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Abstract: We develop a new framework for clustering functional data, based
on a distance matrix similar to the approach in clustering multivariate data us-
ing spectral clustering. First, we smooth the raw observations using appropriate
smoothing techniques with desired smoothness, through a penalized fit. The next
step is to create an optimal distance matrix either from the smoothed curves or
their available derivatives. The choice of the distance matrix depends on the
nature of the data. Finally, we create and implement the spectral clustering algo-
rithm. We applied our newly developed approach, Functional Spectral Clustering
(FSC) on sets of simulated and real data. Our proposed method showed better
performance than existing methods with respect to accuracy rates.
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1 Introduction

Clustering functional data (CFD) has been an active area of research in
recent years. CFD aims to group curves with similar features in one cluster,
and the cluster is usually represented by the mean of all the curves in the
cluster. It is well documented in the clustering literature that clustering is
an ill-defined problem, and the challenges such as finding the right number
of clusters and proposals for appropriate measures of cluster accuracy is
still an active area of research for multivariate clustering. Additionally, the
high dimensionality of functional data and the lack of clear distributional
theory for functional data makes CFD even more challenging. Nevertheless,
there have been several algorithms proposed in the literature (see Jacques
and Preda, 2014 and Tzeng et al., 2016 for a review of these approaches). In
brief, these approaches can be divided into three main categories. The first,
consists of the decomposition-based methods (or two-stage methods) which

This paper was published as a part of the proceedings of the 34th Interna-
tional Workshop on Statistical Modelling (IWSM), University of Minho, Portugal,
7-12 July 2019. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).



2 A new framework for distance based functional clustering

use the coe�cients of the basis expansion as a finite dimensional data set,
and apply regular multivariate clustering methods on these coe�cients. The
drawback of this approach is that the results of clustering depend on the
choice of the smoothing technique, and might break down in the case when
one constructs the curves from sparse data. The second category contains
the nonparametric clustering techniques which rely on defining an appro-
priate distance measure between the curves. The third category pertains to
model-based clustering, that assumes a probability density on pre-specified
parameters describing the curves. Although this approach has been imple-
mented with some success, it is computationally intensive to implement
and describing an entire curve with a few parameters might not be realistic
in some cases. Moreover, most of these algorithms are application-specific.
Thus, such algorithms might perform poorly beyond the context they were
developed for. To our knowledge, there has been no comprehensive study
to compare these three main categories of approaches.
In a multivariate setting, spectral clustering has been successfully applied
to cluster high-dimensional data embedded in nonlinear manifolds. The
swiss roll example is commonly used to illustrate the power of the spectral
method which outperforms most other standard clustering methods such
as k-means or model based clustering. Moreover, this clustering method
can be easily implemented and most importantly does not require strong
assumptions about the data. Taking into account the challenges for CFD as
mentioned above, we develop a flexible framework to implement a spectral
clustering method for functional data and through extensive simulations we
have seen clear evidence of its superior performance in di↵erent functional
data contexts.
We compared our proposed method with some existing CFD approaches
that are commonly used and available in R. The methods are: funHDDC
which clusters curves through their eigenspace projection (Bouveyron and
Jacques, 2011), fd K-means which generalizes the concept of regular K-
means for functions (Ferero-Bande et al., 2012) and FPCC which smooths
the data, performs functional PCA and applies k-means on the scores.
The remainder of this abstract is organized as follows. We present the
outline of a two-stage technique for clustering functional data in Section
2. Section 3 shows a simulation scheme to examine the performance of the
method. Finally, an application to the Berkeley growth data is illustrated
in Section 4.

2 Functional Spectral Clustering

Our proposed algorithm is a two-stage distance-based functional spectral
clustering approach or (FSC). First we obtain the smooth curves from
the raw data by using a penalized fit. The resulting smoothed curves
F = {F

1

, F
2

, ..., Fn} are used to create the distance matrix. We also propose
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using the rate of change of the curves (i.e, the first derivatives, written as
F 0 = {F 0

1

, F 0
2

, ..., F 0
n}) to create an alternative distance matrix. These dis-

tance matrices are then used to create a new framework by generalizing the
existing spectral clustering techniques (Ng et al., 2002), which are primarily
designed for clustering univariate and multivariate data. In the following
section, we will evaluate newly proposed FSC approaches, where FSC(Do)
stands for distances calculated using the curves, and FSC(D

1

), stands for
distances calculated from first derivatives of the curves.

3 Simulation study

To evaluate the performance of our approach, we set up a simulation study
to show the performance of the functional spectral clustering approaches
on functional data that involves shifts in either phase, or amplitude or
both. That simulation scheme was initially introduced by Sangalli et al.
(2010), but we have expanded and made some modifications to the scheme.
Through the general template f(t) = 1 ⇤ sin(t) + 1 ⇤ sin

�

t2/2⇡
�

, we added
shifts to some curves to create a new group. We started with creating 90
curves over the period from 0 to 2⇡. Then we created another data set that
consists of 90 curves over the period from 0 to 10⇡, to examine the per-
formance of our method on periodic functional data with phase/amplitude
variations. According to Chen et al. (2012), this type of functional data
can be assumed to lie on a nonlinear functional manifold.
Figure 1 shows the simulated data, and the clustering results for the aperi-
odic simulated functional data (0, 2⇡). In all cases, our algorithm showed su-
perior performance compared to the other methods (funHDDC, fd K-means,
and FPCC), with respect to accuracy rates. Similar results were seen in sim-
ulated periodic functional data.

4 An application to the Growth Data

We applied FSC to the Berkeley Growth Study data (Ramsay and Sil-
verman, 2005) which includes the heights of 39 boys and 54 girls. Some
individuals reach puberty earlier than others, which is reflected clearly in
the first derivatives of the data, that shows the rate of change in heights over
the years for the two genders. We applied both FSC(Do), and FSC(D

1

) to
compare the results. Once more, both these methods outperform the other
clustering methods (funHDDC, fd K-means, and FPCC) in the growth data
(Figure 2).
In summary, our distance based functional clustering approach is flexible,
can accommodate di↵erent forms of functional data, and is easy to im-
plement. Besides, it shows high accuracy rates and outperformed other
methods in a variety of scenarios. Also, it is computationally faster than
the other algorithms (like funHDDC, and FPCC) and always converges, whilst
other methods might not (like the fd K-means).
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(a) Case A (2 groups) (b) Case B (3 groups) (c) Case C (4 groups)

FIGURE 1. The top row shows the smoothed version of the generated data, the
bottom row shows the clustering results after applying FSC(D

o

). In (A) the red
curves make up the first group, while the black curves represent the amplitude
shift. (B) shows 3 groups, 2 of them, black and green curves, similar to case (A),
along with the third group (red) with a phase shift added to the data. In (C),
a more di�cult scenario is represented with 4 groups, three of which come from
case (B). Our algorithm was successful in all three cases.

0 5 15 25

80
12
0

16
0

20
0

time

male
female

5 10 15

0
5

10
15

20

time

male
female

FIGURE 2. Resulting clustering of the Berkeley Growth data using FSC(D
o

) with
accuracy rates 86% (left) and using FSC(D

1

) with accuracy rate 90% (right).
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