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Abstract 

 

This study is investigating the predictability of the five Fama-French factors and explores their optimal 

portfolio allocation for factor investing during 2000-2017. Firstly, we forecast each factor with a pool 

of linear and non-linear models. Next, the individual forecasts are combined through Dynamic Model 

Averaging (DMA), while their performance is benchmarked by the best performing individual predictor 

and other forecast combination techniques. Finally, we use the Generalized Autoregressive Score (GAS) 

model and the skewed t copula method to estimate the correlation of assets. The GAS performance is 

also compared with other traditional approaches such as Dynamic Conditional Correlation (DCC) model 

and Asymmetric Dynamic Conditional Correlation (ADCC). The performance of the constructed 

portfolios is assessed through traditional metrics and ratios accounting for the Conditional Value-at-Risk 

(CVaR) and the Conditional Diversification Benefits (CDB) approach. Our results show that combining 

Bayesian forecast combinations with copulas is leading to significant improvements in the portfolio 

optimization process, while forecasting covariance accounting for asymmetric dependence between the 

factors adds diversification benefits to the obtained portfolios. 
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1. Introduction  

 

It is a well-known fact that reduced-form factor models are useful in asset pricing, as they provide 

a parsimonious summary of the cross section of asset returns (Fama and French, 1993 and 1995). The 

economic premise of factor-modelling is based on the fact that covariances have explanatory power over 

the cross-sectional expected returns and that factors are able to capture to a large extent the time-series 

co-movements of stock returns. Therefore, it is expected that an investor who wants to benefit from this 

must accept exposure to factor risk (Kozak et al., 2018). As a consequence, factor models are accepted 

as an econometric tool for analysing portfolio risk exposures. Decomposing risk exposure into factors 

not only allows for an independent vetting of managers offering investment opportunities, but also 

quantifies the risk exposure overlap with other funds during periods of high volatility or liquidity 

draughts (Luo and Mesomeris, 2015).  

Factor investing has gained increased popularity over the past decades among academics and 

market participants (Cerniglia and Fabozzi, 2018). This is based on the fact that investors believe that 

portfolio returns’ expectations should be evidence based and that factor-based portfolios are considered 

a solid example of long-term investment (Dimson et al., 2017; Briere and Szafarz, 2018). A large number 

of studies have identified that some style factors have historically earned attractive risk-return profiles 

over time (Fama and French, 1993, 2015; Carhart, 1997; Ferson et al., 2006; and Ang, 2014). There are 

two main types of factors that drive returns: macroeconomic factors, which capture broad risks across 

asset classes; and style factors, which explain returns and risk within asset classes. If an investor holds 

(optimized) diversified portfolios, better risk-return trade-offs can be attained in comparison to holding 

individual assets. This is the foundation of the traditional Mean-Variance (M-V) approach of Markowitz 

(1952). Assuming that this investor can invest directly in a security that replicates the return on 

individual factors, then it is possible to obtain diversification benefits from investing in a portfolio of 

stock factors. Thus, if factor investing can be implemented cheaply, it significantly raises the bar for 

active management. 

Although practitioners have to face structural or regulatory barriers to short-selling when they 

construct long-short portfolios, factors still can be tradeable via different ways. Some factor premiums 

can be captured through long-short combinations of existing index-based instruments (Briere and 

Szafarz, 2018). For instance, MSCI factor indexes provide flexible access to factor investing, such as 

Value, Low Size, Low Volatility, High Yield, Quality and Momentum. Studies such as the works of 

Ferson et al. (2006), Bender et al., (2010) and Bender et al. (2013) explain how portfolios are constructed 

in an effort to obtain factor risk premium. This is very important, as such risk premiums are required to 

compensate for their underlying risk and allow risk hedging through application of different types of 

factors in the same portfolio. Several techniques are developed to improve upon the passive 

capitalization of weighted equity market portfolios through intelligent integration of factor returns.  
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Common factors of interest are the market, size and value factors introduced by Fama and French (1993), 

the momentum factor introduced by Jegadeesh and Titman (1993) and Carhart (1997), the liquidity 

factor identified by Pástor and Stambaugh (2003), as well as the profitability factor and investment 

patterns’ factor found in Fama and French (2015). In general, the seminal studies of Fama and French 

(2015, 2016, 2018) confirm that the five-factor model is capturing adequately the returns’ movements. 

This literature brings forward the fact that many institutions are increasingly interested in factors’ 

congruence and how their optimal allocation can improve the risk-adjusted performance of their equity 

portfolios. This interest, though, goes beyond the traditional approach of Markowitz (1952).  

This motivates us to explore optimal allocation methods for factor investing. Several studies 

postulate that portfolio optimization can yield substantial diversification benefits in terms of risk-return 

trade-off mainly depending on the forecasting accuracy of conditional moments of asset returns (Chan 

et al., 1999). Consequently, more accurate estimates can generate more successful and active investment 

strategies. Knowing that the expected returns and correlation (covariance matrix) of assets are the 

primary inputs for portfolio optimization, the aim of this study is twofold. The first target is to select 

superior factor return predictions. The second goal is to exploit the time-varying correlations of factor 

returns and their asymmetric dependence in order to maximize the diversification benefits derived from 

factor-based portfolios. 

Miralles-Quiros and Miralles-Quiros (2017) suggest that portfolio optimization literature tends 

to neglect the importance of return predictability. The voluminous financial forecasting literature should 

be ideal for practitioners aiming at the first target mentioned above. Through that they are able to select 

and/or combine linear and non-linear models that apply constant or time-varying parameterization 

processes. Bayesian models constitute a prominent class of such techniques able to encompass the 

forecasting power of large number of individual predictors given powerful computational resources. 

Wright (2008, 2009) apply Bayesian m in forecasting exchange rates and US inflation. Feldkircher et al. 

(2014) utilize also the same technique in the FX markets too. The Dynamic Model Averaging (DMA) is 

used by Koop and Korobilis (2012) to forecasting inflation based on a set of predictors, as a recursive 

extension of the Bayesian approach. Another class of available forecasting tools is the Support Vector 

Regressions (SVRs). They are regression-based models able to explore the non-linear and data-adaptive 

dynamics of financial time series given a set of inputs (Vapnik, 1995). Their applications in finance are 

numerous (see amongst others Lu et al. (2009), Wang and Zhu (2010) and Yao et al. (2015). They 

exhibit, though, high sensitivity to the calibration of their parameters. For that reason, many studies in 

the area of heuristic and metaheuristic optimization are invested into this task, as especially the latter are 

able to avoid local optima trapping, over-fitting and computational costs (Parejo et al, 2012). Nature-

inspired metaheuristic approaches in particular that are motivated by the evolution of species or their 

swarm movement behaviour have received research traction (Yang, 2010; Yang and Gandomi, 2012; 

Gandomi and Alavi, 2012). Mirjalili (2016) proposed the Sine Cosine (SC) algorithm that is based on 
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mathematical objective functions rather than bio-inspired ones. This was recently adopted couple of 

studies, Li et al. (2018) and Fernandes et al. (2018) in a hybrid SC-SVR model. Their results indicate 

that SC is providing better SVR optimization compared to other robust bio-inspired algorithms. 

On the other hand, portfolio researchers that focus on the univariate distributions of the individual 

assets and the dependence between each asset, should be able to investigate and capture time-varying 

correlations (Cha and Jithendranathan, 2009). The copula literature is the one that should appear 

attractive but also challenging. Copula modelling plays a crucial role in the portfolio optimization 

research of past decades (Patton, 2006; Christoffersen et al., 2012; Boubaker and Sghaier, 2013; 

Kakouris and Rustem, 2014; Sahamkhadam et al., 2018). Some of the Archimedean copulas, like the 

Clayton, the Gumbel, and the Joe-Clayton, can capture asymmetric dependence in bivariate cases, 

however, generalizing them to the high-dimensional case is computationally difficult (Savu and Trede, 

2010). Recent studies on applications of copula-based models in finance show that the skewed t copula 

is able to incorporate the multivariate asymmetries in high-dimensional dependence modelling 

(Christoffersen et al., 2012, 2013; Lucas et al., 2014; Cerrato et al., 2017)1. In particular, Christoffersen 

et al. (2013) employ the skewed t copula to model the nonlinear dependence across four equity factors. 

The superiority of using skewed t copula is based on the fact that it not only takes into account the tail 

dependence, but also the multivariate asymmetry across factors. Three models are usually applied in 

forecasting the covariance matrix among financial assets, namely the Dynamic Conditional Correlation 

(DCC) model (Engle, 2002), the Asymmetric Dynamic Conditional Correlation (ADCC) model 

(Cappiello et al., 2006) and the Generalized Autoregressive Score (GAS) model (Creal et al. 2013). 

Although DCC is probably the most widely used approach, ADDC is a useful extension allowing for 

conditional asymmetries in correlations across assets (Fei et al., 2010). Nonetheless, GAS is able to 

capture the dynamic dependence of asset returns by applying the score of the conditional density function 

to drive the dynamics of the time-varying parameters (Lucas et al. 2014; Salvatierra and Patton 2015; 

Zhao et al., 2018).  

Based on the above, this study is designed as follows. We investigate the return predictability of 

Fama-French’s (2015) five factors and explore their optimal portfolio allocation for factor investing over 

the period of 2000-2017. This is achieved by proposing a novel three-stage optimization framework. 

Firstly, we perform a one-step-ahead forecast for the first moment of each factor with a pool of linear 

and nonlinear models. The individual forecasts are then combined through Bayesian DMA, while their 

performance is benchmarked by the Random Walk (RW), the best individual predictor, SVR and SC-

SVR. This step will provide the most accurate factor returns, which goes towards the first aim mentioned 

above. Secondly, we capture the characteristics of correlation among factors and we construct a Dynamic 

Asymmetric Copula (DAC) model which combines the Generalized Autoregressive Score (GAS) model 

                                                             
1 The skewed t copula is implied by the Generalized Hyperbolic (GH) distribution discussed in Demarta and McNeil (2005). 
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and a skewed t copula. The proposed model is employed to forecast the second moment of factors in 

portfolio optimization. Traditional multivariate models such as DCC-GARCH and ADCC-GARCH are 

also considered for the purpose of comparison. Finally, we obtain optimal asset allocations of the factors 

using the M-V approach and the mean-Conditional Value-at-Risk2 (CVaR) optimizations. The latter 

approach allows us to select portfolios from an efficient frontier characterized by risk-expected shortfall 

trade-offs (Alexander et al., 2006; Karmakar and Paul, 2018). In order to evaluate the performance of 

the obtained tangency portfolios several performance metrics are applied, such as annualized returns, 

Sharpe and Sortino ratios, Maximum Drawdown (MDD), return over CVaR ratio and the Conditional 

Diversification Benefits (CDB) of Christoffersen et al. (2012). To best of our knowledge, this empirical 

setup is novel.  

The results show that combining Bayesian forecasts with the proposed skewed t copula-based 

GAS model leads to the best factor allocations. In particular, this study brings forward several interesting 

findings: (a) The portfolios based on the forecasts derived from SC-SVR and DMA offer significant 

improvement over the ones from RW and 1/N strategy in terms of portfolio risk reduction; (b) The 

optimization using the GAS model yields evidently better performance than the ones using DCC and 

ADCC model; (c) The portfolios that allow short-selling could offer higher diversification benefits than 

long-only ones. These findings have some important implications. Firstly, it is confirmed that reducing 

the estimation errors of the first moments of asset returns can significant improve the portfolio 

optimization performance. Secondly, incorporating the asymmetric dependence among asset returns in 

the optimization process leads to substantial increase in the diversification benefits for the investor. 

Finally, CVaR is a more appropriate risk measure if the investor’s utility function is characterized by 

minimization of downside tail risk. 

The rest of the paper is organized as follows. Section 2 provides the description of the Fama-

French factors’ dataset, while all forecasting models are described in section 3. Their statistical 

evaluation is given in section 4. The portfolio design of this study is explained in detail in section 5. The 

final portfolio optimization results are summarized in section 6, while some concluding remarks are 

given in Section 7. Finally, technical and mathematical details essential for the understanding of this 

study are included in the appendix.  

 

2. Dataset 

 

The forecasting models in this study are applied in the task of forecasting the one day ahead 

logarithmic returns of the five factors, namely the Market Factor (MKT), Size Factor (SMB), Value 

                                                             
2 CVaR is the abbreviation of the Conditional Value-at-Risk, which is also known as the Expected Shortfall. 
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Factor (HML), Profitability Factor (RMW) and Investment Patterns’ Factor (CMA)3. The descriptive 

statistics and correlation matrices of the return series are shown in the following table.   

**Insert Table 1** 

The MKT and RMW returns series exhibit slight negative skewness, while SMB, HML and 

CMA a positive one. All return series exhibit high positive kurtosis. The Jarque-Bera and Augmented 

Dickey-Fuller (ADF) statistic confirms that the factor return series under study are non-normal and 

without a unit root at the 99% confidence level respectively. Additionally, from the table we note that 

high negative and positive correlations are evident across the factors. The dataset design of this study is 

shown in table 2 below. 

**Insert Table 2** 

Figure 1 presents the factors’ performance during the out-of-sample period. 

***Insert Figure 1*** 

Overall, all factors present an upward trend in cumulative returns during 2000-2017. MKT seems 

to be performing worse compared to the others. Especially before 2003, we observe decreasing 

cumulative returns for MKT, while all other four factors have opposite performance. During the global 

financial crisis period HML’s and MKT’s performance are more negatively affected. After 2009, the 

returns’ upward trend of MKT factor is vastly reinforced. 

 

3. Forecasting Models 

 

This section summarizes the models applied in the design of this forecasting application. Initially, 

the individual forecasts from a pool of traditional predictors are obtained. Then, the best predictors are 

selected and fed into three forecast combination techniques, namely the traditional SVR, the SC-SVR 

and the Bayesian DMA. 

 

3.1 Individual Forecasts 

 

Applying a large pool of traditional predictors should be the first step of every forecasting 

exercise. In our case, we employ more than three hundred linear and non-linear individual predictors to 

predict the five factors in-sample. The linear models belong in the classes of Simple Moving Averages 

(SMA), Exponential Moving Averages (EMA), Autoregressive terms (AR) and Autoregressive Moving 

Average (ARMA) models. There are also several non-linear models applied, such a Smooth Transition 

Autoregressive Model (STAR), Nearest Neighbors Algorithm (k-NN), a Multi-Layer Perceptron (MLP), 

a Recurrent Neural Network (RNN), a Higher Order Neural Network (HONN), a Psi-Sigma Neural 

                                                             
3All the data are publicly available on French’s website at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 

 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Network (PSN), PSO Neural Network (ARBF-PSO), Genetic Programming (GP) and Gene Expression 

Programming (GEP).4 The final pool size is three hundred and twenty-eight individual predictors for 

each forecasting exercise. After the individual forecasts are obtained it is important to screen out the best 

predictors. Thus, the Principal Component Analysis (PCA) is used in order to discard highly correlated 

variables, while accounting for the 95% of the total variance. The final principal components are 

presented in the following table.  

**Insert Table 3*** 

It is obvious that the PCA analysis vastly decreases the input dimensions (number of input ranges 

from six to nine), while non-linear models appear to be the best performing5. The above process is 

crucial, as it allow us to select robust prediction benchmarks and cope with the dimensionality issue that 

arises when applying forecast encompassing techniques. Only the above principal components are used 

as inputs for all the remaining techniques, while the RW and the best predictor of each case (bold) play 

the role of our benchmarks.  

 

3.2 Forecast Combination Methods 

 

In this study we employ three techniques to combine the best individual forecasts, namely SVR, 

SC-SVR and DMA. Their short descriptions are presented in this subsection. 

 

3.2.1 Support Vector Regression (SVR) 

 

SVR is a technique based on the principle of structural risk minimization, as proposed by Vapnik 

(1995). It is able to achieve good generalization in non-linear regression tasks by using only a subset of 

the training observations, known as the support vectors. If {(x1,y1), (x2,y2)…, (xn, yn)}, where 

, , 1...i ix X R y Y R i n    =  are the training data and n the total number of training samples, the 

general SVR function can be specified as: 

                                                               ( ) ( )Tf x w x b= +                                (1) 

φ(x) is the non-linear function that maps the input data vector x into a feature space where the training 

data exhibit linearity. In order to obtain w and b, the following regularized risk function must be 

minimized:   

                                                             
4 All predicting models within the pool are well known in the forecasting literature. Short specifications for the linear ones are provided in 

appendix A. In this paper, we do not delve into the description of the non-linear ones as this is out of the scope of this paper. Their modelling 
design is available upon request, while we refer the interested reader to Sermpinis et al. (2017) for more details.  
5 We have also applied a Relevance Vector Machine (RVM) model for input variable selection (Tipping, 2001). RVM is a Bayesian sparse 
kernel technique able to cope with large-scale data-processing and reduce the feature space to the most important vectors. This approach 

leads to very similar inputs’ sets as with the PCA ones, while the ranking of the models and the significance of the results remain consistent 
to the discussion of the main text. These results are not presented here for the shake of space, but they are available upon re request.  
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Parameters C and ε are calibrated by the practitioner, yi is the actual value at time i, f(xi) is the 

predicted value at the same period and 𝐿𝜀 is ε-sensitive loss function The loss function identifies the 

predicted values that have at most ε deviations from the actual values yi. The ε parameter defines the 

known ‘tube’ in the SVR literature (Vapnik, 1995; Schölkopf et al., 1999).  Assuming the parameter 

(0,1)v  , then the SVR problem transforms to a vSVR optimization problem that follows: 
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Equation (5) becomes a dual problem and its solution is based on the two Lagrange multipliers *,i ia a and 

the kernel function ( , )iK x x  :  

        
*

1

( ) ( ) ( , )
n

i i if x a a K x x b
=

= − + , where *0 ,i i

C
a a

n
                                           (4)  

The transformation of input space is achieved with the Gaussian Radial Basis Function (RBF) 

for all the SVR models applied. Parameter C satisfies the need to trade model complexity for a training 

error and vice versa Additionally, the intuition of vSVR is that the parameter v is an approximation of 

the upper and lower bounds of the fraction of errors. Here it should be noted that the majority of the 

SVR studies suggest that v parameter should be used as it reduces computational time and increases 

forecasting accuracy (Schölkopf et al.,1999). In order to calibrate the parameters of the vSVR, the grid 

search technique is applied.6 

 

3.2.2 Sine-Cosine Support Vector Regression (SC-SVR) 

 

One recent very successful approach for SVR parameterization is the SC algorithm as proposed 

by Mirjalili (2016). The SC algorithm is a population-based optimization technique that is able to search 

different areas of the given search space by combining an exploration and exploitation phase. The 

modelling procedure starts with a set of random solutions and proceeds to the global optima. Once the 

algorithm is in the exploration phase, the probability of getting trapped in the local optima is minimized. 

Conversely, the higher the number of random solutions, the higher the probability of obtaining the global 

optima in the exploitation phase. Hence, when applying the SC the best global solution is found by 

updating the positions of the random candidate solutions towards the best solution. This is achieved 

through the use of sine and cosine functions as objective functions. The local search of different regions 

                                                             
6 For more details on the mathematical solutions and SVR modelling, the interested reader should refer to Vapnik (1995) and Cherkassky 
and Ma (2004). 
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in the search space is achieved by allowing the sine and cosine functions to return to values greater than 

one or less than minus one. Following the work of Mirjalili (2016), the position updating equations are 

the following: 

    
1 2 3 41

1 2 3 4

sin( ) , 0.5

cos( ) , 0.5

t t t

j j jt

j t t t

j j j

P r r r P P r
P

P r r r P P r

+
       + − 

 = 
      + − 

                                        (5) 

where 
t

jP  is the position of the current solution for the jth dimension at tth and 
t

jP is the position of the 

destination point, 1 2 3 4, , ,r r r r     are random variables. 

The 1 ( / )r c t c T   = − is a balancing random metric, where c is a constant, t is the current 

iteration and T is the maximum number of iterations. Calibrating 1r  balances the exploring and the 

exploitation and leads to an adaptive shift in the range of sine and cosine calculations. Consequently, r

dictates the next positions’ region. This region would be either in the space between the current solution 

and the next destination or outside it. The random variable 2r  is bounded between [0,2π] and indicates 

whether the random location will be within or outside the cyclical pattern invoked by the nature of the 

sine and cosine functions. The third random variable 3r  is a random weight defining the emphasis of the 

destination position in defining the distance. Finally, 4r  is bounded as [0,1] and provides an equal switch 

between the sine and cosine functions. For more details on the mathematical implementation of SC 

algorithm, we refer the reader to Mirjalili (2016). 

SC presents several advantages over other similar techniques used for SVR parameterization. SC 

generates improved sets of random solutions and benefits from high exploration and local optima 

avoidance, compared with individual-based algorithms, such as GAs. The algorithm is also able to divide 

the search space into different areas promising for exploration based on the sine and cosine. The adaptive 

range imposed on the two functions allows for a smooth transition between exploration and exploitation, 

unlike in the case of another popular algorithm, the Krill Herd. (Fernandes et al., 2018). Li et al. (2018) 

show how SC algorithm can be used for optimal SVR parameterization. Our approach does not differ 

from these guidelines. Finally, the optimal selection of the SVR parameters is achieved by minimizing 

the Root Mean Squared Error (RMSE) in the test-sub period. Therefore, the following fitness function 

needs to be maximized:  

     1/ (1 )Fitness RMSE= +                                                         (5) 

The RBF kernel is also used in SC-SVR as in traditional SVR.  
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3.2.3 Dynamic Model Averaging (DMA) 

 

DMA proposed by Raftery et al. (2010) is a recursive implementation of standard Bayesian 

Model Averaging that allows selecting different subsets of explanatory variables over time along with 

variable coefficients. If we consider a candidate input set 𝑢 = 1, … , 𝑈, then the state-space model at 

time 𝑡 = 1, … , 𝑇 for the dependent variable 𝑦𝑡
∗ can be presented under observational and state equations 

as: 

𝑦𝑡
∗ = 𝐹𝑡

(𝑢)′
𝜁𝑡

(𝑢)
+ 𝜀𝑡

(𝑢)
                        (6) 

𝜁𝑡
(𝑢)

= 𝜁𝑡−1
(𝑢)

+ 𝜂𝑡
(𝑢)

              (7) 

(
𝜀𝑡

(𝑢)

𝜂𝑡
(𝑢)) ~ 𝒩 (

𝑅𝑡
(𝑢)

     0

0     𝑉𝑡
(𝑢))                                                 (8) 

where 𝐹𝑡
(𝑢)

 is a subset from the 𝜈 potential predictors at each time. The 𝜁𝑡
(𝑢)

 is a 𝑝∗ × 1 , 𝑝∗ ≤ 𝑣∗ vector 

of time-varying regression coefficients evolving over time. The dynamic nature of the process is that 

DMA allows different models to hold at each point in time.  

The DMA averages the forecasts across candidate combination of models based on predictive 

likelihood through a recursive updating scheme. The predictive likelihood estimates the ability of model 

𝑢 to predict 𝑦𝑡
∗. The models containing better predictors receive higher predictive likelihood and are 

associated with higher weights in the averaging process. Respectively, at each time 𝑡 two vectors of 

weights for the model 𝑢 are calculated as 𝜔𝑡|𝑡−1,𝑢 and 𝜔𝑡|𝑡,𝑢. The first quantity denotes the weight of a 

specific model given information available at time 𝑡 − 1, while the latter one represents the dedicated 

weight to the specific model after the model update at time 𝑡. Raftery et al. (2010) suggests the use of a 

forgetting factor ‘δ’ where the weights for the following period are formulated as: 

𝜔𝑡+1|𝑡,𝑢 =
𝜔𝑡|𝑡,𝑢

𝛿  

∑ 𝜔𝑡|𝑡,𝑙
𝛿𝑈

𝑙=1

.           (9) 

The 𝛿 is set to control the ‘forgetting’ of the entire model set and its range is 0 < 𝛿 ≤ 1. Raftery 

et al. (2010) set 𝛿 = 0.99 and they also introduce the second forgetting factor, 𝜆, that is used to account 

for the information loss over time. This factor is used in the variance estimator as: 

𝑉𝑡
(𝑢)

= (1 − 𝜆−1)𝐶𝑡−1
(𝑢)

.                    (10) 

where 𝐶𝑡
(𝑢)

 is the conditional variance. In that way, 𝜆  controls the amount of shock affecting the 

coefficients 𝜁𝑡
(𝑢)

. Identical to 𝛿, 𝜆 may also take values near to one. This determines the rate of which 

information loses effect on the model coefficients.  

In this study, we follow the recommendations of Raftery et al. (2010) and set 𝛿 = 𝜆 = 0.99. The 

computational burden for such a dynamic model is obvious, as the total number of candidate models is 

𝑈 = 2𝑣∗. Unless 𝑣∗ is very small, updating the parameters becomes computationally very slow using a 

full Bayesian approach. Although through the work of Raftery et al. (2010), DMA can become more 
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efficient, the computational burden still increases exponentially when  𝑣∗ is large. This makes DMA 

impractical with standard computer processing when  𝑣∗is larger than 20. Nonetheless, for our case this 

is not a problem as the input dimension is always significantly lower than that (see table 3).  

 

4. Statistical Performance  

The forecasting performance of our models is evaluated through four statistics, namely the 

RMSE, the MAE, the MAPE and the Theil-U. These traditional metrics are interpreted as the lower their 

output, the better the forecasting accuracy of the respective model. Table 4 presents the out-of-sample 

statistical performance of the models. 

**Insert Table 4** 

The above results show that the models’ statistical ranking is consistent across all factor series. 

RW appears to be the worst model, while the best predictors are always outperforming it. This is in a 

sense expected, nonetheless the best individual predictors never beat the forecast combination models. 

This goes towards the literature that suggests that encompassing robust forecasts can boost forecasting 

accuracy (Diebold and Pauly, 1990). Taking a look at the forecast combination methods, we note that 

the Bayesian DMA is providing more accurate forecasts that the SVR counterparts. This is in line with 

several studies that suggest DMA can be a robust prediction tool when certain individual predictors are 

provided (Koop and Korobilis, 2012; Aye et al., 2015). The traditional SVR also falls short to the SC-

SVR, showing once more that the SVR parameterization with more sophisticated techniques than the 

traditional grid search decreases forecast errors. The above results indicate a forecasting power ranking 

to the competing models, but further statistical validation is needed. For that reason, we perform another 

two tests, namely the Pesaran-Timmermann (PT) (1992) and the Diebold Mariano (DM) (1995) test7. 

The results of the two tests are provided in table 5. 

**Insert Table 5** 

The two tests support the statistical ranking presented before. The PT statistics indicate that all 

models are capable of capturing the directional movements of the five factors return series in the out-of-

sample8. Moreover, DMA’s statistical superiority is confirmed, as all the DM statistic realizations are 

negative.  

In order to further validate the superiority of DMA and affirm that our results do not suffer from 

data-snooping bias, we resort to a multiple hypothesis testing framework. The results presented in tables 

4 and 5 might be due to lack and the outperformance of the DMA in the out-of-sample insignificant. For 

                                                             
7 The PT test examines whether the directional movements of the real and forecast values are in step with one another. The PT test’s null 
hypothesis is that the model under study has no power on forecasting the relevant factor return series. The DM statistic tests the null 
hypothesis of equal predictive accuracy between two forecasts. In this case, the DM test is applied to couples of out -of-sample forecasts 
(best model vs. other model) using the MSE loss function. In our case, a negative realization of the DM value would indicate that the DMA 
forecast is more accurate than the competing forecast. 
8 Similar results are obtained also in the in-sample period. In-sample results are not provided within text for the sake of space and are 
available upon request. 
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this purpose, we apply the Stepwise Superior Predictive Ability test (s-SPA) of Hsu et al. (2010) and the 

Model Confidence Set (MCS) of Hansen et al. (2011) under the MAE criterion. The first test focuses on 

the comparison of the predictive abilities of multiple methods within a full set of models. Low s-SPA p-

values indicate that the benchmark model is inferior to at least one of the other models, hence the null 

hypothesis is rejected. Here, all the models of tables 4 and 5 are used as benchmarks in turn starting with 

RW. The second test deduces the best models from a full set of models (in our case those of the tables 

before) under specified criteria and a given level of confidence. The MCS set is data-dependent, as 

Hansen et al. (2011) suggest that the more informative the data are, the less models are selected. Low p-

values suggest that the model under study is unlikely to belong to the set of the best performing models. 

The results of the two tests are presented in table 6 below. 

**Insert Table 6** 

The s-SPA and MCS results confirm the superior performance of DMA. The s-SPA tests show 

that for each factor case the models examined are inferior to at least one alternative model. It is logical 

to assume that this happens because DMA achieves the best forecasting performance. The MCS results 

also suggest DMA is the only model that belongs to the set of the best models9.  Thus, all the statistical 

findings suggest that the Bayesian forecast combinations provide the lowest forecast errors. It would be 

interesting to see if this superiority is translated also into successful portfolio allocations. 

 

5. Portfolio Optimization Design 

 

The next target of this study is to examine what (if any) diversification benefits can be obtained 

from the improvement of the individual forecasts. We follow two portfolio optimization approaches 

which are described in this section, namely the traditional Mean-Variance (M-V) optimization and the 

skewed t copula-based mean-CVaR optimization method. 

 

5.1 The Mean-Variance Optimization  

 

The traditional M-V optimization is by far the most widely used method to choose optimal 

portfolio weights, which assumes that a rational investor wishes to find portfolios that have the best 

expected return-risk trade-off. In this case the variance is set as the risk proxy of the portfolio. The 

optimal weights are obtained by minimizing the variance of the portfolio for a given level of expected 

return. Thus, the optimization problem in this paper can be expressed as: 

                                   ( )2

,min = 
t

T

p t t t t t
w

w w w  subject to , ,= w
T

p t t i tr r  and 1=T

tw 1                 (11) 

                                                             
9 Here we should note that when DMA is dropped from the s-SPA test, the SC-SVR is found to be superior from all other 

models. For the case of MCS, the results remain the same when the confidence level is further relaxed or restricted with the 

number of replications set at 10,000.  
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where 𝜎𝑝,𝑡
2  represents portfolio variance at time 𝑡, 𝑟𝑝,𝑡 represents the expected return of the portfolio, 𝐰𝑡 

represents the vector of portfolio weights, and 𝛴𝑡 represents the covariance matrix of factor returns at 

time t. In this study, 𝛴𝑡 is predicted by three different models, namely the DCC-GARCH, the ADCC-

GARCH and the GAS model.  

 

5.2 The Copula-based Mean-CVaR Optimization 

 

Variance is commonly used as a risk measure of portfolio because of its computational 

advantages. However, it is not perfect from both theoretical and empirical perspectives. Variance is not 

a coherent risk measure since it fails to satisfy monotonicity and translation invariance, while investors 

tend to value downside losses and upside gains differently (Artzner et al. 1999). However, variance 

penalizes profits and losses in an equal way as a symmetric risk measure. Therefore, this study considers 

CVaR as an alternative risk measure, because it is a coherent risk measure and focuses on the tail risk of 

portfolio. Rockafellar and Uryasev (2000, 2002) show that the minimum portfolio CVaR and the mean-

CVaR efficient frontier can be easily obtained by using programming techniques. Following their 

theoretical framework, we use the forecasts obtained from different models to implement a copula-based 

mean-CVaR portfolio optimization. This allows us to quantify the diversification benefits yielded from 

the improvement of the forecasts of the factor returns. 

For that reason, our first step is to specify adequate models for the marginal distributions of factor 

returns before the copula modelling. The specification of marginal models is standard procedure 

provided in the appendix B. Next, selecting appropriate dependence structure is of particular importance 

in optimization. Christoffersen et al. (2013) show solid evidence of asymmetric tail dependence across 

equity factors and our empirical results in table 7 further verify the presence of asymmetry.  

**Insert Table 7** 

Appendix C includes the specifications of the tail dependence coefficients. The results show that 

an appropriate copula needs to be selected in order to incorporate multivariate asymmetry is necessary. 

In this study, we adopt the skewed t copula to model and capture the nonlinear asymmetric dependence 

across the five Fama-French factors. As mentioned in introduction, this type of copula is advantageous 

compared to others since it not only takes into account the tail dependence, but also the multivariate 

asymmetry across the factors. More details on how the factor dependence is modelled through this copula 

are given in appendix D. 

Following Patton (2013) and Oh and Patton (2018), we use the skewed t copula with GAS 

dynamics to model the time-varying correlation across the factors and apply the estimated parameters to 

implement a Monte Carlo simulation. This allow us to estimate the portfolio CVaR for the optimization. 

The key idea of the mean-CVaR optimization approach is to calculate portfolio VaR and minimize CVaR 

simultaneously for given level of expected returns. More specifically, our optimization process contains 
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following steps. Initially, we utilize the monthly forecasts of the RW, the best individual predictor, SVR, 

SC-SVR and DMA. Next, we combine the GAS dynamics with the skewed t copula to capture 

asymmetric dependence across the factor returns. The correlation matrix for the copula is predicted with 

the DCC, ADCC and GAS models. All ex ante one-step ahead forecasts are obtained with a rolling 

window approach. This is a sound approach as studies that employ mimicking portfolios, as ours, should 

avoid using fixed weights (Ferson et al., 2016). In this study, a 5-year rolling window is used to re-

estimate the skewed t copula for each month 10 . Then, given the estimated time-varying copula 

parameters, we implement a Monte Carlo simulation to predict the VaR and CVaR for the simulated 

factor portfolios. Finally, the portfolio CVaR can be minimized using linear programming and an 

efficient frontier of optimal risk-return portfolio for each month can be obtained for a series of target 

returns. In this study, we choose the optimal weights of the tangency portfolio (the one with higher 

Sharpe ratio or Return/CVaR ratio in the frontier) to rebalance our factor portfolios every month. 

The mean-CVaR optimization is pioneered by Rockafellar and Uryasev (2000, 2002). The β-

VaR and β-CVaR of the equity factor portfolio at time 𝑡 in integral form are given by: 

                      ( ) ( ) min : ,t t   =   w w        (12) 

                     ( ) ( ) ( ) ( )
( ) ( )

1
1 ,





 

−


= −  w ,r w

w w r r r
t t t

t t t t t
f

f p d      (13) 

where Ѱ is the cumulative distribution for the loss associated with 𝐰𝑡, the probability that 𝐫𝑡 occurs is 

𝑝(𝐫𝑡) and the loss function is presented by 𝑓(𝐰𝑡 , 𝐫𝑡) as: 

                                                 ( ) 1, 1, , ,,  = − + + = − 
T

t t t t n t n t t tf w r w rw r w r                                        (14) 

The β-CVaR of portfolio in integral form can be well approximated with a Monte Carlo simulation 

(Rockafellar and Uryasev, 2000). Therefore, the following equation is a suitable approximation that can 

be used to minimize CVaR for a given level of portfolio return: 

( )
( )

( ) ,
,

1

1
min ,

1t

q
T

t t m t

m

F
q




  


+

=

 = + − − −


w
w w r subject to ( ) - = − w w r

T

t t t R  and 1T

t =w 1    (15) 

where 𝑞 denotes the number of samples generated by the skewed t copula-based Monte Carlo simulation, 

𝛼 denotes VaR at 𝛽 level and 1 is a vector of ones and 𝐫𝑚,𝑡 is the mth vector of simulated returns. The 

vector of optimal weights, 𝐰𝑡, can be obtained from the optimization procedure to generate the portfolio 

that minimizes CVaR for a given target return 𝑅. 

 

 

 

 

                                                             
10 We use a rolling window of 60 months (5 trading years) for all the data sets. We conduct rolling forecast by moving forward a month at 
a time and end with the forecast for August 2017. 
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6. Portfolio Optimization Results  

 

In this section, we compare empirically the out-of-sample performances of the different 

optimization strategies from various combinations of forecasting models to the benchmark 1/N strategy 

(an equally-weighted portfolio). The following three tables show the results for the M-V, the mean-95% 

CVaR and the mean-99% CVaR optimization. In each of these tables, the various strategies being 

examined are listed in rows, while the columns refer to the different performance measures. Except from 

the traditional measures of annualized return, Sharpe ratio. Sortino ratio and MDD, we incorporate also 

the Return/CVaR ratio and the CDB. The latter is a proposed measure from Christoffersen et al. (2012) 

and its description is provided in appendix E. Table 8 is providing the M-V results. 

**Insert Table 8** 

Panel A shows the performance of the factors and the 1/N strategy (equally-weighted portfolio 

of 5 factors). The RMW factor has the highest annualized return (5.369%) and 1/N strategy yields the 

highest Sharpe ratio (0.918) and Sortino ratio (1.410), as well as the lowest maximum drawdown 

(9.346%). In Panel B the M-V optimization results with short-selling constraints are presented. In 

general, we find that the DMA-based portfolios, model that provides the most accurate predictions in 

Section 4, yield better performances than portfolios based on the SC-SVR and RW. The poor 

performance of the optimization based on the RW model is expected because it yields the least accurate 

predictions of factor returns among all the forecasting models. Another worth noting finding is that the 

optimizations based on the RW significantly underperform the 1/N benchmark. This indicates that the 

errors in forecasting the first moment of the returns dilute all the gains from the optimization. The 

average Sharpe ratio, Sortino ratio and CDB of the portfolios from the DMA model (1.196, 2.175 and 

0.798 respectively) are significantly higher than the average of portfolios from the SC-SVR model 

(0.937, 1.751 and 0.767 respectively). In addition, the average maximum drawdown of the DMA-based 

portfolios (13.217%) is slightly lower than the SC-SVR-based portfolios (13.393%) which suggests that 

more accurate return predictions can mildly reduce downside risk in optimal portfolios. It should be 

noted that an interesting finding is observed in terms of the second moment prediction. The optimizations 

based on the predictions from the GAS model yield better results than the ones based on the DCC and 

ADCC models. Specifically, the average Sharpe ratio, Sortino ratio and CDB of the portfolios from the 

GAS model (0.960, 1.679 and 0.779 respectively) are clearly higher than the average of portfolios from 

the ADCC model (0.902, 1.598 and 0.777 respectively). Finally, the short-selling results are presented 

in Panel C. The portfolios allowing short-selling (130/30 strategy)11 yield better performance compared 

to the one in Panel B.  In particular, the average annualized returns are above 6.6%, while the average 

Sharpe ratio, Sortino ratio and CDB of panel C are further improved (0.971, 1.859 and 0.821 

                                                             
11 130/30 strategy uses leverage by shorting poor-performing assets and purchasing well-performing ones. A 130-30 ratio means that we 
short assets up to 30% of the portfolio value and then use the funds to take a long position in the assets with better performances. 
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respectively). Finally, the average maximum drawdown across all portfolios is also around 1.9% lower 

than the one of Panel B. This improvement implies that allowing short-selling could yield higher 

diversification benefits than long-only portfolios. 

Next, we further investigate whether more accurate estimates of factor return moments can yield 

more successful trading strategies in the mean-CVaR optimization, which minimizes the tail risk instead 

of the variance. Table 9 presents the results of mean-CVaR optimization at 95% confidence level. We 

replace the Sharpe ratio with the ratio of return over CVaR because the objective of this optimization is 

to minimize portfolio CVaR instead of variance. The other risk-return measures remain the same.  

**Insert Table 9** 

The above results indicate that the portfolios from the DMA model still significantly outperform 

1/N strategy and portfolios from the SC-SVR and RW. Specifically, without short-selling the average 

Return/CVaR ratio, Sortino ratio and CDB (2.859, 2.470 and 0.838 respectively) DMA portfolios are 

significantly higher than the average of portfolios from the second best model (SC-SVR) (2.204, 1.918 

and 0.788 respectively). The average maximum drawdown of DMA portfolios is 0.9% lower than the 

average of SC-SVR portfolios. Similar to the findings in table 8, the portfolios from the GAS model still 

yields evidently better performance than the ones using DCC and ADCC model across all metrics, 

indicating that taking into account asymmetric dependence in the optimization can lead to substantial 

risk reduction. For example, GAS models, when compared with the DCC, achieve on average around 

0.7% and 0.06 higher annualized returns and return/CVaR ratio respectively. Finally, we continue to 

observe that the portfolios with short-selling provide better performance than the ones without short-

selling constraints in general. This means that short-selling can offer additional diversification benefits 

to the CVaR optimization. 

Finally, we further implement the mean-CVaR portfolios at 99% confidence level as a robustness 

test. These results are shown below. 

**Insert Table 10** 

The trend of our findings remains the same. The last table confirms the empirical evidence 

provided by the previous tables and validates the fact that the performances reported in this study are 

not very sensitive to the change of risk tolerance. 

 

7. Conclusions  

 

This study is attempting to provide further insight to the challenging task of factor investing. 

More specifically, examine the predictability of the factor returns and explore whether active investment 

is possible to be achieved by optimally allocating them in portfolios. In order to do this, we examine the 

Fama and French (2015) dataset over the period of 1965-2017 on a monthly basis. The out-of-sample 

estimations are over the period of 2000-2017.  We propose a novel three-stage optimization approach. 
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In the first step we obtain individual forecasts for each of the five factors based on a large pool of linear 

and non-linear models commonly used in the forecasting literature. Then, once these forecasts are 

obtained, they are combined with the Bayesian DMA in order to obtain superior forecast combinations. 

These are then benchmarked with RW, the best performing individual predictor, SVR and SC-SVR.  

The final step of the approach is to proceed with the portfolio allocation for each factor. In order 

to capture the characteristics of correlation among factors, a DAC model is applied combining the 

properties of the GAS model and skewed t copula. For comparison purposes, the traditional DCC and 

ADCC techniques are utilized.  The final optimal allocations are obtained through the mean-CVaR 

optimization, while for comparison purposes traditional M-V results are presented. From the mean-

CVaR and M-V efficient frontiers, the relevant tangency portfolios are extracted and evaluated through 

several performance metrics. Except from the traditional performance metrics of annualized return, 

Sharpe and Sortino ratios, Maximum Drawdown (MDD), we look into the return over CVaR ratio and 

the CDB of Christoffersen et al. (2012).  

In terms of the results, combining Bayesian forecasts with the proposed skewed t copula-based 

GAS model leads to the best allocations. The factor-based portfolios obtained from the more elaborate 

forecast combination techniques, SC-SVR and DMA, offer significant improvements over those of RW 

and the equal weighted strategy 1/N strategy in terms of portfolio risk reduction. The dynamic GAS-

skewed t copula driven optimization boosts the portfolio performance compared to the DCC and ADCC 

counter parts. Finally, the portfolios that allow short-selling offer higher diversification benefits than 

long-only ones and this is particularly verified by the CDB. In general, this study’s message is that the 

accuracy of the first moments of returns is very beneficial in portfolio optimization when we 

simultaneously account for the asymmetric dependence among them. Therefore, investors and 

practitioners interested in portfolios mimicking factors’ performance should focus seriously on both 

aspects if they want to maximize their utility. Finally, knowing that VaR represents a worst-case loss 

associated with a probability and a time horizon, investors worried about the downside tail of risk should 

apply CVaR minimization techniques, because CVaR quantifies the expected losses that occur beyond 

that VaR breakpoint. 

Overall, the results of this paper support the notion that factor investing can be a robust asset 

allocation approach for institutional investors, especially when they want to mitigate exposure to risk 

either from market turmoil or managers’ biases. With factor mimicking portfolios, investors are also 

offered the opportunity to create tradable funds that are engineered in a way that potential factor 

sensitivities of their asset are captured. Thus, the final message that this work conveys is that factor-

based portfolios show another solid path to diversification benefits.  
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Appendix  

A. Linear Individual Predictors 

 

Table A.1 provides short descriptions of the linear individual predictors. 

**Insert Table A.1** 

B. Univariate Modelling 

 

The results of the ACF test indicate that the HML, RMW and CMA factors exhibit some degree 

of autocorrelation and all factors exhibit significant heteroscedasticity. To compensate for 

autocorrelation, the conditional mean is modelled with a simple AR model: 
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where 𝜀𝑖,𝑡 = 𝜎𝑖,𝑡𝑧𝑖,𝑡 . The optimal order is selected using Bayesian Information Criterion (BIC). To 

capture the heteroscedasticity and asymmetric volatility clustering, the conditional variance of factor 

returns are modelled using the GJR-GARCH dynamics: 
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The indicator function 𝐼[𝜀𝑖,𝑡−𝑘 < 0]  equals 1 if 𝜀𝑖,𝑡−𝑘 < 0 , and 0 otherwise. It allows us to 

capture the so-called “leverage effect”, which implies a negative shock has a stronger impact on the 
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conditional variance than a positive one. Using these models, we obtain the estimated standardized 

residuals as: 
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The descriptive statistics indicate that all factors exhibit significant skewness and the hypothesis 

of normality is rejected by the Jarque–Bera test. In order to capture the skewness, we use the univariate 

skewed t distribution of Hansen (1994) to model the standardized residuals of each factor. Assuming 

( ), ~ ,i t skt i iz F   , then  
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where 𝑢𝑖,𝑡 is the probability integral transform of 𝑧𝑖,𝑡, 𝜆𝑖 is the skewness parameter and 𝜂𝑖 is the degrees 

of freedom. 

 

C. Tail Dependence Coefficients 

 

The multivariate fat tails between the factor returns can be measured by the tail dependence 

coefficients (Christoffersen et al., 2013). The lower tail dependence (LTD) and upper tail dependence 

(UTD) coefficients are defined as: 
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If the copula C has an analytic solution, the coefficients can be easily calculated. The copula C 

has lower tail dependence if ( LTD 0,1  and no lower tail dependence if LTD = 0. A similar conclusion 

holds for the upper tail dependence coefficients. In our application, the t copula is applied to compute 

tail dependence coefficients. 

 

D. Modeling Factor Dependence: A Skewed t Copula Approach 

 

This study employs the skewed t copula proposed by Demarta and McNeil (2005). The cumulative 

distribution function of this skewed t copula defined from the skewed t distribution is given by: 

        ( ) ( ) ( )( )1 1
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where λ is the parameter of skewness, υ is the parameter of degree of freedom, Fskt is the cumulative 

distribution function of the multivariate skewed t density with correlation matrix Σ, and 𝐹𝑖
−1  is the 

inverse cumulative distribution function of the univariate skewed t distribution.  

From Patton (2006), if the joint distribution function Fskt is n-times differentiable, the following equation 

is obtained by taking the nth cross-partial derivative: 
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The equation suggests that the joint density 𝐟𝑠𝑘𝑡 is equal to the product of the marginal densities 

and the skewed t copula density 𝐜𝑠𝑘𝑡. Thus, the joint log-likelihood is equal to the sum of univariate log-

likelihood and the skewed t copula log-likelihood: 
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More details on the implementation of the skewed t copula can be found in Demarta and McNeil 

(2005) and Christoffersen et al., (2012). Our choice to use the skewed t copula is supported by the 

literature (See Christoffersen et al., 2012, 2013; Patton 2013; and Lucas et al., 2014, among others). 

 

E. Conditional Diversification Benefit (CDB) 

 

The CDB is a dynamic measure of portfolio diversification benefits proposed by Christoffersen 

et al. (2012). One advantage of CDB is that it takes into account higher order moments and nonlinear 

dependence of assets. This measure is based on the CVaR: 
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where ( )1

,i tF q−
 is the inverse cumulative distribution function of factor i at time t, and q is a probability 

normally set to 5% or 1%12.  The upper bound on the portfolio CVaR can be defined as the case of no 

diversification benefits: 
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where ,i tw  denotes the portfolio weight on factor i at time t. The lower bound of portfolio CVaR is 

defined as the extreme case that the portfolio never loses more than its (1-q) th  VaR: 

        ( )1

,CVaR q

t p tF q−= −                                        (E.3) 

                                                             
12 In our study, we use 1% (namely 99% confidence level) to compute CDB and also compute the 5% CDB as the robustness 

check. The results of these CDBs are qualitatively identical. 
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Then, the diversification benefit is measured by: 
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where the ( )CVaR q

t tw  represents the CVaR of portfolio at time t. Higher CDB indicates higher level of 

diversification benefits for the portfolio.  

 

Tables 

 

Table 1: Descriptive statistics and correlation matrices 

Panel A: Descriptive Statistics 

Ticker MKT SMB HML RMW CMA 

Mean 0.399  0.363  0.321  0.447  0.341  

Median 0.920  0.265  -0.075  0.375  0.020  

Standard deviation 4.378  3.131  3.206  3.124  2.097  

Skewness -0.591  0.535  0.236  -0.403  1.006  

Kurtosis 3.934  9.558  5.660  11.697  5.912  

Jarque-Bera (p value) 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

ADF (p value) 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

Panel B: Linear Correlation Matrix 

Ticker MKT SMB HML RMW CMA 

MKT 1     

SMB 0.253  1    

HML -0.057  -0.071  1   

RMW -0.505  -0.525  0.424  1  

CMA -0.238  0.039  0.616  0.278  1 

Panel C: Rank Correlation Matrix 

Ticker MKT SMB HML RMW CMA 

MKT 1     

SMB 0.309  1    

HML -0.018  0.103  1   

RMW -0.580  -0.385  0.137  1  

CMA -0.089  0.080  0.519  0.088  1 

Note: Panel A presents the descriptive statistics per factor. *** denotes that the 
null hypothesis is rejected at 1% significance level. Panel B and C presents the 
linear and rank correlations among all factors. 

 

 

Table 2: The total dataset 

 

 

 

 
  

Note: The in-sample period is the sum of the training and test datasets. 

 

 

Table 3: Best predictors’ set 
MKT SMB HML RMW CMA 

AR(5), AR(6), SMA(6), 

SMA(8), EMA(2)  MLP, 

RNN, PSN, ARBF-PSO 

AR(1) AR(6) SMA(4), 

ARMA(1, 6), MLP, 

HONN, GP 

SMA(3), ARMA(1, 2), 

RNN, HONN, PSN, 

ARBF-PSO 

MLP, RNN, HONN, PSN, 

ARBF-PSO, k-NN, GEP, 

GP 

ARMA(1,4), ARMA(2, 2), 

PSN, GP, GEP, ARBF-

PSO 

Note: The table presents the final input set per factor used for each forecast combination technique. The model in bold is the best 
predictor among all the individual predictors. For example, in the case of HML the forecasts of SMA(3), ARMA(1, 2), RNN, HONN, 
PSN and ARBF-PSO are used as inputs to the forecast combination methods, while the performance of ARBF-PSO acts as a 
benchmark to the forecast combination results. 

Datasets Start Date End Date Trading Days 
Total Dataset 01/01/1965 01/08/2017 632 

In-sample Dataset 01/01/1965 01/12/1999 420 

Training Dataset 01/01/1965 01/12/1983 228 

Test Dataset 01/01/1984 01/12/1999 192 

Out-of-sample Dataset 01/01/2000 01/08/2017 212 
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Table 4: Out-of-sample statistical performance 

 

 

 
 
 
 
 
 
 
 
 

 

Note: The third and fourth column refer to individual predictors/benchmarks. The forth 
column refers to the statistical performance of the best predictor as denoted in bold in Table 
3. For example, in the case of MKT, the best predictor is PSN. The last three columns 
present the statistical accuracy of the forecast combination models that use as inputs the 
individual forecasts of the models presented in Table 3. 

 

Table 5: PT and DM statistics. 

 

 

 

 

 

 

Note: The values in the parentheses are the calculated PT and DM statistics. *** denotes that the 
null hypothesis is rejected at 1% significance level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Factor Statistic RW Best SVR SC-SVR DMA 

 

MKT 

MAE 0.0063 0.0056 0.0055 0.0052 0.0049 

MAPE 169.45% 167.44% 164.52% 141.21% 130.31% 

RMSE 0.0079 0.0078 0.0076 0.0075 0.0072 

THEIL-U 0.9129 0.9125 0.8286 0.7598 0.6995 

 

SMB 

 

MAE 0.0075  0.0054 0.0055 0.0051 0.0048 

MAPE 184.32% 161.07% 155.88% 128.81% 118.29% 

RMSE 0.0073 0.0073 0.0072 0.0069 0.0065 

THEIL-U 0.9043 0.9256 0.7635 0.7086 0.6744 

 

HML 

 

MAE  0.0075 0.0073 0.0068 0.0065 0.0055 

MAPE 134.54% 133.52% 128.77% 119.22% 117.56% 

RMSE 0.0092 0.0088 0.0088 0.0083 0.0065 

THEIL-U  0.9102 0.9077 0.8322 0.7980 0.7884 

 

RMW 

MAE 0.0065 0.058 0.0053 0.0050 0.0049 

MAPE 170.45% 144.03% 130.99% 121.86% 118.45% 

RMSE 0.0092 0.0084 0.0071 0.0065 0.0064 

THEIL-U 0.8440 0.8023 0.7348 0.7049 0.6448 

 

CMA 

 

MAE 0.0080 0.0074 0.0067 0.0062 0.0058 

MAPE 132.65% 130.74% 125.04% 123.13% 120.45% 

RMSE 0.0090 0.0085 0.0087 0.0080 0.0076 

THEIL-U 0.8689 0.8457 0.8279 0.8110 0.7659 

Statistic Factor RW Best SVR SC-SVR DMA 

 

PT 

MKT (5.18)*** (7.02)*** (8.34)*** (8.55)*** (8.78)*** 

SMB (6.03)*** (6.56)*** (7.05)*** (7.78)*** (8.54)*** 

HML (6.56)*** (6.93)*** (7.44)*** (7.93)*** (7.98)*** 

RMW (7.18)*** (7.25)*** (7.78)*** (8.46)*** (8.82)*** 

CMA (7.09)*** (7.95)*** (8.05)*** (8.66)*** (9.15)*** 

 

DM 

 

MKT (−9.55)*** (−8.16)*** (−7.80)*** (−5.55)*** - 

SMB (−9.11)*** (−9.02)*** (−8.45)*** (−6.72)*** - 

HML (−10.06)*** (−9.88)*** (−9.18)*** (−7.32)*** - 

RMW (−10.18)*** (−9.75)*** (−9.48)*** (−8.40)*** - 

CMA (−8.06)*** (−8.02)*** (−7.82)*** (−4.94)*** - 



25 

 

Table 6: s-SPA and MCS tests 

 

 

 

 

 

 

 

Note: The table reports the p-values for the s-SPA and MCS tests in terms of the MAE criterion. 
Low s-SPA values indicate that the benchmark is inferior to at least one of the other models, while 
low MCS values indicate that the model is not likely to belong to the set of the best models. * denotes 
that the model under study belongs to the set of best models at the 95% confidence level. 
 

 

Table 7: Estimates of Tail Dependence and Asymmetric Test 

Factor 

Pairs UTD LTD UTD-LTD p-value 

MKT-SMB 0.007  0.048  -0.041  0.000*** 

MKT-HML 0.003  0.001  0.002  0.701  

MKT-RMW 0.046  0.051  -0.005  0.009*** 

MKT-CMA 0.035  0.024  0.010  0.036** 

SMB-HML 0.013  0.027  -0.014  0.008*** 

SMB-RMW 0.002  0.004  -0.002  0.530  

SMB-CMA 0.011  0.005  0.005  0.315  

HML-RMW 0.075  0.057  0.018  0.005*** 

HML-CMA 0.103  0.123  -0.020  0.009*** 

RMW-CMA 0.069  0.017  0.051  0.007*** 

Note: This table reports the estimates of tail dependence coefficients and 
the test of asymmetric dependence. The column “UTD” and “LTD” report 
the estimates of upper tail dependence and lower tail dependence implied 
by the t copula, respectively. We follow the approach of Patton (2013) to 
test whether the tail dependence coefficients is equal, namely 

0 :   vs.  :L U L U

aH H   =   . The last column shows the corresponding p-

values for each factor pairs. *** denotes that the null hypothesis is 
rejected at 1% significance level. 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test Factor RW Best SVR SC-SVR DMA 

 

s-SPA 

MKT 0.0000 0.0000 0.0001 0.0004 0.7586 

SMB 0.0000 0.0000 0.0003 0.0011 0.8227 

HML 0.0000 0.0000 0.0000 0.0001 0.6153 

RMW 0.0000 0.0000 0.0008 0.0015 0.5940 

CMA 0.0000 0.0000 0.0005 0.0005 0.6854 

 

MCS 

 

MKT 0.0000 0.0000 0.0009 0.0013 1.0000* 

SMB 0.0000 0.0000 0.0002 0.0016 1.0000* 

HML 0.0000 0.0000 0.0001 0.0023 1.0000* 

RMW 0.0000 0.0000 0.0012 0.0037 1.0000* 

CMA 0.0000 0.0000 0.0005 0.0008 1.0000* 
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Table 8. Performances of different trading strategies (Mean-Variance) 
Panel A: Factors and 1/N portfolio 

  Annualized return (%) Sharpe ratio Sortino ratio MDD (%) CDB 

MKT 4.789  0.316  0.582  25.450  - 

SMB 4.352  0.401  0.529  33.120  - 

HML 3.848  0.347  0.468  24.000  - 

RMW 5.369  0.496  0.653  23.010  - 

CMA 4.091  0.563  0.497  15.050  - 

1/N 4.490  0.918  1.410  9.346  0.825  

Panel B: Mean–Variance optimization without short-selling 
  Annualized return (%) Sharpe ratio Sortino ratio MDD (%) CDB 

RW-DCC 3.631 0.583  0.944  14.441  0.733  

RW-ADCC 3.848 0.598  0.949  14.440  0.761  

RW-GAS 4.675 0.615  0.951  14.671  0.758  

Average 4.051 0.599 0.948 14.517 0.751 

SC-SVR-DCC 4.744 0.899  1.747  13.416  0.751  

SC-SVR-ADCC 4.871 0.945  1.746  13.416  0.773  

SC-SVR-GAS 5.519 0.967  1.759  13.346  0.777  

Average 5.045 0.937 1.751 13.393 0.767 

DMA-DCC 6.810 1.127  2.099  14.690  0.798  

DMA-ADCC 6.975 1.162  2.099  12.928  0.796  

DMA-GAS 8.012 1.298  2.326  12.032  0.801  

Average 7.266 1.196 2.175 13.217 0.798 

Total Average  5.454 0.910 1.624 13.709 0.772 

DCC Average 5.062 0.870 1.597 14.182 0.761 

ADCC Average 5.231 0.902 1.598 13.595 0.777 

GAS Average 6.069 0.960 1.679 13.350 0.779 

Panel C: Mean–Variance optimization with short-selling (130/30 portfolios) 

  Annualized return (%) Sharpe ratio Sortino ratio MDD (%) CDB 

RW-DCC-S 3.895  0.618 0.983 13.267 0.775 

RW-ADCC-S 4.026  0.652 1.031 13.267 0.782 

RW-GAS-S 5.849  0.701 1.153 13.267 0.780 

Average 4.590 0.657 1.056 13.267 0.779 

SC-SVR-DCC-S 5.845  0.908 1.763 12.424 0.805 

SC-SVR-ADCC-S 6.088  0.947 1.830 12.354 0.806 

SC-SVR-GAS-S 7.677  0.971 1.883 12.549 0.811 

Average 6.537 0.942 1.825 12.442 0.807 

DMA-DCC-S 8.529  1.289 2.636 9.724 0.871 

DMA-ADCC-S 8.727  1.290 2.654 9.724 0.872 

DMA-GAS-S 9.309  1.361 2.800 9.634 0.887 

Average 8.855 1.313 2.697 9.694 0.877 

Total Average - S 6.661 0.971 1.859 11.801 0.821 

DCC-S Average 6.090 0.938 1.794 11.805 0.817 

ADCC-S Average 6.280 0.963 1.838 11.782 0.820 

GAS-S Average 7.612 1.011 1.945 11.817 0.826 

Note: The table reports the out-of-sample performances of the mean-variance optimization over the period 
January 2000 to August 2017 (212 monthly observations). Panel A reports performances of the factors 

and the 1/N portfolio (equally weighted buy-and-hold portfolio). Panel B reports performances of different 
mean-variance portfolios without short-selling. All the portfolios are monthly rebalanced tangency 
portfolios obtained by the different mean-variance optimization based on various model combinations. For 
example, DMA-DCC refers to the performance of the tangency portfolio of the efficient frontier of the 
factors, where the expected returns are obtained through DMA forecasts, while the variance-covariance 
matrix is predicted by DCC. Panel C reports performances of different mean-variance portfolios with 
short-selling (130/30 portfolios). ‘-S’ denotes optimizations allowing short-selling.  
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Table 9. Performances of different trading strategies (Mean-95% CVaR) 
Panel A: Factors and 1/N portfolio 

  Annualized return (%) Return/CVaR Sortino ratio MDD (%) CDB 

MKT 4.789  0.343  0.582  25.450  - 

SMB 4.352  0.413  0.529  33.120  - 

HML 3.848  0.366  0.468  24.000  - 

RMW 5.369  0.381  0.653  23.010  - 

CMA 4.091  0.735  0.497  15.050  - 

1/N 4.490  1.119  1.410  9.346  0.825  

Panel B: Mean–CVaR optimization without short-selling 

  Annualized return (%) Return/CVaR Sortino ratio MDD (%) CDB 

RW-DCC-SKT 3.913  0.759  0.652  14.990  0.739  

RW-ADCC-SKT 4.780  0.806  0.696  14.990  0.741  

RW-GAS-SKT 4.540  0.825  0.704  14.971  0.740  

Average 4.411 0.797 0.684 14.984 0.740 

SC-SVR-DCC-SKT 6.197  2.171  1.885  11.265  0.777  

SC-SVR-ADCC-SKT 6.314  2.209  1.916  11.266  0.777  

SC-SVR-GAS-SKT 6.624  2.231  1.952  11.330  0.779  

Average 6.378 2.204 1.918 11.287 0.778 

DMA-DCC-SKT 7.003  2.827  2.453  10.630  0.834  

DMA-ADCC-SKT 7.061  2.862  2.477  10.630  0.834  

DMA-GAS-SKT 8.035  2.887  2.480  9.894  0.846  

Average 7.366 2.859 2.470 10.385 0.838 

Total Average  6.052 1.953 1.691 12.218 0.785 

DCC Average 5.704 1.919 1.663 12.295 0.783 

ADCC Average 6.052 1.959 1.696 12.295 0.784 

GAS Average 6.400 1.981 1.712 12.065 0.788 

Panel C: Mean–CVaR optimization with short-selling (130/30 portfolios) 
  Annualized return (%) Sharpe ratio Sortino ratio MDD (%) CDB 

RW-DCC-SKT-S 4.041  0.795  0.661  14.911  0.766  

RW-ADCC-SKT-S 4.185  0.811  0.725  14.911  0.768  

RW-GAS-SKT-S 4.525  1.191  1.066  15.036  0.772  

Average 4.250 0.932 0.817 14.953 0.769 

SC-SVR-DCC-SKT-S 7.480  2.190  1.918  11.734  0.806  

SC-SVR-ADCC-SKT-S 7.537  2.263  1.998  11.796  0.808  

SC-SVR-GAS-SKT-S 7.687  2.314  2.047  11.022  0.813  

Average 7.568 2.256 1.988 11.517 0.809 

DMA-DCC-SKT-S 9.321  2.904  2.606  9.544  0.855  

DMA-ADCC-SKT-S 9.431  2.924  2.614  9.544  0.856  

DMA-GAS-SKT-S 9.735  3.043  2.682  9.110  0.870  

Average 9.496 2.957 2.634 9.399 0.860 

Total Average - S 7.105 2.048 1.813 11.956 0.813 

DCC-S Average 6.947 1.963 1.728 12.063 0.809 

ADCC-S Average 7.051 1.999 1.779 12.084 0.811 

GAS-S Average 7.316 2.183 1.932 11.723 0.818 

Note: The table reports the out-of-sample performances of the mean-95%CVaR optimization over the period 
January 2000 to August 2017 (212 monthly observations). Panel A reports performances of the factors and the 

1/N portfolio (equally weighted buy-and-hold portfolio). Panel B reports performances of different mean-CVaR 
portfolios without short-selling. All the portfolios are monthly rebalanced tangency portfolios obtained by the 
different mean-CVaR optimization based on various model combinations. For example, DMA-DCC refers to the 
performance of the tangency portfolio of the efficient frontier of the factors, where the expected returns are 
obtained through DMA forecasts, while the variance-covariance matrix is predicted by DCC. Panel C reports 
performances of different mean-CVaR portfolios with short-selling (130/30 portfolios). ‘SKT’ represents that 
the 95% CVaR is predicted using a Monte-Carlo simulation with the skewed t copulas to allow for asymmetric 
tail dependence ‘-S’ denotes optimizations allowing short-selling. 
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Table 10. Performances of different trading strategies (Mean-99% CVaR) 
Panel A: Factors and 1/N portfolio 

  Annualized return (%) Return/CVaR Sortino ratio MDD (%) CDB 

MKT 4.789  0.343  0.582  25.450  - 

SMB 4.352  0.413  0.529  33.120  - 

HML 3.848  0.366  0.468  24.000  - 

RMW 5.369  0.381  0.653  23.010  - 

CMA 4.091  0.735  0.497  15.050  - 

1/N 4.490  1.119  1.410  9.346  0.825  

Panel B: Mean–CVaR optimization without short-selling 

  Annualized return (%) Return/CVaR Sortino ratio MDD (%) CDB 

RW-DCC-SKT 4.430 1.035 0.854 14.158 0.753 

RW-ADCC-SKT 4.493 1.046 0.858 14.158 0.756 

RW-GAS-SKT 4.627 1.120 0.869 14.139 0.755 

Average 4.517 1.067 0.860 14.152 0.755 

SC-SVR-DCC-SKT 7.719 1.983 2.137 10.659 0.769 

SC-SVR-ADCC-SKT 7.727 1.988 2.151 10.659 0.771 

SC-SVR-GAS-SKT 7.708 2.041 2.277 10.634 0.777 

Average 7.718 2.004 2.188 10.651 0.772 

DMA-DCC-SKT 8.044 2.156 2.990 9.350 0.861 

DMA-ADCC-SKT 8.015 2.160 2.994 9.285 0.872 

DMA-GAS-SKT 8.836 2.184 3.257 9.201 0.886 

Average 8.298 2.167 3.080 9.279 0.873 

Total Average  6.844 1.746 2.043 11.360 0.800 

DCC Average 6.731 1.725 1.994 11.389 0.794 

ADCC Average 6.745 1.731 2.001 11.367 0.800 

GAS Average 7.057 1.782 2.134 11.325 0.806 

Panel C: Mean–CVaR optimization with short-selling (130/30 portfolios) 
  Annualized return (%) Sharpe ratio Sortino ratio MDD (%) CDB 

RW-DCC-SKT-S 4.920 1.174 1.030 14.034 0.773 

RW-ADCC-SKT-S 4.924 1.197 1.139 14.034 0.775 

RW-GAS-SKT-S 5.238 1.211 1.158 14.152 0.780 

Average 5.027 1.194 1.109 14.073 0.776 

SC-SVR-DCC-SKT-S 7.722 1.985 2.680 10.179 0.825 

SC-SVR-ADCC-SKT-S 7.727 1.985 2.688 10.179 0.829 

SC-SVR-GAS-SKT-S 8.298 2.060 2.695 10.109 0.829 

Average 7.916 2.010 2.688 10.156 0.828 

DMA-DCC-SKT-S 9.089 2.275 2.641 9.435 0.866 

DMA-ADCC-SKT-S 9.122 2.349 3.067 9.435 0.878 

DMA-GAS-SKT-S 9.773 2.366 3.172 9.352 0.887 

Average 9.328 2.330 2.960 9.407 0.877 

Total Average - S 7.424 1.845 2.252 11.212 0.827 

DCC-S Average 7.244 1.811 2.117 11.216 0.821 

ADCC-S Average 7.258 1.844 2.298 11.216 0.827 

GAS-S Average 7.770 1.879 2.342 11.204 0.832 

Note: The table reports the out-of-sample performances of the mean-99%CVaR optimization over the period 
January 2000 to August 2017 (212 monthly observations). Panel A reports performances of the factors and the 

1/N portfolio (equally weighted buy-and-hold portfolio). Panel B reports performances of different mean-CVaR 
portfolios without short-selling. All the portfolios are monthly rebalanced tangency portfolios obtained by the 
different mean-CVaR optimization based on various model combinations. For example, DMA-DCC refers to the 
performance of the tangency portfolio of the efficient frontier of the factors, where the expected returns are 
obtained through DMA forecasts, while the variance-covariance matrix is predicted by DCC. Panel C reports 
performances of different mean-CVaR portfolios with short-selling (130/30 portfolios). ‘SKT’ represents that 
the 99% CVaR is predicted using a Monte-Carlo simulation with the skewed t copulas to allow for asymmetric 
tail dependence ‘-S’ denotes optimizations allowing short-selling. 
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Table A.1: The specification of the linear models 

LINEAR 

MODELS 
DESCRIPTION 
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210 

Note: The total number of individual inputs calculated is 290. In all the specifications above, 
t

R is the factor return at time t. 

 

Figures 

Figure 1: Cumulative Returns of Fama-French’s Factors 
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