Pre-integrated nonequilibrium combustion-response mapping for gas turbine emissions

Korakianitis, T., Dyer, R. and Subramanian, N. (2004) Pre-integrated nonequilibrium combustion-response mapping for gas turbine emissions. Journal of Engineering for Gas Turbines and Power, 126(2), pp. 300-305. (doi: 10.1115/1.1688769)

This is the latest version of this item.

Full text not currently available from Enlighten.

Publisher's URL: http://dx.doi.org/10.1115/1.1688769

Abstract

In gas turbine combustion the gas dynamic and chemical energy release mechanisms have comparable time scales, so that equilibrium chemistry is inadequate for predicting species formation (emissions). In current practice either equilibrium chemical reactions are coupled with experimentally derived empirical equations, or time-consuming computations are used. Coupling nonequilibrium chemistry, fluid dynamic, and initial and boundary condition equations results in large sets of numerically stiff equations; and their time integration demands enormous computational resources. The response modeling approach has been used successfully for large reaction sets. This paper makes two new contributions. First it shows how pre-integration of the heat release maps eliminates the stiffness of the equations. This is a new modification to the response mapping approach, and it performs satisfactorily for non-diffusion systems. Second the theoretical framework is further extended to predict species formation in cases with diffusion, which is applicable to gas turbine combustion systems and others. The methodology to implement this approach to reacting systems, and to gas turbine combustion, is presented. The benefits over other reaction-mapping techniques are discussed.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:UNSPECIFIED
Authors: Korakianitis, T., Dyer, R., and Subramanian, N.
Subjects:T Technology > TJ Mechanical engineering and machinery
College/School:College of Science and Engineering > School of Engineering > Systems Power and Energy
Journal Name:Journal of Engineering for Gas Turbines and Power
ISSN:0742-4795

Available Versions of this Item

University Staff: Request a correction | Enlighten Editors: Update this record