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FLYING ON JUPITER: THE INTUITION OF THE
MACCREADY SETTING @

B. TAUB

ABSTRACT. I develop intuition for the MacCready setting with-
out elaborate stochastic control or numerical analysis. I express
the speed to fly problem as a constrained optimization using a La-
grangian formulation; the Lagrange multiplier associated with the
constraint then has an interpretation as a shadow price.

I then consider the effects of two types of uncertainty on the
optimal speed to fly: thermals of random strength in known loca-
tions, and thermals of fixed strength in random locations.

Finally, I analyze the consequences of boundaries for the optimal
speed to fly: the finite height of cloudbase, the ground, and the

distance to the objective.

This paper began as a conversation with John Cochrane, whose detailed advice
and suggestions I gratefully acknowledge. I also thank the editor, Arne Seitz, for

several useful comments and suggestions.
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NOTATION

>~

initial altitude (cloudbase)

airspeed while cruising between thermals
headwind

velocity over the ground while cruising at airspeed
v with headwind w

sink rate as a function of velocity in cruise mode
climb rate in a thermal, assumed net of sink rate
at thermaling speed

sink rate as a function of velocity in cruise mode
(approximated by a concave quadratic)

distance to the next thermal with the required
strength m (assumed fixed and known)

the elapsed time between setting off toward the
thermal at altitude A and climbing back up to
cloudbase h

remaining distance to the goal in a competition
Lagrange multiplier for the polar curve constraint
parameter for the probability density characteriz-
ing the frequency of thermals when thermals are
random

expectation operator

value function in Bellman equation expressing
dynamic programming version of optimal speed

problem
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INTRODUCTION

One of the focuses of economics is optimization by individuals and
by firms. A central feature of the analysis of the optimization prob-
lems individuals and firms face is the requirement that constraints be
respected, and in the face of these constraints it is optimal to trade off
choices: more wine, less cheese, or more labor, less capital. Where you
finally settle for your picnic—one bottle of wine, half a kilo of cheese—
depends on the price of wine in relation to the price of cheese. You can
express the optimum with a simple formula that expresses a geometric
fact: the tangency of the budget line to an indifference curve; in the
case of a firm, the ratio of wages to rents is the slope of a tangency to
the production frontier.

This notion that an optimum is expressed by a tangency carries over
into other walks of life if the concept of price is generalized to the
more encompassing notion of shadow prices. In this note I show as a
starting point that the optimal strategy for flying a glider, whether it be
a sailplane, hang glider or paraglider, can be expressed as a tangency.

Almgren and Tourin [1] provide the basic definition of the Mac-
Cready setting: it is the threshold value of net thermal strength (in
meters per second or other velocity units) such that the time elapsed
to a goal is minimized when flying between thermals at the optimum
speed. I recapitulate and expand their intuition to demonstrate that
the basic MacCready logic can be expressed as a shadow price of re-
ducing flight duration, by expressing the optimization problem as a

Lagrangian. The Lagrange multiplier then has the interpretation as
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a shadow price or marginal value, and has a surprisingly simple form
that I believe to be previously unknown.’

Almgren and Tourin go on to analyze the potentially very compli-
cated impact of stochastic thermals using a stochastic control approach.
My second purpose here is to try to distill the basic intuition for the
stochastic case. 1 do this by dividing the stochastic character of the
thermals into two types. I show that the basic MacCready intuition
is, surprisingly, extremely robust to the complications introduced by
a stochastic environment. One’s intuition is that due to risk aversion,
one should slow down in a stochastic environment. In fact when pa-
rameterized realistically the MacCready optimal speed is unaffected.

Finally, in real flying situations there are boundaries that impose
constraints on the optimization problem. In a competition task there
is typically a distance to traverse in the minimum time; in cross-country
flying there are limited hours before the sun drops and thermal activity
ceases, and, finally, the cloudbase, which is the maximum attainable
altitude for gliders flying legally, limits the distance a glider can fly
before landing out.? I show that these boundaries can modify the basic

MacCready velocity, but in simple and intuitive ways.

General characteristics of gliders. There are three basic types of
gliders: sailplanes, hang gliders, and paragliders. Whilst not obvious
from watching them flying from the ground, each has the means to

IThe interpretation of the Lagrange multiplier as a marginal trade-off extends
to physics, in which it is standard to pose problems of energy minimization with

constraints; see Lemons [4], pp. 52 ff.

2These are the most elemental boundaries. There are other boundaries in prac-

tice, such as airspace restrictions, that can limit altitude.
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control its forward speed through the air (keeping in mind that the air
itself might be in motion overall due to wind). Sailplanes and hang
gliders can increase their speed by tilting the nose of the craft down.
Additionally, some sailplanes have flaps that can be deployed to slow
the glider down. Paraglider pilots do not have the option to tilt the
nose down, but they can increase the speed of the glider by pressing
the “speed bar,” which decreases the angle of attack, and so effects
the same result as tilting the nose down, and then can also pull on the
“brakes,” which effectively act as flaps, to slow the glider.

In each case where the glider speeds up, a penalty is paid in terms of
sink: higher speed, faster sink, due to the greater drag that develops at
higher speed. Moreover the effect of drag increases with speed, so that
the impact of increased speed on the rate of sink is nonlinear: sink is
amplified at higher speed.® There is therefore a trade-off that sophisti-
cated pilots interested in maximizing their distance, or minimizing the
duration of their flight in a race, take account of in their decisions.

The intuition of the problem is as follows. Consider two extremes.
In the first extreme you go as slowly as possible in order to minimize
the possibility of sinking out. You reach the next thermal with high
probability, and when you reach it you are very high. You climb back

to cloudbase and continue.

3To elaborate a bit more, it might seem obvious that tilting the nose down
increases sink, because now you are pointed toward the ground! But it isn’t quite
that simple: because you are going faster, lift also increases, and this increased lift
offsets some of the downward sink. But the increased drag wins out.

The relationship between airspeed an sink rate is expressed by the so-called polar

curve of a glider, which often is approximated by a parabola.
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In the second extreme you fly as fast as possible—you want to win the
competition. But because of the nonlinear effect of drag, you essentially
“plunge” to the next thermal. When you arrive at the thermal you are
near ground level, and so you need to spend a long time climbing back
to cloudbase. The climb rate in the thermal is fixed: you can’t improve
it via any flying strategy beyond skillfully staying in the core.

These two extremes illustrate the main idea. In the first extreme
you lose the competition because you are loafing along between the
thermals. In the second your cruise speed is high, but you spend too
much time climbing in thermals. There is an optimal cruising speed

that trades off these two effects.

THE BASIC MACCREADY LOGIC

I begin by deriving Almgren and Tourin’s objective in a more intu-
itive way. In this discussion I assume that the thermal strength m is
net of the sink entailed by cruising in the thermal, as this sink rate
is approximately constant due to the fixed circling speed.  Because
thermal cross-country entails repeated cruises and climbs, optimizing
just one leg of this process captures the idea. Of course this approach
does not yet reveal the optimal m—m will be held constant for now
and I will return to this discussion later. (Moreover, the distance to
the thermal and its strength m are treated as known—one could think

of this as a “house thermal” that is a few kilometers ahead.)

The objective. The objective is to minimize the elapsed time T to
traverse the distance to the thermal and subsequently climb back to

cloudbase. There are two elements of this time, namely the time in
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cruise mode ¥, and the duration of the climb, %: see Figure 1. The

control is the speed of travel in cruise, where the polar curve is relevant.
There is also a constraint that the control v be physically feasible, that

is, it is on the polar curve. Thus, the control problem is

g w2

subject to the constraint

2) h= ( T s(v)>

VvV—w

that is, the time spent sinking at rate s(v) is in cruise mode, which

T
v—w

lasts seconds.

A key aspect of the objective in equation (1) is that it requires that
the subsequent climb back to cloudbase be undertaken after the cruise
once the thermal is reached; this renders the optimization problem
stationary.

A second key observation is that the height A is endogenous, that
is, you don’t automatically fly so fast that you get to the base of the
thermal and then do a low save; in general you will arrive at the thermal
at altitude.

I will express this problem as a Lagrangian in due course, because
one can then interpret the multiplier as an appropriate shadow price,
but before doing so it is illuminating to solve using brute force to
establish the equivalence of the formulation with the Almgren-Tourin
formulation. Substituting from the constraint, after cancellations we

have

(3) min (LS(”))

v vV —w
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which is Almgren and Tourin’s objective. Notice that the distance x
has factored out.

After some algebraic manipulation the first order condition is
(4) (v —w)s' (v*) =m+ s(v*)

With zero headwind this is the same as MacCready’s (1954) original
equation, W 4w, = v% (see [5]), where wy is the rate of climb in the
next thermal, v is airspeed when cruising (the choice variable), W is
the sink rate when cruising, and f(v) is our s(v).

We can interpret this first order condition geometrically: the right
hand side is the vertical distance from the sink rate determined by the
optimal cruise velocity v* to the climb rate in the thermal, m, on the
vertical axis of the polar diagram, and the left hand side is this same
vertical distance as determined by the slope of a line s'(v*) times the
horizontal distance to the cruise velocity v* on the diagram, that is,
there must be a tangency to the polar plot starting from the climb rate
m.

The tangency is illustrated in Figure 2. With a positive headwind one
simply shifts the polar curve to the left by the headwind; the tangency

point moves to the right along the polar curve, so that the optimal

airspeed (speed to fly) v* increases.

The Lagrangian formulation. The way to think about the optimal
speed to fly is to think (somewhat counterintuitively) in units of “sec-
onds (gained) per unit of altitude,” that is, in terms of %, not v. I now
demonstrate that this perspective derives from the interpretation of the

Lagrange multiplier associated with the constraint in the speed-to-fly
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optimization problem. The Lagrangian is

(5) mgn{vfw%”(h—(vfw““’)))}

where we present the usual formulation with the constraint term sub-

tracted. Notice that the starting altitude h is the “income” term in
the constraint, so it is already known that the multiplier A will be the
marginal increase in time per unit of altitude, that is, with units %
Also note that we could if we wanted re-phrase the problem with % as
the control, in which case it would become almost linear.

After algebraic manipulation the first order condition is

1
s(v) — (v —w)s'(v)

Because the condition (4) holds at the tangency point, we can write

A=—

A= —

m
Because m is the climb rate of the thermal it is in units of velocity, and
therefore the Lagrange multiplier is in units of the inverse of velocity,
that is, seconds per meter. The interpretation is then straightforward:
the multiplier is the shadow cost of a unit of duration in velocity, or,
the marginal increase in altitude that is needed to justify a marginal
reduction in the duration of the flight from speeding up by a marginal
amount.

Notice that there is no effect of the headwind w on this shadow cost

of airspeed!
Solving for v. Rearranging the geometric property yields

(v —w)s'(v) — s(v) =m = %
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Analyzing the left hand side geometrically reveals an inverted parabola
shape, and the intersection with the constant m happens in two places;
using only the left intersection, it is clear that increasing the climb rate
m increases the optimal cruise airspeed v*. Equivalently, increasing the
net thermal strength m reduces the shadow cost A of increasing speed,

so you speed up.

Interpretation of the multiplier \. Taking the derivative of (5)

with respect to h yields
0(=T)

o

that is, A is the marginal decrease in duration given a marginal in-
crease in height, that is, it is the marginal value of height, which makes

Intuitive sense.

Allowing thermal strength m to vary. Now we can ask, what if
there are two m’s, one weak and one strong?” The weak ones occur
more often so the temptation is to take the weak thermals as well as
the strong ones.

To think more analytically about this we would draw two tangent
lines, resulting slow speed for the weak thermals (and smaller x for
those thermals) and higher speed for the strong thermals.

But now it is obvious that you would slow yourself down by taking
any of the weak thermals. As long as your objective is minimum time,
you should cut out the weak thermals if it is physically possible to fly
the strong thermals. The fact that they occur less frequently, so that
the distance x is larger, is irrelevant to the strategy: x does not appear

in the first order condition!
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STOCHASTIC THERMALS

Of course in real flying situations there is a degree of risk: if you
don’t find a thermal when you need it, you have to land out. If you
are not in a race but want to maximize your cross-country distance (a
common objective in paragliding) then you fall short.

There are two separate types of randomness to contemplate. The
first random element is the strength of a given thermal. To envision
this, one can posit that all thermals are “house” thermals, that is,
thermals that are known to predictably develop at known locations: a
knoll, a particular field, a rock formation, and so on. In that case, the
pilot would be expected to adjust his MacCready threshold downward,
given that he might encounter two weak thermals in a row: if he skips
the first thermal because it is too weak by basic MacCready reasoning
and then encounters a second weak thermal, he will land out. To
prevent this he must slow down a bit on the glide/cruise phase; this
reasoning here sounds a bit like risk aversion.

This reasoning is incorrect. In fact, the basic MacCready reason-
ing continues to apply, but with an average replacing the net thermal
strength, m.

The second type of randomness is randomness in the geographical
distribution of thermals. With this perspective, one could imagine
that all thermals have the same strength, but that they are encoun-
tered randomly (that is, with Poisson arrivals in terms of geographical
spacing). Again, the intuition is that you would slow down below the
basic MacCready setting because you don’t know if you will make it

to the thermal after the current one. And again, there will be a “risk
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premium” driving the slowdown. In this case the risk premium could
be expressed in terms of the arrival rate of the thermals, which behaves
mathematically like an interest rate and is in this sense complementary

with the idea of a risk premium.

First case: Evenly spaced thermals of random strength. This
case turns out to be remarkably simple: it is identical to the basic

deterministic MacCready model. The objective is

1
1

O e [{Ee 20N (T [

(% muv v (% m

But this is simply the original deterministic MacCready problem with
1/E[1/m] replacing m. The solution of the problem is then identical to
the deterministic problem, but with the expected value of the inverse of
net thermal strength replacing the fixed value. Because the expectation
is of the inverse, there is however a bias toward decreasing speed. (That
is, if there are two thermal strengths m; and ms, each with 50-50
probability, then it is easy to see geometrically that 1/E[m| < E[1/m)]
due to Jensen’s inequality, so the effective average thermal strength,
@, is less than the actual average E[m]. This shifts the MacCready

tangency point to the left. But this slowdown effect has nothing to do

with risk aversion!)

Second case: Randomly located thermals of fixed strength.
If thermals are assumed to have equal strength but occur at random
intervals then the probability density of the next thermal distance z’
is pe=”*'_ that is, there is an arrival rate associated with distance, not

time, and we need to integrate over this density.
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Benchmark approrimations. We can get some intuition about the ran-
dom spacing case by ignoring the boundary formed by the ground,
that is, we can assume that you are allowed to have negative altitude
so there is no concern about landing out; this is what thermalling on

Jupiter would be like! In that case the objective is

o0 /
min E {L‘S(v)f] — min/ pe—px/ [L‘S(U)i} dr’
0

v v m v v m
1 [~ /
(7) :mmw_ / [pe—px x/} d’
v v m 0
. m+s(v) 11
=mn-——=-—-—
v v mp

that is, you integrate over the infinite line along which you are traveling.

It is immediately evident that the first order condition simply repli-
cates the first order condition from the deterministic problem; the dis-
tance x to the next thermal is replaced by the expected value of this
distance, %, but as with the deterministic case this expected distance
has no effect on the optimal velocity; the MacCready optimum is not
affected by the uncertainty! The only thing that can potentially influ-
ence the optimal velocity is the boundary.

What is going on here intuitively? It might seem that since you can
have negative altitude you would just go as fast as possible. But re-
member that this formulation still requires you to climb in any thermal
you reach, and this takes more time if your altitude is negative. So it
is better to optimize the trade-off between cruising speed and the time
it takes to climb in a thermal.*

41t you were flying on Jupiter, there would be no ground, and therefore you need
never land out, but this therefore means that you never need to ascend in a thermal

at all—so the requirement that you ascend in some thermals matters!
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THE EFFECTS OF BOUNDARIES

We have seen that the MacCready logic is surprisingly robust to the
presence of stochastic thermals, whether it is their strength or their
geographic incidence that is random. However, to obtain these results
we have ignored the effects of boundaries.

There are two main types of boundaries to consider. The first and
most important is the cloudbase, which influences the possibility of
landing out. Because gliders cannot legally (or safely) fly above the
cloudbase, and because the cloudbase is roughly constant during a
typical flying day®, it is the maximum altitude in the practical version
of MacCready analysis, and affects the possibility of landing out.

The second boundary is the physical distance to the goal of the task;
the closer you are to the goal, the bigger the effect. Again, the desire
to avoid landing out will affect the optimum. As both Almgren-Tourin
and Cochrane [2] establish, these effects are potentially extremely com-
plicated, in part due to the complicated scoring schemes used in compe-
titions, as well as the dynamic programming effects of the boundaries.

However, here as well there is some basic intuition that is easy to es-

tablish.

The impact of cloudbase when thermals are random across
space. We will analyze the first boundary effect, the effect of the cloud-
base altitude constraint, on the situation when thermals are randomly
distributed geographically, but have equal strength.

5“Roughly” because the cloudbase tends to slowly increase during the course of

the day. Also, whilst the cloudbase is fixed in the short run, traversing terrain of

varying altitude changes the effective cloudbase.
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To complete the formulation of the objective in the basic determin-
istic case, we needed to assume that the thermal height parameter h
was exogenous, but now we will allow it to vary. When thermals are
stochastically spaced, the altitude at which you arrive at a thermal de-
pends on the arrival time: the longer you fly before you find a thermal,
the more you have to climb back to cloudbase, that is, the bigger is
h. We can express this using the previous constraint (2). If x is big,
that is if you go for a very long distance without finding a thermal,
you will land out. If we assume that the initial position is at the top
of the current thermal, that is, at cloudbase, then if you sink more
than the cloudbase altitude, you have by definition landed out. Call
the cloudbase height A. Then flight continues if

otherwise you have landed out.

The conditional distribution and expected distance when there is landing
out potential. Given that the possibility of landing limits the distance
you can potentially fly starting from cloudbase, this imposes a restric-
tion on the conditional distribution of the location of the next thermal.

The truncated density is

pe "

1— [%. pePedE
s(v)

(8)

Thus, the conditional density is normalized to the maximum possible

distance traveled, and, importantly, this distance is endogenous to the
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velocity v. We can see now that this will have an impact on the op-
timization problem, as the distance x no longer will factor out of the
objective.

There is a caveat here however: if one thinks of minimizing duration
subject to not landing out, it is not appropriate to normalize the den-
sity. That is, if you speed up radically this will shorten your land-out
distance and increase your potential to land out. Thus, the normaliza-
tion should be removed. The expected distance to the next thermal is

then

o _
s(v ’ 1 h hv
(9) Elz] = / " pe PP adr = - (1 — <1 + p—v ) eps}Zv))
0 P s(v)

I next examine the impact of this expected value on the optimization

problem.

Stationarity induced by the landing out boundary. One can now apply
this conditional expected value to the cross country problem. The first
observation is that if the flying day is potentially infinite, and the course
has no geographical limits, then the optimization problem is stationary.
Landing out is then the only concern. In that case the model is fully
recursive, that is, you start over once you are at cloudbase. In that
case, you can solve the non-recursive problem, which is to minimize
the time to the next thermal conditional on the requirement that you
climb in the next thermal.

Suppose you have the option of continuing to fly without the sun
going down, as long as you don’t land out/bomb out: you are on the

infinite plane (or even line). But you want to go as far as possible. This
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then is equivalent to maximizing your average speed v, subject to the
constraint that you have to fully ascend any thermal you encounter.

This problem is straightforward to write down as a non-dynamic-
programming problem: you just integrate over the density of the ther-
mal arrival, subject to not landing out. We already thought about
this, except we didn’t maximize speed, we minimized time. But they
are equivalent problems. Thus, the stationary problem can still be

expressed as the standard MacCready problem with uncertainty:

If the arrival rate for the thermals is too low, or if the cloudbase is too
low, or if the climb rate m is too low, then the expected value of x, and
the objective function, become bell shaped, and thus non-convex, and
so it is optimal to fly as fast as possible, not at the MacCready speed,
simply because you have nothing to lose.®

However, with a high cloudbase, or strong thermals, or very frequent
thermals so that p is large, the effect is to flatten the expected value
of x, that is the truncation of the density becomes irrelevant, and
the expected value is %, so when taking the derivative of the product
of the original objective and the conditional expected value, then the
derivative of the product is essentially that of the original MacCready

objective, and the original MacCready velocity is more or less optimal.

6This effect shows up in models where the goal is to maximize survival, which is

similar to the problem we face here; see [6].
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That is,
d (1 (ﬁ) 1 h i d [1 (_))
v v hv v
0 = — — _ — 1 — [ 1 7ps(v) —— —
wlo ' m p < (ps(v) +1e ) wlo ' m

(Just to emphasize: the “4+0” term on the right is a numerical result
that applies in reasonable calibrations.)

We can calibrate this model with a polar curve for a typical paraglider
that has speeds on the order of 30 kilometers per hour, typical thermal
strength of about 2 meters per second, and a polar curve with mini-
mum sink on the order of one half to one meter per second, and typical
flying conditions with cloudbase at 1,000 meters. Care must be taken
to relate meters per second (m and s(v)) to kilometers per hour (v);

the conversion ratio is

(1000 m/k) /(3600 sec/hour) x v k/hour = 1/3.6 = .278,

that is, multiply velocity in km per hour times .278 to obtain meters
per second. The remaining issue is the arrival rate of thermals; if there
is a thermal every 500 meters on average, that is an arrival rate p of
2, and with this calibration the truncated expected value function is
extremely flat in the speed range that matters. So the MacCready
reasoning is basically unchanged.

I use this calibration, that is, expressed in meters and seconds, in the
following simulations: m = 2, p = .002, and & described below. The
standard approach seems to be to measure velocity v in kilometers per
hour, whilst measuring the sink rate s(v) and the thermal strength m

in meters per second; this leaves the measure of the cloudbase height h
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ambiguous: if it is in meters then a reasonable calibration is 1000 me-
ters. The result is shown in Figure 3. The basic MacCready construc-
tion is unaffected, because the expected value of x (orange line)—the
distance to the next thermal—has a flat region around the minimum

of the basic MacCready objective (blue line).”

Boundary effects in the competition task: close to goal. The
Bellman equation has a flow element and a continuation value. The
continuation value should reflect not only the influence of the opti-
mization problem for the subsequent thermal, but for the possibility of
reaching the goal and also of landing out. But the basic construction
doesn’t mesh with these boundary issues.

The intuition of the goal boundary is that if you are close to the goal,
you speed up because the risk of landing out becomes nil. But there is
another more subtle effect here. When we optimized the non-stochastic
model, we built in the requirement that you re-ascend in the thermal
you hit. This shapes the optimization significantly: even if you were

at cloudbase only 50 meters from goal you would use the MacCready

"Notice that we have the ratio % in the original objective; thus, if we are mea-

suring m in meters per second, then h should be in meters, but the result is in
s(v)

v )

seconds. The other term, mixed meters per second (s(v)) and kilometers per

hour (v).

In the Amgren-Tourin paper, which is oriented toward sailplanes, everything is
measured in terms of meters per second; their polar plot figure has a MacCready
speed of 50 meters per second. Dividing by .278 yields 180 kilometers per hour (the
Pegasus has a maximum speed of 133 knots or 246 kilometers per hour—very fast,
way faster than any paraglider!) A typical paraglider speed of 30 kilometers per

hour converts to .278 x 30 = 8.34 meters per second.
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velocity, and this is obviously incorrect: it would be optimal to go at
maximum speed. So the terminal value needs to reflect this. Moreover,
this effect will have a recursive influence: it might be wise to speed up
above the MacCready speed after the thermal before the last thermal
because the risk is reduced.

We can rewrite the objective so that height is a function of the

distance to goal, X, remaining:
(11)

(1, )
V(X]|m) = min/ pe P | =4+ ~—L |2+ V(X —z\m)| dz
v 0 (%

m

Note that the probability measure that has zero support for distances
beyond goal due to the normalization. It is therefore automatic that
distances beyond the goal are not counted.

So, we can say that if your distance to goal is less than the land-out
distance, then the optimum would be to speed up, choosing a v* so

that equality holds:
(12) X=—

Now we have a way to characterize the terminal value: it is the time it
takes to fly using this rule:

where v* solves equation (12), and where 7 is the maximum attainable
speed (well above the MacCready speed).

We can take this further. Suppose there are N thermals before goal,

labeled in dynamic programming countdown fashion as My, My_1, ..., M.

Think about the penultimate thermal, M, with the final thermal, M,
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close to goal. We can anticipate reaching the final thermal from the
penultimate thermal, and we can cook the altitude in the final ther-
mal so that we only just squeeze into goal before landing. Should you
speed up after thermal M7 Yes! You can use the same reasoning as
above: First of all, to squeeze out the the final run to goal at the max-

&f*). But now you
v

imum speed you only need to attain altitude h* =
can treat point X—the location of the final thermal M;—as the goal.
When you climb when you reach M, you only need to climb to A%,
and so the optimization problem can be modified to reflect this. Thus,
there is a dynamic programming effect from the goal boundary, which
iterates back through the earlier thermals.

This reasoning will also affect the stochastic model. In the stochastic

model it is equally true that if you are close enough to goal you will

speed up and behave deterministically.

Intuition for boundary effects in the cross-country problem.
So far we have modeled landing out as a Poisson arrival problem, but
indexed to distance rather than time. Intuitively, you are flying on
some flats. And what we see is that once we put in the objective of not
landing out between thermals, the convexity of the objective seems to
be ruined: the problem becomes ill-posed.

The intuition for the ambiguity of the objective is easy to state: you
can go far only if you don’t land out. If you don’t land out you want to
go as fast as possible, as this maximizes your distance (again, because
the day will end and you will then have to land). But to avoid landing

out you might need to slow down. So the logic of the MacCready speed
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is vitiated. So the question becomes, how can a coherent objective be
stated?

Let’s simplify the problem as follows. Instead of thermals appear-
ing randomly, suppose that they appear at fixed, discretely and evenly
spaced locations, but not reliably. Thus, there might be a house ther-
mal but the thermal turns on and off at random.

The simplest case is where you have two such intermittent-thermal
locations ahead of you; call these M; and (counting down beyond M)
M. If you catch both of them you can continue and go far. If you
catch M; then you can also catch Mj even if you fly fast (i.e. at the
MacCready speed), although if it isn’t active then you land out, but
at least you made it that far (something like making it over the pass).
But if you fly fast before M7, and M; isn’t active when you arrive, then
you have to land out. On the other hand, if you fly slow, then if M;
isn’t active when you arrive, you still have enough altitude to make it
to My and at least have another chance.

This logic shows that if distance is the objective, you want to slow
down. So the objective needs to be reformulated with distance at the
objective. But this leads to another issue: the solution to this problem
is trivial: just slow down to the minimum sink speed. To get beyond
this trivial approach we need to add an additional ingredient.

The additional ingredient is that the sun goes down after a fixed num-
ber of hours, limiting the distance. So if the objective is to maximize
distance given the time constraint, and also given the not-landing-out

constraint, we can express this as an objective.
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Boundary effects in the XC problem: you speed up at the end. With the
intuition that you want to solve a constrained maximization problem
rather than a minimization problem, we can see intuitively that as the
end of the day grows near, you speed up, as there is now nothing to
lose once the day has terminated. Thus, just as in the minimum time

to goal problem, you speed up at the end!

CONCLUSIONS

I developed intuition for the MacCready setting without elaborate
stochastic control or numerical analysis. (i) I motivated more clearly
the objective function in the basic MacCready setting. (ii) I expressed
the optimization problem as a constrained optimization using a La-
grangian formulation; the Lagrange multiplier associated with the con-
straint then has an interpretation as a shadow price. 1 demonstrated
that this shadow price, which is the shadow price of reducing the dura-
tion of the flight marginally (thus reaching the goal sooner and poten-
tially winning a competition) requires a marginal increase in altitude.
When flying optimally this price—expressed as seconds per meter—is
exactly the inverse of the net thermal strength; I believe this result to
be previously unknown. (iii) I then considered the effects of two types
of uncertainty. For the first type of uncertainty—thermals of random
strength in known locations—I demonstrated that the MacCready logic
is entirely preserved, and that it might be desirable to slow down, but
this result is in no way driven by risk aversion. In the second case,
thermals of fixed strength in random locations, I show that for very

plausible parameters for real gliders that the MacCready velocity is
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entirely unaffected. (iv) Finally, I examined the effect of boundaries
on the speed to fly, establishing that under some circumstances it is

optimal to speed up beyond the MacCready velocity.
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FIGURE 1. A cruise and climb leg. Repeated flight pattern
of sink during cruise from starting height, followed by ascent
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FIGURE 3. Geometry of the first order condition. The
minimization problem with stochastic distance to the next
thermal, with m = 2, h = 1000, p = .002 (units are in meters
and seconds). The orange line is the expected value of the
distance to the next thermal; the blue line is the original
MacCready objective; the green line is the objective weighted
by the expected distance to the next thermal. The green line
and orange lines are multiplied by p to maintain scaling with
the blue line. It is evident that the expected-value-weighted
objective coincides with the original MacCready objective in

the relevant region.
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