unsurprisingly a number of therapeutics targeting this complex
have emerged (Fioravanti et al., 2018) and are now in Phase
I and II clinical trials, including diffuse large cell B-lymphoma
(DLBCL), follicular lymphoma (FL), solid tumors, and multiple
myeloma (Gulati et al., 2018). Using a patient derived xenograft
model of CML, Scott et al. (2016) were able to demonstrate
significant targeting of CML stem cells with the EZH2 inhibitor
Tazemetostat in combination with TKI compared to TKI
treatment alone. This suggests that combined treatment may
represent a novel therapeutic approach for treatment of CML.
Indeed a new Phase II clinical trial in relapsed and refractory
CML – TASTER (soon to be recruiting patients) – will include
Tazemetostat as one of the arms.

PRC1 Complex
PRC1 is responsible for laying down ubiquitination on histone
H2A lysine residue K119. In the canonical model of PRC1 and
PRC2 function, PRC1 binds to chromatin through H3K27me3
and ubiquitinates H2AK119 through the action of the RING1A or
RING1B E3 ubiquitin ligases which are the catalytic components
of the complex (Buchwald et al., 2006; Li et al., 2006). This
allows compaction of the chromatin causing further repression
of gene transcription. In addition to the RING finger E3 ligases,

FIGURE 1 | Reprogramming of PRC2 in CML LSC. Transcriptomic analysis revealed an altered balance between EZH1 and EZH2 in LSC, the consequence of which
results in re-programming of H3K27me3 targets to suppress apoptosis. Upstream activators of p53 activity (ARF and PERP) and pro-apoptotic downstream targets
of p53 (BIM, BOK, and PUMA) were all targets of H3K27me3-mediated repression in LSC. Current data supports a model whereby EZH2 inhibitors induce apoptosis
in CML LSC through the up-regulation of EZH2 targets upstream of p53 (such as ARF), which could lead to increased p53 levels, or through up-regulation of p53
target genes directly which are normally repressed by EZH2 activity.
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the canonical PRC1 complex contains a number of other core
components, including Polycomb group zinc finger (PCGF)
proteins which bind to and stabilize RING1A/1B. BMI1 (PCGF4)
is also a member of this group and has been shown to have
a key role in both normal and leukemic HSCs (Rizo et al.,
2008, 2009; Schuringa and Vellenga, 2010) along with other
stem cells and CSCs (Sangiorgi and Capecchi, 2008; Chatoo
et al., 2010; Facchino et al., 2010; Allegra et al., 2014; Zhu
et al., 2014; Srinivasan et al., 2017; Yanai et al., 2017). While
knock out of BMI1 suppressed self-renewal in normal HSC,
overexpression enhanced this process (van der Lugt et al., 1994;
Park et al., 2003; Iwama et al., 2004) and resulted in long-
term maintenance of human haemopoietic stem and progenitor
cells (Rizo et al., 2008). BMI1 is upregulated in multiple tumors
including lymphomas (Bea et al., 2001) prostate (Goel et al.,
2012), breast (Kim et al., 2004a), colon (Kim et al., 2004b),
and non-small cell lung cancer (NSCLC) (Vonlanthen et al.,
2001), as well as in hematological malignancies such as acute
myeloid leukemia (AML) and myelodysplastic syndrome (MDS)
(Saudy et al., 2014).

In normal hematopoiesis, BMI1 expression is highest in HSC
and decreases as cells mature. In CML however, compared
to normal HSCs, chronic phase CD34+ cells have increased
expression of BMI1 and the levels continue to increase with
disease severity through accelerated phase and blast phase, with
high expression levels correlating with poor prognosis (Mohty
et al., 2007; Saudy et al., 2014). This suggests a role for BMI1
in CML development. Indeed, co-expression of BMI1 and BCR-
ABL in normal CD34+ cells led to transplantable leukemia in
immunosuppressed mice (Rizo et al., 2010). However, while
overexpression of BMI1 in a CML lymphoid progenitor cell
resulted in development of B-ALL in a mouse model of CML,
expression of BMI1 in a CML HSC did not result in a serially
transplantable disease (Sengupta et al., 2012).

The increase in BMI1 expression in chronic phase CML
CD34+ cells correlated with a decrease in the expression of
CCNG2 (cyclin G2), leading to an inhibition of autophagy.
Targeting BMI1 in these cells by either knock down or inhibition
with one of the BMI1 inhibitors that have now been developed
led to a decrease in clonogenic survival, suggesting therapeutic
potential of BMI1 inhibition. Combination with TKI in CP-CML
however elicited no further reduction in survival (Mourgues
et al., 2015). Given the obvious functional links between PRC1
and PRC2 and the effect that has already been shown on LSC
survival by EZH2 inhibition (Scott et al., 2016), perhaps targeting
both BMI1 and EZH2 in parallel could have therapeutic potential
in CML. Indeed, dual inhibition of EZH2 and BMI1 has already
been shown to have more pronounced effects in vitro and in vivo
in glioma stem cells than either agent alone (Jin et al., 2017) and
in multiple myeloma (Alzrigat et al., 2017).

HDAC AND HAT REPROGRAMMING

Alterations of histone and non-histone acetylation occur widely
in cancer (Archer and Hodin, 1999) due to the opposing effects
of histone acetyltransferases (HATs) and histone deacetylases

(HDACs). It is well established that changes in the expression
and activity of HATs and HDACs disrupt the balance between
acetylation and deacetylation, and can promote leukemogenesis
(Gao et al., 2013; Ahmadzadeh et al., 2015).

SIRT1
Sirtuin 1 (SIRT1) is a NAD-dependent HDAC upregulated
in CD34+ CML cells compared to normal hematopoietic
progenitors and has been implicated in leukemogenesis and
the survival of CML LSCs through its activity on a non-
histone target p53 (Li et al., 2012; Yuan et al., 2012). SIRT1 is
activated by STAT5-mediated binding to the SIRT1 promoter,
and consequently loss of STAT5 in vitro reduced SIRT1 promoter
activity (Yuan et al., 2012). SIRT1 activation resulted in the
deacetylation of a number of targets including p53, negatively
regulating p53 transcriptional activity, and promoting CML cell
survival (Li et al., 2012; Yuan et al., 2012; Chen and Bhatia, 2013).
Furthermore, SIRT1 has been implicated in promoting genetic
instability of CML cells through deacetylation of components of
the DNA repair machinery and thus increasing the incidence
of error-prone DNA repair (Wang et al., 2013). SIRT1
expression promoted the acquisition of BCR-ABL mutations and
SIRT1 knockdown supressed genetic mutations of hypoxanthine
phosphoribosyl transferase (HPRT) in the KCL22 CML cell line,
suggesting that inhibition of SIRT1 may be able to overcome
drug resistance. SIRT1 has also been implicated in promoting
autophagy in CML cells, through the deacetylation of LC3,
allowing it to associate with other autophagy factors and localize
to the cytoplasm (Huang et al., 2015).

Following imatinib treatment in CML cell lines, SIRT1
expression was decreased, but not completely depleted (Yuan
et al., 2012), providing a rationale for direct SIRT1 inhibition.
Both genetic knockdown and pharmacological inhibition of
SIRT1 in CML CD34+ cells resulted in the acetylation and
activation of p53, and subsequent upregulation of downstream
pro-apoptotic factors (Li et al., 2012). This resulted in the
decreased proliferation and enhanced apoptosis of CD34+ CML
cells, as well as the selective killing of CML LSCs in vitro
and in vivo. Treatment with the SIRT1 inhibitor also enhanced
the effect of TKI treatment via activation of p53 signaling
(Li et al., 2012; Chen and Bhatia, 2013). Moreover, SIRT1
has been implicated in the process of aging, where epigenetic
silencing of HIC1 upregulates SIRT1 expression (Chen et al.,
2005). Therefore, the inhibition of SIRT1 may have more clinical
relevance in older patients, although, to date, this hasn’t been
explored. SIRT1 inhibitors have been tested in Phase I and II
clinical trials for a number of disorders, exhibiting good safety
and efficacy profiles (Hoffmann et al., 2013; Sussmuth et al., 2015;
van der Meer et al., 2015).

Other HDAC and HAT Activities
Following the acquisition of BCR-ABL in CML cells, HDAC1
is relocalised to the cytoplasm, where its function is depleted
(Brusa et al., 2006). Consequently, this results in hyperacetylation
of histone H4 at the BCR-ABL promoter region – further
reinforcing its transcription. Interestingly, treatment with
imatinib resulted in the restoration of nuclear HDAC1 in
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primary CD34+ cells and a reduction in BCR-ABL1 transcript
levels, which correlate with histone H4 deacetylation (Brusa
et al., 2006). Another study demonstrated increased lysine
317 (K317) acetylation of p53 mediated by BCR-ABL1,
which regulates post-translational p53 activity (Kusio-Kobialka
et al., 2012). BCR-ABL1-dependent acetylation prevented the
translocation of p53 to the cytoplasm where it engages
in p53/Bax-mediated mitochondrial-dependent apoptosis in
response to DNA damage – thus further establishing a link
between increased acetylation and CML cell survival. However,
paradoxically, treatment with various HDAC inhibitors, which
induce acetylation, also result in decreased survival of CML cells
(Nimmanapalli et al., 2003a,b; Fiskus et al., 2006a,b). Further
examination of the effects of HDAC inhibitors with imatinib
on primitive LSCs resulted in increased apoptosis of the CML
progenitors (Zhang et al., 2010). Moreover, the HDAC inhibitor
SB939 could overcome the deletion of the pro-apoptotic factor
BIM (BCL-2 like 11), which is associated with imatinib-resistance
(Ng et al., 2012), inducing apoptosis in CML cells harboring a
BIM deletion (Rauzan et al., 2017). Overall, the data suggests
that the role of histone and non-histone acetylation is complex in
CML, and that therapeutic interventions that increase or decrease
acetylation in CML cells may have clinical benefit.

EPIGENETIC REPROGRAMMING
FOLLOWING TKI THERAPY

Whilst TKI therapy has revolutionized the treatment of CML and
resulted in increased progression-free survival for patients in CP-
CML, TKI does not eradicate all CML cells and a population
of TKI-persistent LSCs survive and are responsible for disease
recurrence (Holyoake et al., 1999; Bhatia et al., 2003; Copland
et al., 2006). Of the cells that survive TKI therapy, a number of
genetic and epigenetic changes have been reported which alter
their survival mechanism and downstream signaling pathways
(reviewed further in Holyoake and Vetrie, 2017). Pathways
that are modified following TKI therapy may be examined as
potential therapeutic targets to eradicate the survival of TKI-
persistent LSCs.

BCL6
BCL6 is a transcription factor commonly mutated in lymphoma
cells where it can epigenetically regulate a number of its targets
through modifications in chromatin accessibility at promoter and
enhancer regions (Hatzi et al., 2013). Whilst its role in CML is
not well characterized, BCL6 is expressed at low levels in TKI-
naïve CML cells, however, its levels are significantly upregulated
following TKI treatment in CML cell lines and primary CD34+
cells (Hurtz et al., 2011; Madapura et al., 2017). This is thought
to occur through the re-activation of its upstream activator,
FOXO3a, a member of the FOXO (forkhead box) family of
transcription factors, following treatment with TKI (Brunet et al.,
1999; Komatsu et al., 2003; Pellicano et al., 2014). As BCL6
directly represses the expression of its targets involved in cell
cycle and DNA damage, including p53, upregulation of BCL6
has been shown to contribute to its anti-apoptotic phenotype

(Phan and Dalla-Favera, 2004; Hurtz et al., 2011; Pellicano
and Holyoake, 2011). Similar observations were made in Ph+
ALL, where BCL6 expression was upregulated following TKI
treatment, resulting in the repression of CDKN1A, CDKN1B,
and TP53 (Duy et al., 2011).

Mechanistically, BCL6 can epigenetically regulate its targets
through complexes where it interacts with its corepressors
BCOR, NCOR1, and SMRT, or directly via its RD2 or zinc
finger domains. These complexes require the recruitment of
class I and II HDACs to BCL6 recognition sites, resulting
in chromatin remodeling and gene regulation (Wong and
Privalsky, 1998; Lemercier et al., 2002). In hematopoiesis,
BCL6 interacts with the Mi-2/NuRD (nucleosome remodeling
deacetylase) complex, an abundant deacetylase complex involved
in chromatin remodeling (Denslow and Wade, 2007). The Mi-
2/NuRD complex is responsible for maintenance of HSCs and
lineage differentiation during hematopoiesis, and conditional
deletion of Mi-2β in the bone marrow resulted in the loss of
both lymphoid and myeloid lineage cells (Yoshida et al., 2008).
Furthermore, BCL6 regulates NOTCH signaling in neural cells,
repressing NOTCH downstream targets through the recruitment
of SIRT1 at promoter regions of target genes (Sakano et al., 2010;
Tiberi et al., 2012). However, the relationships between BCL6
and its potential interacting partners have yet to be explored
in CML, but this data provides a rationale for examining the
links between BCL6 and histone deacetylases – both of which are
survival factors in CML.

Of particular interest in CML is the interaction of BCL6 with
the PcG proteins. In lymphoma, BCL6 is involved in epigenetic
reprogramming of its targets through interacting with both
PRC1 and PRC2 complexes. H3K27me3 forms a binding site
for CBX8, a component of non-canonical PRC1, allowing the
BCL6 corepressor BCOR to be recruited. BCL6 then forms a
ternary complex with BCOR and SMRT mediating repression at
gene promoters marked with H3K27me3 by the PRC2 enzyme
EZH2 on bivalent chromatin (Hatzi et al., 2013; Beguelin et al.,
2016). This relationship is further demonstrated through the
recruitment of PcG proteins and H2A ubiquitination by BCOR to
BCL6 targets (Gearhart et al., 2006). In CML CD34+ cells, EZH2
inhibition plus TKI upregulated a number of BCL6 targets such as
p53, despite BCL6 upregulation, suggesting that BCL6 and EZH2
share a number of targets, and that BCL6 mediated repression
may be dependent on EZH2-PRC2 (Hurtz et al., 2011; Beguelin
et al., 2016; Scott et al., 2016). The proposed mechanisms through
which BCL6 and EZH2 may interact in CML cells is shown in
Figure 2, and provides a rationale for combined BCL6 and EZH2
inhibition in CML cells.

BCL6 inhibition has been investigated in CML cells as a novel
approach to eradicate LSCs (Hurtz et al., 2011). A number of
inhibitors have been developed over the past decade that are
specific to BCL6 activity and target the BCL6 lateral groove
resulting in the disruption of corepressor binding and the re-
activation of BCL6 target genes. Combined treatment of the
BCL6 peptide inhibitor reteroinverso-BCL6 peptide inhibitor
(RI-BPI) with imatinib prevented TKI resistance and potentiated
the effects of imatinib observed in Ph+ ALL (Cerchietti et al.,
2009; Duy et al., 2011). Furthermore RI-BPI enhanced the
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FIGURE 2 | Proposed models of crosstalk between EZH2/H3K27me3 targets and BCL6 targets in CML LSC. PRC2, through interaction with PRC1, is able to
promote gene repression via the deposition of H2AK119 ubiquitylation (H2AK119ub) and H3K27 trimethylation (H3K27me3). BCL6 recruitment can result in either
H2AK119ub or protein and/or histone deacetylation, resulting in gene repression. Activities of PRC2 and BCL6 can be directed at different genes or the same genes;
in the latter, the protein complexes may work independently or dependently, thus resulting in different outcomes when treated with EZH2 or BCL6 inhibitors.

effects of imatinib treatment in CD34+38− CML LSCs, as
well as decreasing primary CML cell colony forming capacity,
and eradicated CD34+38− LSCs through increased apoptosis
(Hurtz et al., 2011). Other BCL6 small molecule inhibitors,
79-6 (Cerchietti et al., 2010) and FX1 (Cardenas et al., 2016)
have also been developed, and FX1 in combination with TKI
significantly decreased colony-forming capacity of CML CD34+
cells (Madapura et al., 2017).

DNA Methylation
CD27 and its ligand CD70 has been implicated in CML LSC
survival through their regulation of Wnt signaling (Schurch
et al., 2012), a critical pathway in stem cell self-renewal (Zhao
et al., 2007). The mechanism by which this occurs is complex,
dependent on TKI treatment, and involves down-regulation
of microRNA-29 and changes in DNA methylation (Riether
et al., 2015). DNMT1A is positively regulated by microRNA-29
isoforms a/b, and TKI treatment results in down-regulation of
DNMT1A. However, SP1 is up-regulated upon TKI treatment
as microRNA-29 isoform c is a negative regulator of SP1.
Hypomethylation of the CD70 promoter facilitates binding
of SP1 which up-regulates CD70, stimulates CD27-mediated
signaling through the Wnt pathway, which promotes resistance
of LSC to TKI (Nolte et al., 2009). Antibody-based inhibition
of the CD70/CD27 interaction in combination with TKIs
significantly targeted the CD34+ CML stem/progenitor cells
in vitro and in vivo. Furthermore, CD70/CD27 may be associated
with a more aggressive CML phenotype, as CD70/CD27 was
upregulated in AML blast cells and progenitors, and increased
levels of soluble CD27 is used as a prognostic biomarker for poor
overall AML survival (Riether et al., 2017).

BCL2-like protein (BIM) is an apoptotic activator, and
has been shown to be epigenetically reprogrammed following
treatment with TKIs. While early studies following TKI treatment

showed that imatinib activated the BH3-only proteins BIM
and BMF transcription post-translationally (Essafi et al., 2005;
Kuroda et al., 2006), more recent evidence demonstrates that
following TKI treatment BIM levels are downregulated and
associated with decreased optimal responses (San Jose-Eneriz
et al., 2009a). This occurs via DNA methylation of the BIM
promoter which was observed in two different CML cell lines
(BV173 and KU812). Hypermethylation in 36% of patients
in CP-CML correlated with decreased BIM expression, and
was associated with poor response to imatinib. A combination
of imatinib with 5-aza-deoxycytidine, a demethylating agent,
induced the expression of BIM and decreased cell proliferation
and viability of CML cell lines (San Jose-Eneriz et al.,
2009a). Intriguingly, chromatin immunoprecipitation (ChIP)
experiments revealed the BIM gene promoter region was
hypomethylated despite DNMT1 and EZH2 binding to this
site (Bozkurt et al., 2013a). However, more recent evidence
using ChIP-seq has shown that the BIM gene is associated
with H3K27me3 in primary patient samples (Scott et al., 2016;
Figure 1), suggesting that repression of BIM can be facilitated in
multiple ways in CML.

NON-CODING RNAs

Non-coding RNAs (ncRNAs), as their name suggests, are not
translated into proteins, but they do regulate mRNA levels
and protein translation through transcriptional interference.
MicroRNAs (miRNAs), in particular are short strands of ncRNAs
(∼20–23 nucleotides long) that can bind to specific sequences,
most often the 3′ untranslated region (UTR) of target mRNA,
preventing translation or cleaving the mRNA (He and Hannon,
2004). miRNAs can be regulated by BCR-ABL1, and have been
demonstrated to play a role in the pathogenesis of CML (Machova
Polakova et al., 2013). Moreover, miRNAs can directly target and
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regulate BCR-ABL1 expression. Furthermore, there are miRNA
expression signatures which are used to distinguish between CML
and normal cells (Agirre et al., 2008; Koschmieder and Vetrie,
2018), between clinical phases of CML (Machova Polakova et al.,
2011), and between TKI responders and non-responders (San
Jose-Eneriz et al., 2009b) (further reviewed in Machova Polakova
et al., 2013; Kotagama et al., 2015; Di Stefano et al., 2016).
Below, we describe a few examples of miRNAs that are mis-
regulated in CML.

The expression of miR-150 and miR-146a are significantly
decreased in CML cells at diagnosis (Agirre et al., 2008), and
in advanced phases of CML (AP-CML and BP-CML) (Machova
Polakova et al., 2011). Both miRNAs are regulated by BCR-
ABL1, and their expression levels are restored following 2-week
imatinib treatment (Flamant et al., 2010). Furthermore, miR-
150 may be a useful biomarker for disease progression, where
its lower expression correlates to poor prognosis and more
advanced phases of CML (Kotagama et al., 2015). miRNA-203
negatively regulates the BCR-ABL1 mRNA, but it is epigenetically
silenced in CML through the methylation of its promoter
region (Bueno et al., 2008). The introduction of miR-203 to
miR-203-deficient CML cell lines resulted in a decrease in
BCR-ABL1 expression and subsequent decrease in CML cell
proliferation (Bueno et al., 2008). One study demonstrated
that TKI therapy upregulated 48 miRNAs, including miR-203,
through inducing demethylation of miR-203 at its promoter
region (Shibuta et al., 2013). These studies suggest that TKI
may be able to restore the levels of some miRNAs and that
this process may have a role in mediating the effect that TKIs
have on CML cells.

EPIGENETIC MECHANISMS IN CML
DISEASE PROGRESSION

As described above, CML has three distinct phases. Due to the
advent of TKIs, only 1-1.5% of CML cases will progress to blast
phase usually due to resistance to TKI. Clinically, the aim is to
induce a second chronic phase in patients who have progressed to
advanced phase CML with increased dosing of TKI, to allow bone
marrow transplantation. As TKIs are largely ineffective at this
stage of disease, patients that progress to blast phase are typically
treated similarly to those with AML and have a median survival
of approximately 6 months (Perrotti et al., 2010). Therefore,
more targeted therapies are warranted for these patients.
Blast phase is typically characterized by the accumulation of
additional chromosomal abnormalities (ACAs), but epigenetic
regulation is also disrupted (reviewed also in Bozkurt et al.,
2013b). While epigenetic changes occurring in CP-CML and
in the progression to BP-CML have been studied extensively,
changes occurring within the LSC compartment during disease
progression are poorly understood and warrant further study.
Research around this area is hampered due to the difficulty in
isolating true BP-CML LSCs by immunophenotyping. Recent
studies in patient-derived xenograft mouse models have shown
that engraftable cells exist in all so-called stem and progenitor
populations from BP-CML patient samples, usually a preserve

of true HSCs in normal samples and CP-CML patient samples
(Kinstrie et al., 2016).

Mutations in Epigenetic Regulators
Using a combination of whole exome sequencing, copy number
variation and RNA sequencing, a recent study identified clinically
relevant variants of epigenetic regulators, ASXL1, SETD1B,
IDH1, EZH2, and KMT2D at chronic phase diagnosis in patients
with poor outcomes i.e., progression to blast phase (56% of 27
patients). In addition to these, mutations in PHF6, SETD2, and
MLL (KMT2A) fusions were observed in all patients already in
blast phase (Branford et al., 2018). Mutations in any of these
genes at diagnosis of chronic phase were all associated with
poorer outcome. ASXL1 has long been viewed as a potential
predictor of CML evolution and mutations in this gene can be
found in CP and BP CML and in both the CP and BP clones of
patients who have progressed (Boultwood et al., 2010; Menezes
et al., 2013). However, ASXL1 mutations conferred significantly
slower progression to BP than other mutations and have even
been associated with patients who went on to achieve MMR and
did not have detectable ASXL1 variants at remission suggesting
eradication of this clone (Branford et al., 2018). Interestingly,
ASXL1 mutants through their interaction with BRD4 were
hypersensitive to bromodomain inhibitors (Yang et al., 2018),
providing a potential treatment avenue for patients with these
mutations in CML. The overall findings of these sequencing-
based approaches suggests that identifying mutations at diagnosis
that are associated with poor outcome (i.e., failure to achieve
MMR) or progression to blast phase may be helpful for assessing
potential treatment options in addition to TKI therapy.

These sequencing-based studies take on added significance
when one compares the mutations found in BP-CML to those
identified in AML. It is now widely regarded that mutations
in pre-leukemic clones (Jan et al., 2012) are the initial events
leading to progression to frank AML. Studies have identified
that the earliest mutations in AML occur most commonly
in epigenetic regulators, in particular DNMT3A, TET2, and
IDH1/2 followed by secondary mutations in genes associated
with signal transduction pathways and cellular proliferation
(Corces-Zimmerman et al., 2014; Shlush et al., 2014; Chotirat
et al., 2015; Eriksson et al., 2015; Sato et al., 2016). This suggests
that BP-CML may be facilitated by pre-leukemic lesions than
precede the acquisition of BCR-ABL – particularly in cases where
patients present with BP at diagnosis. Furthermore, whilst the
study of pre-leukemic clones in AML is well advanced, this area
is research is highly under-developed in CML, and warrants
further attention, given that clinical grade compounds that target
IDH1/2 (Popovici-Muller et al., 2018) are now available and have
undergone clinical trials in AML.

DNA Methylation and Progression
DNA methylation of CpG island regions is associated with
gene silencing, and in malignancies these regions are frequently
methylated resulting in the repression of genes that are associated
with disease (Esteller, 2008). One of the most commonly
cited explanations of CML evolution, progression and poor
outcome is aberrant DNA methylation (Dunwell et al., 2010;
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Jelinek et al., 2011; Amabile et al., 2015) which is believed to
promote defects in differentiation in AML cells (Lu et al.,
2012; Corces et al., 2016). Methylation of genes associated with
CML progression has been studied extensively over the years,
identifying a number of candidates potentially involved in the
process. Genes such as DAPK1 (Qian et al., 2009; Uehara et al.,
2012; Celik et al., 2015), CALCA (Malinen et al., 1991; Nelkin
et al., 1991; Mills et al., 1996), the cyclin dependent kinase
inhibitors CDK2NA (Kusy et al., 2003; Nagy et al., 2003; Uehara
et al., 2012), and CDK2NB (Kusy et al., 2003; Jelinek et al., 2011;
Uehara et al., 2012) have been identified as hypermethylated by a
number of investigators, but relatively little is still known about
the overall impact of DNA methylation across the methylome in
CML, and additionally in the progression to blast phase. More
recently groups have tried to identify differences in methylation
patterns in sorted CML cells vs normal to allow for more targeted
treatments in chronic phase (Maupetit-Mehouas et al., 2018) and
also by using reduced representation bisulfite sequencing (RRBS)
and RNA sequencing to identify changes in methylation and gene
expression as the disease progressed (Heller et al., 2016). When
compared to control samples approximately 600 differentially
methylated CpG sites were identified in patients with CP-CML.
However, when BP-CML patients were analyzed, around 6500
were found to be differentially methylated and that in patients
that progressed from CP to BP, 897 genes were methylated at

time of progression, but not at diagnosis (Heller et al., 2016).
Single nucleotide variants (SNV) in epigenetic modifiers have
been identified in CML on a number of occasions. In CP-CML,
DNMT3A, EZH2, RUNX1, and TET2 were found to be mutated
(Schmidt et al., 2014), whilst in a separate study, BP-specific SNVs
were found in TET2, ASXL1, and IDH1 (Makishima et al., 2011).
Interestingly, this extensive analysis of the methylome at blast
phase did not uncover any SNVs in the aforementioned genes
or any specific SNVs in any other epigenetic modifiers (Heller
et al., 2016). This is perhaps not too surprising when the genetic
complexity of BP-CML and inter patient heterogeneity is taken
into account and will reflect the difficulty in trying to identify a
universal approach to targeting this stage of the disease.

BMI-1 in BP CML
As described earlier, BMI-1 is a transcriptional repressor and
a core component of the PRC1 complex. Bmi1 expression is
normally restricted to the stem cell compartment and has been
shown to be involved in the regulation and expansion of LSCs
during BP-CML (Saudy et al., 2014). Compared to CP-CML,
expression was shown to be further increased in aggressive
forms of CML that progressed to blast phase within 3 years
and during advanced phases of the disease and was shown to
be 2-fold elevated in AP- and BP-CML as compared to CP,
both in peripheral blood mononuclear cells and CD34+ cells

FIGURE 3 | Targeting epigenetic processes in CML cells. A number of processes are involved in the epigenetic reprogramming of CML cells (see text for further
details). These include dysregulation of EZH1 and EZH2, BCL6, BMI1, and SIRT1, DNA methylation, non-coding (nc)RNAs and mutations in ASXL1 – all of which are
believed to contribute to the survival of bulk CML cells/LSCs or disease progression. In some cases, this dysregulation occurs only in the presence of TKI treatment.
Currently there is no evidence of dysregulation of EZH1/2 in blast phase CML and therefore EZH1/2 inhibitors have not been tested in this respect. Evidence from
blast phase cell lines suggests BCL6 may be a survival factor and thus BCL6 inhibitors may be effective in the treatment of accelerated and blast phase disease.
With this knowledge in mind, a number of epigenetic therapies have been proposed that target these processes and may result in eradication of CML cells in
combination with TKI therapy.
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(Mohty et al., 2007; Saudy et al., 2014). A study of 64 patients
with CP-CML, with higher BMI1 expression in CD34+ cells at
diagnosis conferred a poorer prognosis and decreased survival
than those with lower levels (Mohty et al., 2007). Overall, higher
BMI1 expression appears to be predictive of poorer outcome
in patients with CML. BMI1 may prove to be an interesting
target in attempting to eradicate more advanced phase of the
disease in these patients. Recently, early phase clinical trials have
begun to look at the utility of BMI-1 inhibitors in advanced
solid tumors (clinicaltrials.gov #NCT02404480), gliomas
(clinicaltrials.gov #NCT03605550), and for relapsed/refractory
AML (clinicaltrials.gov #NCT03761069). An additional
polycomb group protein, SUZ12 has also been shown to be
overexpressed in bone marrow CD34+ cells from BP-CML
patients, resulting from the activation of the non-canonical Wnt
pathway (Pizzatti et al., 2010).

CONCLUSION

Whilst the development and pathogenesis of CML is well-defined
in a genetic context, the ever-growing importance of epigenetic
reprogramming at various stages of CML progression and in
response to therapy is only now being recognized. Further
understanding of epigenetic processes is required to overcome
many clinical issues which still exist in CML, such as the optimal
treatment of patients in more developed stages of the disease,
the prerequisites for treatment discontinuation, and the factors

involved in the survival of LSCs. Evolving technologies such
as whole-genome sequencing, single-cell RNA-seq (Giustacchini
et al., 2017), and genome-wide DNA methylation will aid in the
further development of the role of epigenetics in CML, and the
promise of epigenetic therapies. Furthermore, the requirement
for epigenetic therapies may be considerably more important in
older patients with CML due to the aberrant epigenetic processes
that occur with aging (Pal and Tyler, 2016). A number of
epigenetic therapies such as SIRT1 inhibitors, HDAC inhibitors
and EZH2 inhibitors are currently in clinical trials for many
cancer indications, and have shown promise in murine models
and good safety profiles in Phase I healthy individuals. This
suggests that similar trials may ensue for CML based on rationales
for epigenetic therapies (Figure 3) proposed here.
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