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Abstract 

Electric drive vehicles (plug-in electric vehicle or hydrogen fuel cell vehicles) have been 

promoted by governments to foster a more sustainable transportation future. Wider adoption of 

these vehicles, however, depends on the availability of a convenient and reliable 

refueling/recharging infrastructure. This paper introduces a path-based, multi-scale, scenario-

planning modeling framework for locating a system of alternative-fuel stations. The approach 

builds on 1) the Flow Refueling Location Model (FRLM), which assumes that drivers stop along 

their origin-destination routes to refuel, and checks explicitly whether round trips can be 

completed without running out of fuel, and 2) the Freeway Traffic Capture Method (FTCM), 

which assesses the degree to which drivers can conveniently reach sites on the local street 

network near freeway intersections. This paper extends the FTCM to handle cases involving 

clusters of nearby freeway intersections, which is a limitation of its previous specification. Then, 

the cluster-based FTCM (CFTCM) is integrated with the FRLM and the DFRLM (FRLM with 

Deviations) to better conduct detailed geographic optimization of this multi-scale location 

planning problem. The main contribution of this research is the introduction of a framework that 

combines multi-scale planning methods to more effectively inform the early development stage 

of hydrogen refueling infrastructure planning. The proposed multi-scale modeling framework is 

applied to the Hartford, Connecticut region, which is one of the next areas targeted for fuel-cell 

vehicle (FCV) market and infrastructure expansion in the United States. This method is 

generalizable to other regions or other types of fast-fueling alternative fuel vehicles.  

Keywords: alternative fuel, infrastructure, hydrogen, path, flow, Connecticut 
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1. Introduction  

The transportation sector became the largest source of CO2 emissions in the United States in 

February 2016, surpassing electric power generation (US Department of Energy, 2016). Of the 

five energy-use sectors (including residential, commercial, and industrial), transportation is also 

the only one for which CO2 emissions continue to rise. Not coincidentally, transportation is the 

sector that relies most heavily on a single form of energy, with petroleum accounting for over 

90% of total consumption (US EIA , 2018). Unlike the other four sectors where energy-using 

equipment is stationary, transportation vehicles are mobile and depend on a widespread refueling 

infrastructure. For most alternative-fuel vehicles (AFVs) in most regions, the refueling 

infrastructure is relatively sparse or even non-existent. Early stage AFV refueling infrastructure 

development is essential and necessary to encourage individual car buyers and freight companies 

to consider switching from vehicles that operate with liquid petroleum fuels to AFVs. In order to 

best encourage adoption broadly across regions, initial stations should be located where they can 

provide the greatest benefit.  

In the United States, California led the way as the first commercial market for fuel-cell vehicles 

(FCVs) and hydrogen refueling infrastructure. For the initial rollout in 2015, California funded 

six stations and drivers bought or leased 200 FCVs, rising to 25 stations and 925 FCVs in 2016, 

31 stations and 2,473 FCVs in 2017, and 39 station and 6,558 vehicles as of March 1, 2019 

(California Air Resources Board, 2018). The New York-Boston corridor is one of the regions 

targeted for the next rollout of FCVs and stations, and Connecticut has an active hydrogen 

coalition (“Connecticut Hydrogen-Fuel Cell Coalition,” n.d.). As in California, an initial network 

of hydrogen fueling stations is needed before introducing the first FCVs for the consumer market 

in Connecticut. 
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Planning an effective network of alternative-fuel stations is a multi-scale location problem. 

Alternative-fuel vehicle drivers have diverse travel needs, and the ability to refuel on a variety of 

trips across a region is an essential component of a convenient refueling network.  . Once an 

effective refueling network is built, stations can be used for neighborhood refueling, urban trips, 

and long-distance travel in the region. In addition, drivers use a hierarchy of roads from local 

streets to arterials to limited-access highways (freeways) to complete trips across the region, and 

generally want to reach refueling stations with a minimum of wasted travel time. Thus, it is 

important to build the refueling station at locations that are easy to reach on the local street 

network. This paper proposes a multi-scale method for planning a starter network of stations to 

serve local, metropolitan, and inter-city trips, considering travel and station access on all classes 

of roads. The method is based on the flow-refueling location model (FRLM), in which drivers 

make trips from origins to destinations and stop along their shortest paths to refuel, considering 

the driving range of vehicles in determining if the stations can cover the set of trips in the 

network (Kuby and Lim, 2005). The method proposed here for multi-scale planning integrates 

the FRLM with an extension that allows deviations from shortest paths (Kim and Kuby, 2013, 

2012). The typical FRLM and DFRLM modeling approach works well for recommending 

generalized station locations on a simplified regional road network, but does not check whether 

suitably accessible nearby sites exist where stations could be built. To address this, we 

incorporate and extend the Freeway Traffic Capture Method (FTCM), which measures how 

conveniently drivers can reach street intersections surrounding freeway intersections for all 

possible travel routes passing through them, to identify accessible sites on the local street 

networks (Kelley, 2017). Using these integrated methods, we recommend initial sets of five and 
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ten stations for the greater Hartford, Connecticut region. The method is generalizable to other 

regions and other fast-refueling AFVs. 

2. Literature Review 

Many different methods have been proposed for planning a system of hydrogen or other alt-fuel 

stations. One common way to categorize location models is by the spatial units representing the 

demand for fuel. Classic location models such as the p-median (Revelle and Swain, 1970) and 

max-cover models (Church and ReVelle, 1974) use zonal demand aggregated to centroids. Points 

representing areal units such as cities, towns, neighborhoods, or census tracts are weighted 

according to their populations, number of vehicles, or likelihood to purchase FCVs. In median-

type station location models, these weighted demands are then assigned to their closest station 

(He et al., 2016; Nicholas et al., 2004), while in covering models, stations must be “close 

enough” in terms of a critical distance or travel time threshold for being able to serve a demand 

point (Frade et al., 2011; Stephens-Romero et al., 2010).  

Another group of models locates stations to serve passing traffic, not proximity to homes or 

companies. Higher amounts of traffic volume, measured in terms of average annual daily traffic 

(AADT) or vehicle-miles traveled (VMT), signals more demand for fueling (Boostani et al., 

2010; Brey et al., 2016; Goodchild and Noronha, 1987; Lin et al., 2008). While it makes sense to 

locate stations on busy roads or at the intersection of busy roads, several kinds of demand-

counting errors can arise because drivers link together a sequence of arcs into a route. Thus, the 

same vehicle may be in the traffic count on adjoining arcs but would be unlikely to refuel on 

both arcs. Likewise, an arc-based model will count all of an arc’s demand as covered by a nearby 

station even if some of the traffic on the arc is making a long-distance trip that cannot be 

completed without other stations being located.  
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Path-based models were developed to handle the multi-arc nature of road travel. Also known as 

flow-based or trip-based models, they use origin-destination routes as the fundamental units of 

demand. An origin-destination flow matrix defines the demand weights by the volume of 

passenger vehicle trips or freight tonnage. In the original flow-capturing location model (FCLM) 

by Hodgson (1990) and the flow-intercepting (FILM) model by Berman, Larson, and Fouska 

(1992), weighted demands are counted only once. Kuby and Lim (2005) extended the 

FCLM/FILM to the case of refueling stations by introducing an explicit vehicle driving range 

and considering that multiple stations may be needed to complete a long-distance route. In the 

basic flow-refueling location model (FRLM), only the shortest or least-travel-time path is 

considered, and an O-D flow is not considered covered unless there are stations along the path 

that enable a driver to complete the round trip without running out of fuel. Kim and Kuby (2012, 

2013) then introduced the deviation flow-refueling location model (DFRLM) to allow drivers to 

deviate off the shortest path to reach a refueling station. Numerous studies have developed faster 

solution methods for the FRLM (Capar et al., 2013; MirHassani and Ebrazi, 2012; Yıldız et al., 

2016). Other researchers applied and extended the FRLM and DFRLM by weighting flow 

volumes by trip length which yields VMT or tkm measures (Lines et al., 2007) and by 

considering station capacities (Upchurch et al., 2009), multiple driving ranges (de Vries and 

Duijzer, 2017), congestion (Fan et al., 2017), trucking (Fan et al., 2017), and regional equity 

(Hong and Kuby, 2016; Kuby et al., 2016).  

Choosing the appropriate model for optimizing a set of stations depends on numerous factors: the 

type of vehicles, the geographic scale of the region, the refueling or recharging speed, the driving 

range, whether home refueling or recharging is commonplace, and the behavior of drivers. There 

is behavioral and survey evidence supporting the assumptions underlying node-based approaches 
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(Sperling and Kitamura, 1986), though often these are based on surveys of gasoline drivers who 

have hundreds or thousands of stations to choose from in large cities (Kuby, 2019). Kuby, 

Kelley, and Schoenemann (2013) surveyed drivers in Southern California who were refueling at 

CNG stations, comparing their driving and refueling trips to drivers surveyed at nearby gasoline 

stations. They found that the CNG drivers refueled at higher tank levels, at the same stations 

more frequently, farther from home, more frequently in the middle of trips, and more on work-

based trips, compared with gasoline drivers. Kelley and Kuby (2013) found that, when no station 

exists that is both closest to home and most on the way, CNG drivers favored the station with the 

least deviation off their shortest path by a 10:1 margin over the station closest to home. This 

suggests that early AFV adopters adapt to the greatly reduced station availability by changing 

their pre-AFV refueling habits. 

There are limits to the recommendations provided by these modeling approaches, though. Most 

station location models use a relatively coarse representation of a region's road network to locate 

a limited number refueling stations across a city or region (Jochem et al., 2016; Sathaye and 

Kelley, 2013; Wang and Lin, 2009). Roads included in these networks are typically highways, 

freeways, and major arterials that are represented as arcs, while their intersections are 

represented as nodes. These nodes represent the set of candidate sites at which refueling stations 

can be built. In the case of selecting a node that represents an intersection of at least one limited-

access highway, however, an additional step is necessary in order to identify suitable refueling 

station sites. Stations cannot be built in the middle of freeway intersections but instead must be 

located on nearby surface streets, which require navigating freeway entrances and exits, access 

ramps, and congested roadways to reach. Travel in these environments can be complex and time-

consuming and can vary greatly from one freeway intersection to another. Freeway intersections, 
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however, are critical to station planning. Trip-based approaches, in particular, frequently select 

these nodes because of the high path volumes flowing through them (Kuby et al., 2009). To 

systematically identify effective station sites near major freeway intersections, Kelley (2017) 

developed the Freeway Traffic Capture Method (FTCM) to help address the inherent scale 

dependency between regional optimization models and local road networks, where stations must 

be built. This study found only 7% of street intersections near each of the 72 freeway 

intersections in Los Angeles could be conveniently reached by drivers on all possible travel paths 

that passed through the freeway intersection, signaling that an ad-hoc station site selection 

process near freeway intersections is unlikely to identify a convenient location.  

While helpful in providing key stakeholders with a tool to identify best station sites near freeway 

intersections, the FTCM has a number of limitations. First, its intent is to define a best station 

location on the local street network for each optimization network node that represents a freeway 

intersection. Therefore, it assesses each freeway intersection independently. In a given regional 

freeway network, however, there may be multiple freeway intersections near one another. In 

such cases, one station on the local street network may be a suitable location for travel paths 

passing through multiple freeway intersections. Particularly in limited refueling infrastructures 

where only a few stations can be built, it may be best to consider general areas where a number 

of major highways, freeways, and arterials intersect as a cluster. Sites chosen on the local street 

network could then be suitable for all paths traveling through the cluster. Second, the FTCM has 

not yet been applied to the outputs from a regional scale optimization model to determine 

whether convenient sites exist on the street network near a selected optimization node. This is a 

priority research consideration for applying station planning methods to a relatively coarse 

representation of a road network.  



9 
 

3.  Methods 

This paper proposes a multi-scale method for planning a network of fuel stations. The method 

integrates the FRLM and DFRLM models with a modified Cluster-based Freeway Traffic 

Capture Method (CFTCM) introduced here. Table 1 summarizes the abbreviations, terminology, 

and notation used in the multi-scale method.  
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Table 1. Abbreviations and Definitions. 

Abbreviations FRLM Notation 
AADT average annual daily traffic 𝑦𝑞 1 if path q is refuelable  

0 otherwise 
AFV alternative fuel vehicle      𝑋𝑘

1 1 if facility k is open 
0 otherwise 

CFTCM Cluster Freeway Traffic Capture 
Method 

𝑓𝑞 flow volume on path q 

CNG Compressed natural gas 𝑑𝑞 distance of path q 
DFRLM Deviation Flow Refueling Location 

Model 
p number of facilities to 

open 
FCV fuel cell vehicle 𝐴𝑞 set of arcs on round trip q 
FCLM/FILM Flow Capturing/Intercepting 

Location Model 
𝑍𝑖𝑗

𝑞  set of nodes that can 
cover a vehicle crossing 
directional arc ij on path 
q given the assumed 
driving range of vehicles 

FRLM Flow Refueling Location Model N set of network nodes 
(optimization nodes) 

FTCM Freeway Traffic Capture Method  
O-D origin-destination       E set of existing or planned 

stations 
VMT vehicle miles traveled CFTCM Notation 
 k local street intersection 

node 
DFRLM Notation Akh score for street 

intersection node k in 
cluster h (0 ≤ Akh ≤ 1) 

 A, B, C parameter settings in the deviation 
decay function 

tijh shortest travel time (in 
minutes) from artificial 
origin i to artificial 
destination j through 
cluster h 

DT deviation time (in hours) tikj shortest travel time (in 
minutes) from artificial 
origin i to local street 
network intersection node 
k (Figure 2) to artificial 
destination j through 
cluster h 

                                                           
1The definitions of i, j, and k are different in the FRLM and CFTCM notation, but in each model k refers to the 
potential station locations being evaluated at that geographical scale. 
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DTmax Maximum deviation time Xikjh 1 if tikjh - tijh ≤ Δmax,           
0 otherwise 

tq 
travel time of fastest path for O-D 
pair q 

Ih set of inbound origins for 
cluster h 

Terminology Jh set of outbound 
destinations for cluster h 

Optimization Node a node in the simplified regional 
network used in the optimization 
models 

Nih number of possible 
freeway directions 
through cluster h2 starting 
from artificial origin i 

Street Network Node a node that represents an 
intersection on the detailed local 
street network surrounding freeway 
intersections  

Δmax maximum deviation from 
shortest travel time (in 
minutes) through cluster 
h 

Freeway intersection or 
confluence 

a location where two or more 
limited-access freeways intersect or 
converge 

cmax maximum network travel 
distance between 
optimization nodes in the 
same cluster (miles) 

Cluster a subset of optimization nodes that 
(a) connect to at least one limited-
access freeway arc, and (b) are 
within cmax network miles of each 
other. Note: an optimization node 
may be a member of more than one 
cluster, and a cluster may contain 
only a single optimization node. 

bmax maximum buffer distance 
(in miles) from 
optimization nodes to 
street network nodes 

 

Figure 1 shows the methodology framework that integrates the FRLM, DFRLM, and CFTCM 

methods across multiple scales for planning a robust refueling infrastructure. Phase 1 is a 

filtering process that runs the FRLM and DFRLM without any restriction of candidate sites on a 

network of major urban and regional roads. Twenty-four scenarios are systematically analyzed 

based on the most critical modeling assumptions: vehicle driving ranges (100 and 150 miles), 

number of hydrogen stations to build (5, 10 or 15 stations in the early phase of development), 

choice of objective function (Max trips or Max VMT), and model (FRLM or DFRLM). 
                                                           
2The Nih notation is needed because all ij combinations of directions of travel may not be possible through a freeway 
intersection cluster 
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Following Phase 1, any optimization node that was never optimal in any of the 24 scenarios is 

eliminated from subsequent phases of the analysis, while any node that was optimal under any 

scenario is then evaluated by the CFTCM.  

 
Fig. 1. Multi-scale refueling infrastructure planning framework. 

The CFTCM process begins by grouping any remaining optimization nodes located on freeways 

into clusters if they are close enough to each other. Then, street intersection nodes around each 

optimization node in the cluster are evaluated to determine if all possible travel on all routes 

through the cluster can reach them conveniently. Each optimization node is then given the score 

of its best-performing street network node, and the best optimization node in the cluster is 

selected to represent the cluster in Phase 2. Using this reduced set of optimization nodes as 

candidate sites, we again run the 24 FRLM and DFRLM scenarios. Based on the Phase 2 

scenario results, we then adapt Owen and Daskin’s (1998) scenario-planning approach, in which 

“the objective is to determine robust facility locations which will perform well (according to the 
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defined criteria) under a number of possible parameter realizations” (p. 435). Here, we determine 

the best-performing set based primarily on how frequently locations are optimal, while also 

considering how frequently they occur in diverse scenarios. In other words, consistent 

appearance of a station in only one similarly defined set of scenarios is not considered to be as 

robust as a station that occurs with similar frequency across a range of scenarios.  

Finally, in Phase 3, we evaluate the chosen system of stations according to a more limited set of 

FRLM and DFRLM scenarios to check how well they perform together under different 

assumptions. Depending on those results, the final set of stations could be revised if necessary. 

3.1  The Flow-Refueling and Deviation Flow-Refueling Location Models 

This section introduces the two location optimization models (FRLM and DFRLM). The first 

model, the standard FRLM, requires pre-generation of a single shortest (fastest) path for each 

origin-destination (O-D) path q. In this paper, we used the arc cover-path cover (AC-PC) 

formulation of the FRLM (Capar et al., 2013), an exact mixed-integer programming (MIP) 

solution method that is fast and globally optimal (Arslan and Karaşan, 2016).  

𝑀𝑎𝑥 ∑  𝑓𝑞(𝑑𝑞)𝑦𝑞𝑞∈𝑄    (1) 

Subject to: 

∑ 𝑋𝑘𝑘∈𝑍𝑖,𝑗
𝑞 ≥ 𝑦𝑞     ∀ 𝑞 ∈ 𝑄,  𝑎𝑖,𝑗 ∈ 𝐴𝑞     (2) 

∑ 𝑋𝑘𝑘 = 𝑝                                               (3) 

 𝑋𝑘 = 1     ∀ 𝑘 ∈ 𝐸   (4) 

 𝑦𝑞,  𝑋𝑘 ∈ {0,  1}     ∀ 𝑞 ∈ 𝑄,  𝑘 ∈ 𝑁   (5) 
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The objective function (1) maximizes the origin-destination flow volume or VMT that can be 

covered, i.e., the trips that are refuelable given the station locations, the shortest paths, and the 

driving range. The objective can be generated with or without multiplying by the path length, dq. 

The standard form without dq multiplies flow volume of path q by a 0-1 variable indicating 

whether the shortest path is covered or not. Summed over all paths q, this maximizes total 

covered trips and counts all trips equally, thus assuming that drivers care about accomplishing 

the purpose of a trip regardless of how far away that activity is. By including dq in the objective 

function, the trip volumes are weighted by their distances, thus maximizing total covered VMT 

and emphasizing longer trips and conventional fuel replaced. Both objectives are used in this 

paper.  

Constraints (2) ensure that the yq variables equal 1 only if the round trip on path q can be 

completed without running out of fuel. If stations are located on the path that can fully cover 

each directional arc ij, then and only then is the full round-trip path considered covered. The 

exogenously determined set 𝑍𝑖𝑗
𝑞  includes all stations “downstream” of directional arc ij on round-

trip path q that are within driving range of the far end (j) of the arc. The downstream part of the 

round-trip path is allowed to wrap around the origin and/or destination, e.g., in the round-trip 

path 1-2-3-4-3-2-1, the directional arc 1-2 could be refueled by a station at node 3 if the distance 

3-2-1-2 does not exceed the driving range (see Capar et al. 2013 for details). All refueling stops 

on a round-trip path are assumed to top up the tank to full. Constraint (3) requires that exactly p 

stations are opened. Constraints (4) force open any stations k in the set E of existing and planned 

stations. Constraints (5) define yq and Xk as 0-1 variables, whereby trips are either covered or not 

and stations are either open or not. 
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In contrast with the FRLM, the DFRLM allows drivers to detour from their fastest path to access 

one or more open stations while traveling from their origin to their destination. Kim and Kuby 

(2012) originally formulated the DFRLM as an exact MIP model that requires enumeration of a 

set of possible deviation paths. Because of the very large number of possible deviation paths 

even for a single O-D pair, the MIP was not solvable on large real-world networks, leading Kim 

and Kuby (2013) to develop a greedy-substitution heuristic algorithm. The model allows any 

feasible deviation path to be taken, subject to a restriction on the maximum difference in absolute 

or relative distance or travel time from the shortest path. Furthermore, the model includes a 

penalty function that reduces the covered flow volume as a function of the absolute or relative 

size of the deviation, which can take linear, exponential, inverse distance, and sigmoidal 

functional forms. Subject to the maximum deviation and penalty function, any kind of deviation 

is allowed, including deviations that leave the shortest path and return to it by the same route, 

leave the shortest path and return to it at a later point, or take a completely different path through 

the open station(s). At each stage of the greedy-substitution algorithm a new station is added 

after testing all possible station additions and substitutions. For any given set of stations being 

evaluated, an artificial network is constructed for each O-D pair using the set of stations plus the 

origin and destination nodes. Between any pair of nodes in this artificial network, an artificial arc 

is added if the shortest path between them satisfies the driving range conditions. On each of these 

artificial networks, the shortest path is by definition feasible given the open stations and the 

driving range specified. Like the FRLM, the DFRLM’s objective can maximize covered trips or 

VMT, and the model can force open the set of existing or planned stations. Additional algorithm 

details can be found in Kim and Kuby (2013). 
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An important point for both FRLM and DFRLM models used here is that the objective function 

value is reported in terms of the percent of demand that is potentially refuelable given the 

assumed driving range. The stations in these models are uncapacitated, and are designed to 

provide basic geographic coverage for as many potential early FCV adopter trips as possible in 

the initial rollout stage, assuming that initial penetration rates are extremely low and station 

capacity is not yet an issue.  

3.2 The Cluster-Based Freeway Traffic Capture Method 

The original specification of the FTCM assessed the accessibility of street network nodes 

surrounding major intersections of two or more freeways. Each freeway intersection, however, 

was analyzed separately. In this study, we extend the FTCM to evaluate a cluster of nearby 

freeway intersections simultaneously. These clusters are broadened to also include nearby 

freeway-street intersections that may have been chosen in Phase 1. The CFTCM generates a 

score for each street network node that measures its ability to serve as a convenient station site 

for all travel paths that pass through a cluster of optimization nodes where multiple highways, 

freeways, and major street intersections intersect in close proximity. The data inputs to the 

CFTCM include: 1) a set of optimization nodes that can be filtered to a smaller set after 

evaluation, 2) a simplified optimization network of major streets and highways, and 3) a detailed 

street and highway network. Both of the network’s datasets contain travel speeds and lengths 

along all arcs. Then, the user sets a number of flexible parameters. These include: 1) the 

maximum deviation (Δmax) in minutes required to reach a street network node from a shortest 

travel time path through the cluster h, 2) the maximum network travel distance (cmax) between 

optimization nodes in the same cluster, and 3) a maximum Euclidean buffer distance (bmax) from 

optimization nodes to street network nodes. 
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The CFTCM first produces a set of clusters and the optimization nodes that belong to them, then 

generates accessibility scores Akh for each street network node in each cluster. Then, summary 

statistics for all street network nodes within each cluster are generated. These scores are used to 

narrow the optimization nodes to a smaller set of candidate nodes that are sufficiently convenient 

for drivers through each cluster of optimization nodes.  

3.2.1  Optimization Node Clusters 

Given a set of network optimization nodes, such as those identified by Phase 1 of this analysis, 

all nodes adjoining at least one limited-access highway or freeway arc are evaluated by the 

CFTCM. For each node, the approximate center of its individual highway or street intersection is 

stored as point data in a GIS environment. Next, the CFTCM groups nearby optimization nodes 

into a cluster if they are within cmax network travel miles of one another. There is no limit to the 

number of nodes in a cluster, and individual optimization nodes can belong to multiple clusters. 

Clusters consisting of only one optimization node are also allowed, in which case the CFTCM 

simplifies to the original FTCM metric in Kelley (2017) for individual freeway intersections.  

Three categories of optimization nodes do not need to be assessed by the CFTCM. First, for 

nodes adjacent to only arterial roads or surface streets, stations can be built directly at these 

intersections without drivers having to navigate limited access highways or freeways. Second, 

the locations of existing or planned station locations are already fixed. Third, long-distance inter-

city trip destinations are used to represent the entirety of metropolitan areas outside the primary 

study area.  

3.2.2  CFTCM Specification 

The CFTCM identifies the best locations on the local street network within close proximity of 

optimization node clusters. Using a detailed street network dataset in GIS, all street intersections, 
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k, are selected that lie within the maximum Euclidean buffer distance, bmax, of any optimization 

node in cluster h. Next, the analyst must identify a set of artificial origins, Ih, and destinations, Jh, 

for trips that pass through the cluster. These O-D points are placed along all inbound and 

outbound major roadways that are included in the simplified optimization network that pass 

through any of the optimization nodes in the cluster. These inbound-outbound points are placed 

beyond the buffer distance, bmax that defines the extent of cluster h (Figure 2). Shortest travel 

times, tij, are computed and stored for all ij pairs (i≠j). Then, the CFTCM computes all ikj 

shortest travel times (tikj), inserting each node k within bmax distance of any optimization node in 

cluster h as an intermediary stop between i and j. The travel time difference between tikj and tij is 

compared against a maximum deviation threshold value, Δmax. If tikjh - tijh ≤ Δmax, then the 

tracking variable Xikjh = 1 for that travel path, and 0 otherwise. This is repeated for all ij pairs and 

street network nodes k in all clusters h. The CFTCM then computes a continuous score 0≤Akh≤1 

for all nodes k within each cluster h representing the fraction of travel paths that pass through 

node k with a deviation less than Δmax for all possible travel paths through cluster h:  

𝐴𝑘ℎ =
∑ ∑ 𝑋𝑖𝑘𝑗ℎ

𝐽ℎ
𝑗∈𝑁𝑖ℎ

𝐼ℎ
𝑖

∑𝐼ℎ
𝐼ℎ ∑𝑗∈𝑁𝑖ℎ

𝐽ℎ    (6) 
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(a) (b) 

Fig. 2. (a) Example of CFTCM evaluation for a street network node k (node B) in a cluster h 

consisting of a single optimization node. The red line shows the direct route from A to C without 

a stopping at the street network node, and the brown line shows the fastest route from A to C via 

B. Similar calculations are repeated for all directional pairs and for all street nodes within the 

buffer. (b) Example of evaluating least travel-time paths for inbound and outbound origins and 

destinations for a cluster consisting of multiple optimization nodes. 

The CFTCM, like the original specification of the FTCM, is an enumeration procedure. One key 

difference between them is the greater number of possible ij travel paths to account for in each 

cluster h. In the original specification and application of the FTCM, the maximum number of 

artificial origins and destinations for any freeway intersection in greater Los Angeles was five. 

However, by grouping nearby freeway-freeway and freeway-street intersections into a single 

cluster and by also considering major arterial routes that carry traffic through the cluster, the sets 

Ih and Jh include as many as eight inbound and outbound points.  
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3.2.3  Selection of best optimization node within a cluster 

After the CFTCM evaluates all street network nodes near an optimization node selected by any 

of the initial regional modeling scenarios, these scores are used to identify the best optimization 

node for each cluster h. To do so, we first determine if there are street network nodes where Akh = 

1.0 in each cluster. If so, the optimization node that is the nearest neighbor to the most street 

network nodes where Akh = 1.0 is selected as the best optimization node in the cluster. If there are 

no street network nodes in the cluster where Akh = 1.0, we then consider optimization nodes' 

proximity to the best Akh scores in the cluster in similar fashion, so long as the score is still 

relatively high. For this study, Akh > 0.8 is considered the threshold for "good" street network 

node scores, as 80% represents a clear majority of through-routes. Similar to the procedure 

above, we select the optimization node that is the nearest neighbor to the greatest number of 

street network nodes with the highest Akh score observed in the cluster, so long as the value is 

greater than 0.8. If there is no single node where Akh > 0.8, then we recommend that none of the 

optimization nodes in the cluster be considered for station locations, as this indicates that drivers 

will have a difficult time leaving the freeway network, reaching a nearby station on the local 

street network, and continuing on their journey. 

4.  Data 

4.1  Network 

To implement the multi-scale refueling infrastructure planning framework, we obtained 2015 

data for the transportation network, origin-destination trip matrix, and traffic analysis zones 

(TAZ) from Capitol Region Council of Governments (CRCOG) with help from the Connecticut 

Center for Advanced Technology’s Hydrogen Fuel Cell Advancement Program. We chose the 

Greater Hartford area as our case study area because it is slated to be one of the next regions for 
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hydrogen refueling infrastructure development after California. The transportation network 

includes interstates, freeways, arterials, and rural roads. To simplify the network and make it 

compatible with the FRLM/DFRLM models, we extracted the major roads in similar fashion to 

Kuby et al. (2009) and changed the connectivity of exits on the Massachusetts Turnpike to reflect 

the limited accessibility. The final simplified road network used in the analysis has 1,344 arcs 

and 806 junctions/candidate sites. To represent long distance trips to New York, Boston, Albany, 

and Providence, we further extend the existing road network to these cities using highway travel 

distances from Google Maps.  

4.2.  Preprocessing 

4.2.1  TAZ Aggregation and Shortest Path Routes 

Since the number of TAZs in the original dataset (1,829) exceeded the number of junctions in the 

simplified road network (806), we aggregated TAZs to capture all the trips from the region using 

a multi-step procedure (Table 2). The aggregation algorithm is based on common-sense rules for 

where drivers in each TAZ would most frequently join the major road network: at the nearest 

street junction or the nearest highway junction. The steps are as follows:  

1. Calculate distance from TAZ centroids to their nearest street junction and nearest 

highway junction.  

2. For each TAZ, calculate the ratio of these two distances (distance to highway 

junction/distance to street junction). 

a. If the ratio is less than 1.25, assign the TAZ to the nearby highway junction.  

b. If the ratio is between 1.25 and 2, assign the TAZ to the highway junction, unless 

the nearest highway junction is > 4 miles away from the TAZ centroid, in which 

case assign the TAZ to the nearest street junction.  
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c. If the distance ratio is greater than 2, assign the TAZ to the street junction unless 

the highway junction is within 1 mile of the TAZ centroid, in which case assign 

the TAZ to the highway junction.  

3. Aggregate TAZs that are assigned to the same junction. 

Table 2. TAZ aggregation methods. 

 dH/dS<1.25 dH/dS<2 and 

dH/dS>1.25 

dH/dS>2 

Choose street 

junction 

Never Only if dH>4 miles 

(6437m) 

Always 

Choose highway 

junction 

Always Always Only if dH<1 miles 

(1609m) 

Note: dH: distance to highway junction; dS: distance to street junction. 

The overall strategy favors highway junctions because we believe highway junctions capture the 

majority of the traffic flows in the urban area, and these locations should be given priority for the 

early phase of infrastructure planning. After TAZ aggregation, the number of TAZs (and the 

corresponding O-D nodes) dropped from 1829 to 514. Next, we aggregated the original 1829 x 

1829 O-D trip matrices to a 514 x 514 trip matrix. Note that nearby Springfield, Massachusetts 

was not included in the analysis: Springfield is not a member of the Capitol Region Council of 

Governments or part of the Hartford Census Combined Statistical Area. 

Using ArcGIS Network Analyst, we calculated the shortest paths among all pairs of the 514 OD 

nodes based on posted speed limits. Following Kuby et al. (2009), we added a 15% speed 

penalty for non-freeway roads. The final model included 264,196 O-D pairs and routes.  

4.2.2  Assumptions 
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In the FRLM and DFRLM, the vehicle driving range typically reflects an agreed-upon maximum 

spacing of stations rather than the technical driving range of a fully fueled vehicle. In this paper, 

we run models with driving ranges of 100 and 150 miles, even though most FCVs on the market 

in early 2019 have ranges of 300-400 miles. The smaller assumed driving range provides a safety 

margin in case of side trips, incomplete fills, air conditioning usage, hill climbing, and station 

reliability issues. Although the criteria for the US FAST Act Alternative Fuels Corridor 

Designation is spacing every 100 miles (USFHWA 2018), spacing of 150 miles would still 

enable a vehicle with a more than 300 mile range to reach the next station on a long-distance trip 

if its first station were temporarily closed. For the DFRLM, the key assumptions are the shape, 

slope, and maximum deviation of the deviation penalty function. We used the sigmoidal function 

form in (7), which is similar but not identical to the sigmoid function in Kim and Kuby (2012). 

𝑔(𝐷𝑇)𝑠𝑖𝑔𝑚𝑜𝑖𝑑 = 1

1+𝐴𝐶
(𝐵∙(100(𝐷𝑇

𝑡𝑞
)−𝐷𝑇𝑚𝑎𝑥)

 (7) 

• The A parameter mainly shifts the function to the left or right, and as such controls the 

presence or absence of the upper and lower plateaus of the sigmoid function.  

• B controls the “tipping point” where the rate of decline hits a maximum steepness and the 

fractional demand is 0.5.  

• C controls the gradualness or steepness of the distance decay. 

The precise parameters of the sigmoidal functional form were calibrated to produce the decay 

function shown in Figure 3: A=0.015, B=2.06, and C=1.046, and DTmax=0.33 hours. Of course, 

different drivers will have varying willingness to deviate from their shortest paths, but we 

believe this to be a reasonable approximation. 
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Fig. 3. Deviation decay function assumed. Based on the deviation findings in Kuby, Kelley, and 

Schoenemann (2013), the plateau of relative indifference to small deviations was set so that 80% 

of drivers would be willing to make up to a 6 minute deviation, after which the willingness 

should drop rather steeply, up to a maximum deviation of 20 minutes. 

Although some existing work directly incorporates driver's travel behaviors and path choices into 

the modeling of refueling station locations (Guo et al., 2016), we do not incorporate this factor 

directly into the DFRLM model. Instead, we use the deviation decay function to show a 

generalized willingness of drivers to deviate from their pre-defined shortest path to the nearby 

refuelling stations. The drivers’ path choices and travel behaviors are influenced by the nearby 

refuelling station locations if they are willing to deviate their shortest path and refuel. 

The third set of assumptions relate to the CFTCM. The Δmax parameter, the maximum driver 

deviation in minutes from any inbound path to a street network node and back to the outbound 

path in a cluster, was tested at six minutes to be consistent with the end of the indifference 

plateau in Figure 3, and also tested with a more conservative assumption of five minutes. The 

cmax threshold, the maximum distance between optimization nodes in the same cluster, is set to 
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three network travel miles, also consistent with the 6-minute rule (at freeway travel speeds). 

Finally, bmax, the buffer distance for street network nodes around optimization nodes, is set to 

two miles. Ultimately, the Δmax parameter will largely influence the Akh scores; the bmax and cmax 

parameters serve to limit the computation time by precluding calculation of travel times to the 

exponentially increasing number of street intersections that are too far from the center of a 

cluster to meet the Δmax requirement for all inbound-outbound travel directions.  

5.  Results 

5.1  Regional-Scale Station Location Using FRLM and DFRLM  

The FRLM and DFRLM were solved on an Apple iMac running under Parallels with Windows 7 

with 1600 MHz, DDR3 with 3.4 GHz Intel Core i7 and 12GB RAM allocation. The FRLM was 

solved using FICO Xpress 7.8 (64-bit). The DFRLM was solved in ArcGIS Desktop 10.0 using 

the greedy substitution algorithm in Kim and Kuby (2013) with three substitutions, coded in 

Microsoft Visual Studio 2010 using C#. Phase 1 FRLM models solved in 2-541 seconds, while 

DFRLM runs solved three orders of magnitude slower (5K -197K seconds). For Phase 2, despite 

fewer candidate sites, FRLM runs solved more slowly (0-1266 seconds), while DFRLM 

computations times fell by 1-2 orders of magnitude to 171-3,614 seconds. In Phase 3, with all 

integer location variables fixed at 1 or 0, FRLM runs took 0-72 seconds and DFRLM runs took 

16-70 seconds.  

The CFTCM was constructed in Python 2.7, using the Network Analyst extension in ArcGIS 

10.6.1. The program ran on a virtual machine in the Windows Server 2012 environment with 256 

GB of RAM, using a 2.6 GHz Intel Core i7 processor. Solution times ranged from 45 minutes to 

4 hours per cluster, depending on the number of travel directions and number of street network 

nodes.  
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In Phase 1, we ran the FRLM using all 806 optimization nodes as candidate sites, while for the 

DFRLM we use the same set of nodes excluding 6 highway-highway intersections. For each 

model, we generated 12 scenarios for all combinations of two driving ranges (100 and 150 miles), 

two objective functions (Max Trips and Max VMT), and three station budgets (5, 10, and 15 

stations. At the time this analysis was performed, there was one existing station at the Sun Hydro 

headquarters near Wallingford and one planned station north of downtown Hartford at the Pride 

Travel Center, located near a bus depot and an aggregation of automobile dealers. These 

locations were considered “fixed” in all scenarios. Table 3 shows the Phase 1 coverage results 

for 5, 10, and 15 stations. DFRLM can certainly cover more trips or VMT because deviation is 

allowed. Figure 4 shows the frequency with which stations were selected in the 24 Phase 1 

scenarios.  

Table 3. Phase 1, 2, and 3 optimization coverage results comparison.  

 

Number 
of 

Stations  

 

Phase 

FRLM DFRLM 

Driving range 
100 

Driving range 
150 

Driving range 
100 

Driving range 
150 

Max 
Trips 

Max 
VMT 

Max 
Trips  

Max 
VMT  

Max 
Trips  

Max 
VMT  

Max 
Trips  

Max 
VMT  

  P=5 

  

 

Phase 1* 16.98 56.23 17.06 65.46 43.36 59.68 44.57 73.50 

Phase 2** 16.76 56.23 16.80 65.46 43.34 59.62 44.72 73.62 

Phase 3*** 15.48 45.07 16.15 49.81 43.34 59.38 43.47 60.21 

  P=10 

 

Phase 1 30.08 72.15 30.16 74.23 64.36 84.28 63.48 85.69 

Phase 2 28.55 70.71 28.63 73.10 64.16 84.34 63.20 85.74 

Phase 3a 
(Oakland) 

27.07 54.14 27.52 57.49 64.16 70.80 64.20 71.07 

Phase 3b 
(Sturbridge) 

24.54 52.99 26.44 71.46 59.55 69.30 61.08 85.57 

  P=15 Phase 1 39.76 78.27 39.83 79.68 75.08 90.22 75.11 90.96 

Phase 2 37.03 77.01 37.25 78.36 75.07 90.28 73.41 90.98 
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*Phase 1 candidate sites: Using all nodes for FRLM; using all nodes except multi-freeway intersections 
for DFRLM. 
**Phase 2 candidate sites: Best optimization node from each CTFCM cluster only. 
***Phase 3 candidate sites: Five or ten final recommended nodes only. 
 

 

Fig. 4. Station locations selected in Phase 1 by FRLM and DFRLM, by p=5, p=10, and p=15 

scenarios. Circle size and numerical label indicates the number of times the station was optimal 

across the 24 scenarios. 

5.2  Cluster-based FTCM Analysis 

Following the Phase 1 output, we applied the CFTCM to narrow down the set of optimization 

nodes to consider for Phase 2. In Phase 1, 46 different optimization nodes were selected in at 

least one of the 24 modeling scenarios. Of these 46 nodes, the CFTCM evaluated 36 different 

nodes within a total of 19 clusters (Table 4, Figure 5). Of these 19 clusters, 13 clusters contained 

2-4 optimization nodes, while six clusters had only one, and there were two optimization nodes 
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shared between clusters. The remaining 10 optimization nodes were not evaluated by the 

CFTCM. In addition to the two fixed stations, four stations were occasionally selected in Boston, 

Providence, Bridgeport, and New Haven, which were included as highly generalized locations of 

possible refueling stations for inter-city trips from Hartford. An additional four are located in 

Bristol, Canton, Bakerville, and Granby at the intersection of surface streets that are not adjacent 

to any limited access highway or freeway nodes, which precludes them from CFTCM 

assessment.  

Table 4. CFTCM Summary Statistics.  

Cluster 
Name 

Number of 
Optimization 

Nodes 

Major 
Roads 

Travel 
Paths 

Street 
Network 

Nodes 

Δmax = 6 mins. Δmax = 5 
mins. 

Akh 
Max. 

n 
Akh=1.

0 

Akh 
Max. 

n 
Akh=
1.0 

Torrington 1 
US-202, CT-

8, CT-4 30 1,025 1.00 192 1.00 91 

Waterbury 4 I-84, CT-8, 
CT-69 

12 2,454 1.00 467 1.00 218 

Southington 1 I-84, CT-10 10 845 1.00 160 1.00 78 

Plainville 3 
I-84, CT-72, 

CT-10 
12 1,865 1.00 31 1.00 10 

Pratt's 
Corner 1 I-84, CT-322 12 464 1.00 68 1.00 45 

Meriden 2 I-91, I-681, 
US-5, CT-15 

38 1,370 1.00 119 1.00 32 

New Britain 3 
I-84, CT-9, 
CT-72, CT-

372 
28 1,780 0.89 0 0.80 0 

West 
Hartford 1 I-84 12 1,379 1.00 86 1.00 11 

East Berlin 2 
I-91, CT-9, 
CT-3, CT-

372 
20 1,112 1.00 4 1.00 1 

Wethersfield 2 
I-91, US-5, 

CT-3 
24 1,282 1.00 10 0.92 0 

Middletown 2 
CT-9, CT-17, 
CT-66, CT-3 30 1,285 1.00 5 0.93 0 
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Enfield 2 
I-91, CT-190, 

CT-220 18 1,046 1.00 289 1.00 190 

Hilliardville 3 I-84, I-291, I-
384 

36 1,877 0.78 0 0.78 0 

Oakland 3 I-84, CT-83 26 1,524 0.88 0 0.88 0 
Colchester 2 CT-2, CT-11 30 361 1.00 22 1.00 3 

Willington 2 I-84, CT-32, 
CT-74 

28 207 1.00 21 1.00 4 

Willimantic 2 
US-6, CT-
195, CT-32 

30 846 0.93 0 0.93 0 

Sturbridge 1 I-90, I-84 6 289 1.00 76 1.00 57 
Platt Mills 1 CT-8, CT-63 6 1,171 1.00 104 1.00 40 

 

Clusters generally had a number of promising street network nodes in close proximity to 

optimization nodes. Only four of the 13 clusters with multiple optimization nodes lack a street 

network node capable of being reached with a six-minute deviation or less for all possible 

inbound-outbound routes passing through them, and the lowest "best" score for a street network 

node in a cluster was 0.78. For sensitivity analysis, we lowered the deviation to five minutes. In 

this case, the original group of nine clusters with at least one street intersection with Akh = 1.0 

assuming Δmax=6 was reduced to seven with Δmax=5. Meanwhile, of the original group of four 

clusters with maximum Akh scores below 1.0, the maximum score did not fall any further when 

lowering Δmax to 5 minutes. 

Using the decision rules outlined in Section 3.2.3, we then selected the best optimization node 

from each of the 13 clusters with multiple optimization nodes. These are the nodes that are 

passed to Phase 2 of the analysis. This process also removed 18 optimization nodes identified in 

Phase 1 from further consideration. When visualizing the distribution of Akh scores within 

clusters, we observe that in most cases, the best street network node scores were noticeably 

nearer to one of the optimization nodes, making the selection of a best node in the cluster a 

straightforward process. The relative position of the chosen optimization node within the cluster 
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differed, though, largely as a function of the value of the maximum Akh scores. For clusters with 

multiple Akh=1.0 street network nodes, these nodes tended to be in the middle of the cluster 

(Figure 6a). In contrast, for clusters that lacked at least one Akh = 1.0 score, these "best" sites 

were often located farther from the center of the cluster (Figure 6b). For these clusters without a 

location capable of capturing all travel paths through them, the best street network nodes were 

often relatively close to one or more freeway entrances and exits. These sites were therefore able 

to capture a consistent subset of passing travel paths that included travel along the adjacent 

freeway, but were unable to capture at least one shortest travel path elsewhere in the cluster. 

 
Fig. 5. Map of optimization nodes chosen for Phase 2 of the analysis. The best optimization node 

in each cluster with multiple nodes (indicated by the red ovals) is identified in orange if Akh = 

1.0, or yellow if 0.8 < Akh < 1.0. 
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a) well-connected intersection. b) poorly connected intersection. 

Fig. 6. Distribution of Akh scores for street intersection nodes around optimization nodes in 

clusters with multiple street network nodes where Akh = 1.0 (Figure 6a), and street network nodes 

where the maximum Akh score < 1.0 (Figure 6b). 

5.3  Phase 2 Analysis and Choice of Top Ten Stations   

In Phase 2, we execute the same FRLM and DFRLM scenarios as in Phase 1, but with the 18 

optimization nodes that were not the best sites in their clusters removed from consideration. 

After this was complete, 26 different optimization nodes were identified as optimal in at least 

one of the 24 scenarios. We then narrowed this set of 26 nodes to two final lists: 1) the best five 

initial recommended station locations for the Hartford region (including the existing and planned 

stations at Wallingford and North Hartford), and 2) the best ten, which includes the best five 

(Table 5, Figure 7). These numbers are chosen because they represent reasonable scenarios of 

station counts that would be initially recommended for a region interested in developing an 

infrastructure to support HFCV adoption with a limited budget.  
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Figure 7 shows the spatial distribution of these nodes across the Hartford region, and Table 5 

shows how frequently stations were selected in either a DFRLM or FRLM scenario. To 

determine which nodes to include in the recommended sets of 5 and 10 stations, we first 

considered the overall frequency of a node's occurrence across the 24 scenarios. In addition, we 

placed a high degree of importance on how often a node was chosen in the more selective p=5 or 

p=10 Phase 2 solutions. Next, we prioritized relatively consistent performance in both DFRLM 

and FRLM models, VMT and trip maximization, and both vehicle ranges. We considered these 

nodes to be more robust locations than those that were never selected under certain assumptions. 

For these reasons, we selected Bridgeport, Waterbury, and Plainville to accompany Wallingford 

and North Hartford in the set of five best locations. These three nodes are selected more 

frequently in p=5 or p=10 solutions than any of the other 21 nodes. Each appears with relatively 

equal frequency between DFRLM and FRLM scenarios, between VMT and trip scenarios, and 

between scenarios where the range is 100 or 150 miles. 

For the set of ten best locations, additional factors were considered. Torrington and Enfield are 

each ranked seventh in occurrence in p=5 or p=10 outputs, and sixth in overall occurrence. They 

also appear consistently across scenario parameters. Willimantic occurs slightly less often than 

these two but still in the top 10 of total frequency and in p=5 or p=10 frequency. This location, 

east of Hartford, is near both the Eastern Connecticut State University and the University of 

Connecticut. After these three, the last two nodes included in stations 6-10 are cases where each 

decision came down to two distinct pairs of stations that were favored by specific scenario types. 
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Table 5.  Phase 2 Results for Recommended Stations  

Location Notes 

TOTAL 
out of 24 
Scenarios DFRLM FRLM p=5 p=10 

p=5  
and 

p=10 p=15 
Max 
Trips 

Max 
VMT 

Range 
100 

Range 
150 

Selected 
Most 

Robust 
Nodes Rank 

Bridgeport  
I-95/CT-8  22 10 12 7 7 14 8 10 12 12 10 Top 5 1 
Waterbury  

I-84/Baldwin 
St.  18 8 10 3 7 10 8 10 8 10 8 Top 5 1 

Plainville  
I-84/CT-72 

Freeway 
Intersection 13 7 6 4 5 9 4 7 6 7 6 Top 5 1 

Wallingford  
I-91/CT-68 Fixed 24 12 12 8 8 16 8 12 12 12 12 Top 5 1 
N. Hartford  

I-91/Jennings 
Rd.  Fixed 24 12 12 8 8 16 8 12 12 12 12 Top 5 1 

Torrington  
CT-8/CT-202  14 6 8 0 6 6 8 8 6 7 7 Top 10 2 
Middletown  
CT-9/CT-66.  10 8 2 0 4 4 6 6 4 5 5 Top 10 2 

Enfield  
I-91/CT-90  14 9 5 1 5 6 8 7 7 7 7 Top 10 2 
Willimantic  

US-6/CT-195  11 9 2 1 4 5 6 6 5 6 5 Top 10 2 
Oakland  

I-84/CT-30  9 5 4 0 4 4 5 8 1 4 5 
Top 10 

Alt1 3 
Sturbridge, 

MA  
I-90/I-84 

Freeway 
Intersection 10 3 7 3 3 6 4 1 9 3 7 

Top 10 
Alt2 3 
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In the first case, we chose a station in Middletown instead of East Berlin for three primary 1 

reasons. East Berlin occurred more frequently in p=5 or p=10 solutions than Middletown, but 2 

there are important limitations to its inclusion in the set of best ten locations. First, East Berlin 3 

appeared only in FRLM solutions, while Middletown occurs in both. Second, the CFTCM 4 

indicates that there are no street network nodes near the intersection of Interstate 91 and 5 

Connecticut Highway 9 at which to build a site near East Berlin that can capture passing traffic 6 

for all or most travel directions passing through the area, while there are more promising sites 7 

near Middletown. Finally, we note that the predetermined inclusion of stations at Wallingford 8 

and North Hartford makes East Berlin less important to the initial arrangement of stations in the 9 

region. This is particularly true for the existing station in Wallingford, which can capture all 10 

flows passing along Interstate 91 if drivers are allowed to deviate to the parallel Wilbur Cross 11 

Parkway. 12 

The second case involved two stations along Interstate 84 between downtown Hartford and 13 

Massachusetts: Sturbridge, Massachusetts and Oakland, CT (near the suburban Manchester, CT 14 

shopping complex). Sturbridge is selected slightly more frequently in p=5 or p=10 solutions than 15 

Oakland, but there is a substantial difference between scenarios that maximize trip capture or 16 

VMT capture. The station at Sturbridge is an important site for refueling trips to Boston, and 17 

would be an essential component of a refueling infrastructure that includes Massachusetts and 18 

Connecticut simultaneously. However, the station site in Oakland is more important to local trips 19 

within the Hartford region, and is located immediately adjacent to the Buckland Hills Mall. 20 

When reviewing the CFTCM scores for this cluster, the Sturbridge site has better sites on the 21 

street network that can capture all passing travel directions, though it is important to note that 22 

Manchester is part of a large cluster that must satisfy many more travel paths through its nearby 23 
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area than the isolated rural node at Sturbridge. Notably, the street intersections near the Oakland 1 

station node have higher FTCM scores than any other optimization node in the cluster, even 2 

though the node is not in the center of the cluster. If the intent, then, is to capture more trips, the 3 

Oakland node would be most appropriate, while Sturbridge would be best for maximizing VMT 4 

capture. 5 

 6 
Fig. 7. Final set of recommended stations evaluated in Phase 3, with two options shown 7 

for the 10th station. 8 

5.4  Phase 3 Testing of Recommended Stations 9 

The final phase of the analysis evaluates how well the recommended sets of five and ten stations 10 

perform as a fixed group under all range, objective, and FRLM/DFRLM scenarios (Table 3). 11 

That is, the five or ten recommended xk variables are set to 1. In this analysis, the best 12 

recommended set can do is match the performance of the optimized solution. This occurs once, 13 



36 
 

where the top five was also the optimal solution of the DFRLM scenario where p=5 and vehicle 1 

range=100 and the number of covered trips are maximized. This is notable because this is 2 

arguably the single most important scenario for planning the first five stations, since it (a) uses a 3 

conservative range, (b) emphasizes more basic local trips, and (c) takes into account that with 4 

only five stations many early adopters will need to (and be willing to) make short deviations to 5 

refuel. The other p=5 trip maximization solutions are also extremely close to the Phase 2 6 

objective values. The recommended five underperform the best p=5 solutions compared with 7 

three of the four Phase 2 solutions that maximized VMT, which is not surprising. Without a 8 

station in Sturbridge or Boston to facilitate the round trip to Boston and back, a significant 9 

amount of inter-city trips are not refuelable. Given that most early FCV adopters in California 10 

own a second conventional car in the household that can be used for longer trips, a connecting 11 

station to another state is not a high priority for the first five stations (California Air Resources 12 

Board, 2018; Lopez Jaramillo et al., 2019).  13 

A similar pattern emerges in the Phase 3 analysis of the recommended group of 10 stations. 14 

Especially with Oakland as the 10th station, the recommended 10 perform an average of only 15 

1.9% less than the optima in Phase 2 for maximizing refuelable trips, but 19.5% worse for 16 

maximizing refuelable VMT. When choosing Sturbridge, MA as the 10th station, the final 10 17 

stations perform much better on the two VMT-maximizing scenarios with a driving range of 150 18 

miles—only 1.2% below the Phase 2 customizable solutions. When the assumed driving range is 19 

lowered to 100 miles, the Sturbridge solutions average 21.5% less than the best Phase 2 VMT 20 

objectives. For trip maximization, the Sturbridge solutions perform 8.1% worse than the best 21 

Phase 2 objectives, and 6.3% worse than the final 10 stations using Oakland. 22 

 23 



37 
 

6.  Discussion 1 

The final choice between Oakland, CT and Sturbridge, MA for the 10th station comes down to 2 

whether VMT or trips are prioritized, and whether government subsidies dictate against an out-3 

of-state station. If one assumes that most early adopters would have a second conventional car in 4 

the household even at the 10-station stage, it would argue for prioritizing the station in the 5 

Oakland-Manchester cluster. 6 

Several limitations should be kept in mind when evaluating these results. The existing Sun 7 

Hydro station in Wallingford is currently not open to the public, and this location is particularly 8 

problematic in the FRLM runs because more O-D shortest paths in our dataset take the lower-9 

capacity Wilbur Cross Parkway, which parallels the higher-capacity I-91 in the vicinity of 10 

Wallingford.  11 

Other limitations concern inter-city trips. We initially obtained an O-D trip matrix that included 12 

flows between Hartford and Springfield, MA, which is just across the Massachusetts border from 13 

the northern boundary of the Hartford Metropolitan Statistical Area. However, the size of TAZs 14 

and flow volumes were incompatible. If Springfield were included, one or more optimal stations 15 

may have shifted to that region. For modeling trips to neighboring metropolitan areas, we 16 

included simplified routes departing from a single exit point from the Hartford region to each of 17 

Boston MA, Albany NY, Providence RI, and New York NY. In this fashion, we attempted to 18 

factor in both intra-city and inter-city trips into infrastructure planning. Since stations can serve 19 

both types of demand this is important to consider, but it remains a challenge to realistically 20 

integrate trips at these different scales. Given the importance of state subsidies in California’s 21 

roll-out of hydrogen stations, the coordination between neighboring states in New England 22 

creates the potential for long-distance gaps and/or cross-border duplication.  23 
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Previous applications of the FRLM and DFRLM to infrastructure planning have tended to focus 1 

on only one scale of trips at a time: intra- or inter-city, but not both. An exception is Kuby et al. 2 

(2009), which solved a variety of scenarios on two separate networks: an inter-city Florida 3 

network and an intra-city network for the Orlando metropolitan area. The authors then 4 

recommended sets of stations at each scale, making certain that the inter-city stations from the 5 

statewide model were included in the local set of stations at the exact same locations. However, 6 

all stations in the Orlando recommendations were not included in the statewide network. This 7 

paper has attempted to improve on their method with this new hybrid approach.  8 

In our opinion, the inclusion of inter-city trips in the flow matrix makes it even more important 9 

to include the street-level CFTCM analysis. Given that the stations are serving inter-city highway 10 

trips, it becomes even more important that any station near a confluence of limited-access 11 

highways be reachable conveniently by as many inbound-outbound travel paths as possible, and 12 

hopefully by all such travel paths (Akh=1.0). The CFTCM, then, can identify locations that serve 13 

as many trips passing through the cluster from across the region as possible that are also 14 

convenient for those living or traveling nearby.  15 

The six-minute deviation threshold used in this study for the CFTCM is subject to uncertainty. 16 

That metric was observed in a sample of CNG drivers in southern California who also refueled in 17 

a sparse AFV refueling infrastructure (Kelley and Kuby 2013), though it is possible that early 18 

HFCV adopters in Hartford would react differently to a different network of stations. We also 19 

did not vary deviation thresholds based on the number of stations assumed to be built when 20 

running the FTCM, and it is possible that this threshold would be lower if more stations were 21 

present in a region. The metric also only evaluates accessibility in terms of travel time deviation 22 
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reduction, though other factors are important to drivers’ refueling station choices, including 1 

proximity to nearby amenities, perceptions of safety, and congestion. 2 

It is important to note that the CFTCM provides a standard performance metric for street 3 

network intersections, and not parcels upon which stations would actually be built.  In order to 4 

effectively conduct this final piece of the station site selection process, other factors not 5 

considered in the specification of the CFTCM, such as zoning and land use data, property values, 6 

and municipal ordinances that would impact station construction at the site, would be necessary.  7 

These could be directly incorporated into future specifications of the CFTCM or conducted 8 

separately in GIS analysis after the workflow described in this study is completed. Such an effort 9 

would require gathering a variety of this data from different municipalities across the study area. 10 

Additionally, we evaluate deviations for travel on the regional network and on the local street 11 

network near clusters separately. It is unclear to what extent drivers make this distinction, or if 12 

sensitivity to leaving the freeway before returning to it on a travel path changes the willingness 13 

to deviate.  14 

7.  Conclusions 15 

The main contribution of this work is to demonstrate the importance of integrating modeling 16 

approaches for optimal location of refueling infrastructure across street-level, intra-city, and 17 

inter-city scales. Given the high flow volumes that can potentially be refueled at stations located 18 

near the confluence of multiple freeways, and the demonstrated willingness of AFV drivers to 19 

refuel mid-route, the ability to deviate from inbound freeways to stations and back to outbound 20 

freeways for all possible through-routes becomes an important consideration for limited 21 

infrastructure planning. We find that with this multi-scale, integrated path-based planning 22 

approach, a small number of alt-fuel stations are capable of providing basic (uncapacitated) 23 
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coverage to large number of trips for the Central Connecticut region. In our final model results 1 

with 150 miles vehicle driving range by the DFRLM, 5 stations cover 43% of trips and 60% of 2 

VMT, 10 stations cover 64% of trips and 71% of VMT if planned to facilitate local travel (max 3 

trips), and 10 stations cover 61% of trips and 86% of VMT if planned to facilitate regional travel 4 

(max VMT). This paper has illustrated one method for integrating across these different models 5 

and scales in a timely real-world application. The multi-stage modeling process also ensures the 6 

robustness of station selections across different modeling scenarios. This newly proposed 7 

planning method is generalizable to other regions or other types of fast-fueling alternative fuel 8 

vehicles. 9 

Future work on multi-scale modeling could follow a number of promising directions. An obvious 10 

next step is to develop a framework for suitability analysis of sites with similarly high Akh scores, 11 

taking into account zoning, safety, parcel size, land value, cost, and existing land use. Indeed, 12 

constructing stations in areas proximal to amenities that attract both local and regional travel that 13 

are near freeway intersections—such as shopping malls—with zoning compatible with station 14 

development may best support early adopter refueling needs from across the region and 15 

encourage them to purchase HFCVs, and a variety of local stakeholder knowledge of the 16 

Hartford region would be essential to informing this next step. In this paper, DFRLM runs were 17 

computationally intensive. Incorporating some recent computational developments in DFRLM 18 

solution methods could allow more detailed geographic networks at both the intra- and inter-city 19 

scales in the same model runs. The CFTCM is also a computationally intensive enumeration 20 

procedure, and developing effective heuristics to more efficiently identify promising sites near 21 

clusters would be a promising research direction. Computerized iteration between the two 22 

optimization scales is also potentially promising. Undoubtedly, there are other ways that the 23 
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FTCM or CFTCM could be integrated with the FRLM and DFRLM for multi-scale infrastructure 1 

planning. Instead of using the CFTCM as a filtering step, it might also be possible to incorporate 2 

Akh scores directly in the FRLM or DFRLM. 3 
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