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PREFACE 

Cholangiocarcinoma (CCA) is the most lethal type of primary liver tumors (PLCs), responsible for 20% 

of liver-related deaths. Persistent increases in incidence and mortality rates have been observed 

over the past decades. The median survival of CCA is only 6 to 8 months, and the 5-year survival rate 

has remained at 10% since the 1980’s. Importantly, the incidence of CCA is estimated to continue to 

increase the next 10 years, which could be speculated as a cause of an aberrant rearrangement of 

the hepatic metabolism owing changes in our lifestyles. The rise in mortality reflects the limited 

treatment options. Failure of current chemotherapy to extend median survival beyond 1 year 

highlights the extensive innate and rapidly acquired chemoresistance of these tumors, though the 

underlying molecular perturbations remain opaque. 

Genomic heterogeneity is a hallmark of CCA. As a consequence, drug resistance is a major concern in 

the clinical management of these patients with more than 50% risk of recurrence after surgery. At 

the time of diagnosis 70% to 90% of patients present locally advanced and metastatic disease thus; 

curative surgical resection is not an option. Notably, a significant proportion of the mutational 

landscape in CCA comprises recurrent mutations in epigenetic regulators, implying extensive epi- 

and genome-wide consequences arising from mutant isoform activities. In this chapter, we will focus 

on understanding the mechanisms that contribute to the risk of CCA and leverage molecular data to 

elucidate markers, predictive factors of risk that may impact our current clinical management of 

cholangiocarcinoma. Importantly, we will emphasize advanced CCA and discuss if the molecular 

make of these tumors are different from resected cholangiocarcinoma. The current efforts in 

utilizing genome-based characterization and patient stratification to direct clinical decisions 

predominantly implicate patients with resectable disease. 

 

Genetic alteration and putative risk factors in cholangiocarcinoma 

Data on the inherited risk factors modulating genetic susceptibility to CCA is scarce. This might be 

due to the rarity and complexity of the disease, which renders collection of large, well-powered 

cohorts of patients troublesome. Nevertheless, a whole-genome sequencing (WGS) study of the 

Icelandic population recently identified a potential CCA-risk gene1. In brief, this consortium 

sequenced the genomes of 2,636 Icelanders identifying 1.5 million insertions and deletions (InDels) 

and 20 million single nucleotide polymorphisms (SNPs)1. The analysis demonstrated that several 

mutations in the ABCB4 gene, which encodes for the hepatobiliary phosphatidylcholine translocase, 

increase the odds ratio of developing liver disease. Interestingly, the study showed the association 

between ABCB4 mutations and an increased risk of bile duct cancers1. Of note, so far patients with 

rare ABCB4 mutations are known to develop progressive familial intrahepatic cholestasis type 3 



(PFIC3) in childhood or a milder phenotype (low phospholipid associated-cholelithiasis (LPAC) 

syndrome2,3) in adulthood. LPAC syndrome is defined by early-onset cholelithiasis (< 40 years of age), 

concurrent gallbladder, bile duct and/or intrahepatic cholesterol gallstones, and recurrence of biliary 

symptoms after cholecystectomy3,4. The Icelandic GWAS found that the common ABCB4 variants 

might be determinants of cholestasis of pregnancy, liver cirrhosis, and hepatobiliary cancer5. These 

observations are in concordance with another GWAS of 1,042 Indian patients with gallbladder 

cancer (GBC), including 1,709 controls, which identified significant associations between SNPs in 

ABCB4 and the risk of GBC. Although, the Abcb4-knockout mouse, which is deficient for the 

orthologous murine gene develops hepatocellular cancer (HCC), and not CCA, the above GWAS 

findings highlight the effects of genetic variants in hepatobiliary transporters on the development of 

CCA. Indeed, ABCB4 regulates the biliary concentration of phosphatidylcholine, whereas the levels of 

other bile compounds (namely sterols and bile salts) are determined by the secretion (efflux) rates of 

the corresponding ATP-dependent canalicular (basolateral) transporters of hepatocytes6-8. For 

example, the ATP-binding cassette, subfamily B member 11 (ABCB11) represents the bile salt export 

pump (BSEP). Mutations in ABCB11 gene cause progressive familial intrahepatic cholestasis type 2 

(PFIC2) with decreased bile acid secretion, accumulation of bile salts in the liver parenchyma, and 

liver injury. PFIC2 manifests typically within the first six months of life with pruritus and jaundice as 

well as progressive fibrosis, which in most cases results in liver cirrhosis within the first two years of 

life. Interestingly, in adulthood, the risk for developing hepatobiliary cancers is also increased. 

Indeed, 15% of patients with BSEP-deficiency might develop HCC or CCA9,10. However, a clear 

pathogenesis of this association has not been fully elucidated. 

Not only genetic variants in the hepatobiliary transporters have been implicated in the increased risk 

of developing CCA. The pathogenesis of CCA remains unclear but it has for long been appreciated 

that patients with primary sclerosing cholangitis (PSC) are at increased risk of developing CCA. PSC is 

a rare (prevalence 1:10.000) inflammatory disease of the bile ducts. Hence, it is plausible that 

genetic variants that are associated with an increased risk of developing PSC might modulate the risk 

of CCA itself. Also, this risk may be in the absence of chronic inflammation of bile ducts. As such, 

Krawczyk et al.11 analysed a specific SNP (rs3197999) in the MST1 gene in a cohort of European 

patients with CCA. This variant was previously associated with an increased risk of PSC in a GWAS 

study12. The variant allele (rs3197999) is a missense mutation that results in p.R689C amino acid 

substitution within the β-chain of MSP (MSPβ). The MSP/RON signalling axis is involved in several 

aspects of cancer-relevant and cellular processes, such as chemotaxis, innate immunity and 

macrophage activation. Given this data, the rs3197999 variant was analysed in a cohort of 223 CCA 

patients (including three with PSC-CCA) and in 355 cancer- and PSC-free controls11. Interestingly, the 



cancer group departed from Hardy-Weinberg equilibrium (p=0.022) and exhibited a trend for 

rs3197999 [A] overrepresentation (31% vs. 26%: p=0.10). Homozygous rs3197999 [AA] carriers 

showed significantly increased overall (OR=1.97; p=0.023) and PSC-unrelated biliary tract cancer risk 

(OR=1.84; p=0.044), as compared to the homozygous carriers of the common MST-1 allele. The 

association was the most pronounced in patients with extrahepatic tumors and proved to be 

significant in multivariate models (p<0.05), validating the [AA] genotype as an independent CCA risk 

factor, indicating a possible modulation of inflammatory responses and/or altered MSP/RON 

signalling11. Chaiteerakij et al.13 have investigated the consequences of other selected inflammation-

modulating SNPs on the risk of developing CCA and patient’s survival. In this case-control analysis13, 

a total of 370 patients with CCA and 740 matched healthy controls were included. The authors 

selected eighteen variants in nine genes. Although two of the selected variants (rs2143417 and 

rs689466) in cyclooxygenase 2 (COX2) were associated with the risk of CCA in the discovery cohort 

(P=0.0003 and P=0.005, respectively), these associations failed to reach significance in the validation 

cohort (P>0.05), making the results difficult to interpret. In turn, Fingas et al.14 analysed, the 

association between the G protein subunit-β 3 (GNB3) 825C>T, B-cell-lymphoma-2 (Bcl2) 938C>A, 

and myeloid cell leukemia-1 (Mcl1) 386C>G, genetic variants and their associated clinical outcomes 

in the setting of CCA. This analysis14 was based on a cohort of 40 adult Caucasian patients with 

extrahepatic CCA (eCCA) and 40 age- and sex-matched healthy controls. Their analysis showed that 

carriers of GNB3 825C>T SNP have a longer overall survival as compared to the carriers with the T 

allele14. Other variants, enhancer of zeste homolog 2 (EZH2) (rs2417954615), nuclear factor 

(erythroid derived 2)-like 2 (NRF2)16 or alpha1-antitrypsin (α1AT) deficiency Z heterozygosity17, have 

been linked to increased risk of CCA. However, most of these studies were performed in single 

cohorts and are still awaiting validation in large groups of patients with CCA. Indeed, based on the 

relative rarity of CCA most of the collected cohorts lack the power to significantly detect the risk 

variant and later to replicate the genetic findings. Secondly, larger cohorts with available germline 

DNA are also required to analyze the genetic background in different CCA subtypes. Overcoming 

these limitations is one of the aims of the European Network for the Study of Cholangiocarcinoma 

(ENS-CCA), which is participating in the international CCA GWAS study currently underway. 

Although, we currently lack common genetic variants that substantially show an increased risk of 

developing CCA, genetic analyses might already be incorporated in the clinical management of 

patients with PSC, who are at-risk of developing CCA. Of note, it is recommended that patients with 

PSC should undergo regular surveillance and assessment of the serum marker Carbohydrate antigen 

19-9 (CA19-9) to facilitate the early detection of the CCA. Interestingly, it has been shown that 

genetic variants of fucosyltransferases 2 and 3 (FUT2/3) might modulate the serum levels of CA19-9. 



Based on this information, Wannhof et al.18 incorporated the FUT2/3 variants in the analysis of 433 

individuals with PSC, including 41 patients who had progressed to PSC-CCA18. Based on the genetic 

variants of FUT2/3, the authors calculated an optimal cut-off of CA19-9 associated with the risk of 

developing CCA. Overall, the inclusion of the FUT2/3 SNP-adjusted cut-off significantly improved the 

sensitivity of CA19-9 in detecting PSC-CCA cases, and have resulted in a 42.9% reduced risk of false 

positive18.  

 

Genomic aberrations and patient classification: Impact on clinical management 

To date, genomic characteristics19,20 and stratification21,22 of CCA patients have been analysed in 

several studies based on high-throughput genomics. For example, Jiao et al. performed WES of 

patients with intrahepatic CCA (iCCA, n=32) and detected inactivating mutations in chromatin 

remodelling genes (for example ARID1A, PBRM1 and BAP1)23. In turn, Nakamura et al.20 reported the 

presence of mutations in the oncogenes KRAS, PIK3CA, NRAS, GNAS, and ERBB2. In the latter study, 

a comprehensive exome and transcriptome analysis was performed on individuals with iCCA 

(n=145), eCCA (perihilar/pCCA and distal (dCCA) cases) (n=86) as well as GBC (n=29). Interestingly, 

around 40% of cases with biliary cancer proved to have alterations in putative driver genes. For 

example, the PKA gene fusions were specifically found in the eCCA, whereas FGFR2 gene fusions 

were detected in the intrahepatic cases. Likewise, ERBB3 and EGFR mutations were detectable only 

in the setting of GBC20. Interestingly, alterations in the TERT promoter was not found in patients with 

eCCA, whereas it was common in patients with GBC as well as detected in one patient with iCCA. 

These results allude to a different genetic composition of the biliary cancers depending on their 

anatomical localization and thus, emphasize the need of including genomic analyses of the tumor 

samples when making clinical decisions.  

Integrative analysis of 149 samples of iCCA22 allowed identification of 2 unique subclasses: the 

`inflammation class´ and the `proliferation class´ with markedly different activation of signaling 

pathways. For example, in the `proliferation class´, the activation of RAS and MET oncogenic 

pathways, mutations in KRAS and BRAF as well as expression of genes that were previously 

associated with worse outcome in patients with HCC22 may render the use of drugs approved for the 

therapy of HCC as possible therapeutic options in patients with iCCA24. Targeted sequencing on 153 

biliary cancers (70 iCCA, 57 eCCAs and 26 GBCs) demonstrated putative driver-gene mutations in 

most cases (118/153), however, the genetic profiles differed significantly based on the localization of 

the tumor type25. Overall, KRAS, TP53, ARID1A, IDH1/2, PBRM1, BAP1, and PIK3CA genes were the 

most frequently altered whereas mutations in TP53 proved to be independent determinants of 

survival25. Based on the tumor localization different genetic profiles were detected with RAS 



mutations being the most common in dCCA. The above-mentioned genomic diversity in CCA might 

be one of the major reasons for the lack of effective therapies. Indeed, based on the localization of 

the tumor, different pathways seem to be involved and clinically they need to be tackled different. 

As such, Nepal et al.26 recently investigated genome-wide data obtained from 496 iCCA patients. 

From these analyses, the team elucidated unique mutational signatures, co-mutational spectra, 

deregulated signaling pathways, structural alterations and DNA methylation aberrations associated 

with each patient subgroup. To test the clinical implications of the different onco-genetic programs, 

they utilized a drug repositioning approach and screened a library of 525 drugs in patient-matched 

cell models. These findings uncovered the potential of individual mutations to induce substantial 

downstream molecular heterogeneity which in turn could facilitate prediction of therapeutic 

sensitivities for CCA patients using standard targeted genotyping. Indeed, the potential involvement 

of inherited CCA predisposition which might be modulated by exogenous risk factors render the 

whole picture even more complex. For these reasons, large and integrated studies will be necessary 

in the future to bring us closer to personalized diagnostics and therapy in patients with different 

subtypes of CCA.  

 

The molecular make up of advanced cholangiocarcinoma: Is it the same as resected tumors?  

Seventy to eighty percent of CCA patients present at an advanced stage and are not amenable to 

surgical intervention27,28. A great effort is directed toward the development of novel therapeutics for 

these patients. The hope of a personalized approach lies in the ability to use therapeutics specifically 

designed to act against a molecular target that drives tumor growth. However, the main challenge in 

advanced CCA personalized treatment is developing a targeted therapy against the molecular drivers 

of the disease, whilst the knowledge of CCA molecular landscape is limited to small resected tumors. 

Would the molecular targets identified in the early stage be expressed in the advanced disease and, 

above all, would they still represent the main lethal drivers of tumor progression? The lack of 

systemic large genomic studies performed in advanced CCA limits the knowledge to provide 

appropriate answers to these questions. Recent findings suggest that there may be minimal driver 

gene mutations heterogeneity in untreated advanced cancer29. However, it is recognized and 

experimentally verified that tumors evolve under the pressure of systemic therapy30,31, thus making 

the knowledge of the molecular landscape in advanced CCA even more compelling with the 

introduction of adjuvant chemotherapies32. 

The shortage of molecular data on advanced CCA is caused by the paucity of tissue available. CCA 

are often diagnosed with cytology or small biopsies which do not enable a comprehensive and full 

molecular and genomic characterization. Feasibility studies on targeted captured sequencing in 



gastrointestinal cancers within routine clinical practice have shown that sequencing may be 

successful only in a minority of CCA patients (26% in advanced CCA versus >50% advanced colorectal 

cancers)33. In addition, success has often been limited to iCCA narrowing the appreciation of 

genomic differences between different subtypes in the advanced setting. To date, two reports are 

available on the genetic characterization of advanced CCA by targeted sequencing, while no data are 

available on whole genome analyses as well as on transcriptomic landmarks. Ahn et al. pursued the 

first targeted Next Generation Sequencing (NGS) study in formalin-fixed-paraffin-embedded tissues 

from chemotherapy-naïve advanced biliary cancer patients, including 142 iCCA and 31 eCCA34. GBC 

and ampullary cancers were included but represented less than 5% of the whole series. The study 

covered the entire coding sequence of 236 cancer-related genes with an averaged depth greater 

than 250x. Unfortunately, 25% of cases represented stage I-II disease, as the analysis was performed 

on archival tissue available from resections. The genes most frequently altered were CDKN2A (29%), 

TP53 (28%) and KRAS (22%), followed by ARID1A and IDH1 (13%), FGFR2 (12%), PI3KCA (10%), 

SMAD4 (190%), PBRM1 (10%). The genes involved were the same identified in studies performed in 

resected CCA. However, each tumor had a median of 3 actionable mutations, with a trend toward an 

increased number of mutations in advanced tumors compared to early stages. In the cohort of 86 

patients with advanced disease who underwent palliative first line chemotherapy no individual gene 

mutations were predictive factors of response to chemotherapy. However, loss of function 

mutations in CDKN2A and TP53 were significantly associated to worse overall survival. Whether this 

is related to the prevalence of these mutations in this cohort remains to be addressed. ARID1A 

mutations, in presence of mutations in TP53 or CDKN2A, were associated to a more chemosensitive 

phenotype to platinum regimen likely through its role in DNA damage, but further studies are 

warranted to validate these findings. More recently data on the advanced biliary cancer cohort of 

the MOSCATO 01 trial have been released. MOSCATO 01 was a prospective clinical trial which 

evaluated the benefit of incorporation of genomic analyses in the selection of systemic therapy for 

advanced cancer patients35. Among 1035 patients enrolled in MOSCATO 01, 4% had advanced biliary 

cancers (N=43) with 67% being iCCA. In this case molecular analysis was completed for 79% of 

patients36. The high rate of success is likely to be related to the clinical trial frame with on-purpose 

research biopsies, the collection of fresh frozen tissue and the prevalence of iCCA in the series. If the 

genes mutated in advanced CCA reflected those identified in the early stage disease (TP53 26%; RAS 

24%; IDH 18%; FGFR 1/2 16%; EGFR and ERBB 16%, CDKN2 16%, PTEN 14%, PI3KCA 10%, and MDM2 

10%), it is interesting to note that multiple molecular alterations were detected in 87% of the 

samples with a median of 3 molecular alterations per patients. These data are interesting when they 

are compared to the molecular landscape of resected tumors in which the co-occurrence of two or 



more actionable lesions is present only in 30% of cases37, and probably provide the bases for 

understanding the failure of targeted therapies in advanced CCA. It is noteworthy to observe that 

targeted therapies have given limited benefits also in cases of highly selected sub-populations, as in 

the case of FGFR2 inhibitors in FGFR2-fused iCCA: the response rate of only 18% suggests that 

progression of these advanced CCA is driven by multiple forces most of which are still unknown38. A 

better knowledge of the interplay between multiple pathways in promoting tumor progression and 

drug resistance in the advance setting is essential for the development of ad-hoc treatment 

combinations and adaptive therapies that enable a long-term control of the disease. In line with this 

hypothesis multiregional sequencing studies have recently shown that parallel evolution and 

chromosomal alteration can shape spatial heterogeneity and promote branch diversity in iCCA39.  

The availability of tissue from the primary and the recurred tumor in one case allowed Dong et al to 

assess the temporal evolution of iCCA39. Multiple mutational clusters were present at a sub-clonal 

occurrence in more than one area in the recurrent tissue, indicating a polyclonal metastatic seeding 

pattern in CCA (Figure 1). We can then speculate that two or more primary clones can be 

responsible for metastatic progression, either because a synergistic cooperation between the 

clusters may prove beneficial in the evolutionary dynamics, or because an early colonization may 

remodel the microenvironment to facilitate colonization of further clones. Interestingly the number 

of clonal mutations was the same between the primary and the recurred tumors, but the number of 

sub-clonal mutations was lower in the recurrence suggesting that only the fittest clones can develop 

and give rise to advanced disease making the molecular profile of advanced tumors different from 

their matched primary. In addition, new oncogenic events can occur in the metastatic tumors that 

contribute to a different profile. Interestingly, Dong et al observed new mutations in the recurrence 

which were not present in the primary tumor and were known to be associated to chemo-

resistance39. 

Taken altogether these data underline the importance of understanding the molecular landscape of 

advanced CCA in order to be able to develop novel effective therapeutic strategies. Two different 

strategies could be implemented to overcome the issues related to lack of tissues from advanced 

CCA: 1) establishment of primary cell lines, and 2) liquid biopsies. Generation of primary cell lines 

from advanced biliary cancers was shown to be feasible through generation of 2D cell lines or 3D 

organoid models39-41; they will have the advantage of enabling expansion of tumor cells and 

achievement of cell purity for a comprehensive characterization of the molecular make-up of tumor 

cells, even though their representation of the intra-patient heterogeneity will be limited by sampling 

bias. Liquid biopsy may represent a promising technology to identify the clones that drive the 

progression of the tumor and the process of metastasis; however, given the limited number of 



circulating tumor cells in CCA, the studies are likely to be limited to the analysis of the mutational 

profile through the assessment of circulating free DNA. 

 

Epigenetic deregulation of cholangiocarcinoma. Clinical implications  

In recent years, it has become apparent that genetic alterations may not fully explain the rapid 

progression and high chemoresistance of CCA42,43. Epigenetic perturbations may play an important 

role in these processes and have, therefore, received increasing attention. In addition, epigenetic 

alterations have been proposed to function as oncogenic drivers and constitutional epimutations 

have been proposed to be the missing link of cancer heritability44,45. Supporting this hypothesis, a 

multitude of epigenetic alterations, including DNA methylation, histone post-translational 

modifications, chromatin remodeling and non-coding RNA have been identified in CCA. Interestingly, 

these different epigenetic pathways are interconnected resulting in alterations of multiple 

epigenetic factors during cholangiocarcinogenesis46-49. Here, we give an overview of recent findings 

and assess the potential clinical implications of targeting epigenetic alterations. 

 

Aberrant methylation status in cholangiocarcinoma 

DNA methylation is a major epigenetic mark with important roles in gene regulation during normal 

development and cancer50. Thereby, genomic DNA is mainly methylated at CpG dinucleotides by 

DNA methyltransferases (DNMTs) and de-methylation is carried out by Ten-eleven translocation 

methylcytosine dioxygenases (TETs). Interestingly, frequent genetic alterations of epigenetic key 

players have been observed in CCA implicating specific epigenetic processes in 

cholangiocarcinogenesis51. Deletion of or mutation in genes encoding the chromatin remodeling 

enzymes BAP1, ARID1A (AT-rich interactive domain-containing protein1A) and PBRM1, or IDH 

(isocitrate dehydrogenase) gain-of-function mutations are the most common alterations perturbing 

the epigenetic landscape of iCCA19,52,53. The tumor suppressor BAP1 is a deubiquitinase which 

participates in chromatin remodeling, whereas, PBRM1 and ARID1A are both subunits of the 

chromatin remodeling complexes SWI/SNF19. However, the inactivation of these chromatin 

remodelers by mutation makes it difficult or may make it even impossible to reactivate them. 

Therefore, it will be crucial to better understand the downstream signaling events induced by 

inactivation of BAP1, PBRM1 and ARID1A hopefully leading to specific treatment regimens for CCA 

patients with inactivation of these chromatin remodelers. 

An integrative genomic analysis of CCA identified distinct IDH-mutant molecular profiles which 

define a distinct CCA subtype43. IDH mutations alone have been shown to be sufficient to induce a 

hypermethylator phenotype54 and they tend to appear more frequently in recurrent iCCA with gene 



expression traits of epithelial-mesenchymal transition55. However, an integrative analysis of genetic 

and epigenetic profiles revealed that a subgroup of CCA patients with high rate of IDH or BAP1 

mutation and CpG shore hypermethylation had better prognosis compared to other patient groups 
56,57. Thus, it is still under debate whether epigenetic alterations, caused by specific mutations of 

epigenetic modulators or by other mechanisms, may drive tumor development and progression. 

Gain-of-function mutations of IDH occur in mutational hotspots affecting R132 of IDH1 and R172 of 

its mitochondrial isozyme IDH257. Interestingly, IDH mutations seem to exclusively occur in iCCA but 

not in pCCA and dCCA37. The frequency of IDH mutations has been reported to differ between 

cohorts with 5%, 6.1%, 18.6% and 31% in a Chinese, Japanese, Italian and US American cohort, 

respectively37,58,59. Mechanistically, IDH1 and IDH2 gain-of-function mutations lead to the 

neomorphic production of the oncometabolite 2-hydroxyglutarate (2-HG) which impairs DNA 

demethylation by TET260,61. This leads to hypermethylated CpG sites significantly enriched in CpG 

shores and upstream of transcription start sites predominantly targeting other epigenetic regulators 
57. Thus, the additional repression of epigenetic regulators by IDH mutation potentiates and 

potentially synergizes to induce tumorigenic effects. However, IDH-mutant CCA did not exhibit the 

largest average DNA methylation and share hypermethylation targets with glioblastomas, suggesting 

the contribution of additional specific factors outside the DNA methylation pathways51,57. 

Based on histology iCCAs can be subdivided into two groups: the bile duct-type which resembles 

eCCA with columnar cells with mucin production and the cholangiolar-type which recapitulates a 

small-duct iCCA morphological pattern with cell-rich tubuli formed by cuboidal cells without 

extracellular mucin62. It is likely that these two histological subtypes of iCCA have distinct cells-of-

origin62. Consistent with the almost exclusive detection of IDH mutations in iCCA, cholangiolar-type 

iCCA show a higher frequency of IDH mutations compared to bile duct-type iCCA37,62. The distinct 

profiles of IDH-mutant iCCA suggest that this subgroup of iCCA patients may be ideal candidates for 

targeted therapies. In addition, the circulating oncometabolite 2-HG, resulting from IDH gain-of-

function mutation, may be used as a surrogate biomarker for patients with IDH mutation59. In 

glioblastoma, IDH mutation decreased the levels of STAT1 and the accumulation of T cells in tumor 

sites suggesting a mechanism of immune evasion63. Targeted therapies for IDH mutant tumors are 

already in clinical trials and may alone or in combination with immunotherapies improve patient 

outcome64,65. 

However, besides cases with IDH-mutation additional CCA cases exhibit distinct DNA methylation 

profiles some of which have a larger average of altered DNA methylation compared to IDH-mutant 

CCA. Thus, multiple mechanisms may lead to distinct DNA methylation profiles. Recent studies in 

CCA suggest that promoter hypermethylation of tumor suppressor genes may be a key event of CCA 



progression and the non-random binomial distribution of hypermethylation patterns suggests 

specific mechanism inducing these DNA methylation alterations56,66,67. The inactivation of tumor 

suppressive genes by hypermethylation was successfully reversed using DNMT inhibiting cytidine 

analogues, such as 5‐aza‐2′‐deoxycytidine (decitabine), in vitro66-68. The cytidine analogues 5‐aza‐2′‐

deoxycytidine and 5-azacytidine received approval for the treatment of hematologic malignancies 

and have gained interest as priming agents in the treatment of solid tumors69. But 5-aza-2′-

deoxycytidine has been reported to be mutagenic70 and cytidine analogue chemotherapeutics are 

rapidly metabolized into inactive uridine counterparts by the enzyme cytidine deaminase (CDA) 

which is highly expressed in the liver71,72. Therefore, it may be difficult to reach adequate levels of 

cytidine analogue within the liver. Zebularine is a second-generation nucleoside analog with 

increased stability compared to 5‐aza‐2′‐deoxycytidine and 5-azacytidine. The identification of CCA 

patients with a responder gene signature may aid in the identification of patients who may benefit 

from Zebularine treatment73,74. Thus, it will be important to identify potent DNMT inhibitors and a 

subgroup of CCA patient who will most like respond to DNMT inhibition. 

 

Post-transcriptional modifications and non-coding RNA landscape 

Non-coding RNAs (ncRNAs) are single stranded RNA molecules which are not translated into protein. 

NcRNAs can regulate multiple cellular pathways and they are divided into two subclasses based on 

their length: long ncRNA (lncRNA; >200nt) and small ncRNA (<200nt). Small ncRNAs are less than 

200nt long and include microRNA (miRNA; 19-25nt), small interfering RNA (siRNA; 19-25nt), piwi-

RNA (piRNA; 26-32nt) and small nucleolar RNA (snoRNA; >60nt). Of these ncRNAs, miRNAs have 

been studied most in cancer. The mainly function of miRNAs is the inhibition of protein translation, 

whereas, lncRNAs appear to exhibit diverse functions through forming secondary and tertiary 

structures regulating multiple cellular processes. 

Depending on their target genes, miRNAs may function as oncogenes or tumor suppressors and 

miRNA profiling may be useful for patient stratification or to classify poorly differentiated 

tumors47,75,76. The first miRNAs and anti-miRs are now in clinical trials demonstrating that both, 

oncogenic and tumor suppressive miRNAs, may be successfully targeted. In CCA, most studies used a 

candidate approach focusing on a single miRNA. MiR-21 has been suggested to function as an 

oncogene and consistently miR-21 is upregulated in CCA77, increases cell invasion52 and decreased 

sensitivity to gemcitabine78. In addition, circulation miR-21 has been found to be increased in plasma 

of iCCA patients and together with miR-221 it has been proposed to be a non-invasive diagnostic 

marker for iCCA79. In contrast, a dual role of the miR-200 family (miR-200a, miR-200b, miR-429 in 

one cluster, and miR-200c and miR-141 in a second cluster) may exist. On one hand, miR‐200c and 



miR‐141 are downregulated in CCA and induces epithelial-to-mesenchymal transition (EMT) and cell 

invasion80. On the other hand, miR-200a, miR-200b and miR-429 are hypomethylated and may target 

the tumor suppressor genes DLC1, FBXW7 and CDH649. Thus, miR-200 family members may exhibit 

different functions depending on the cellular context or CCA subtype. The let-7 family members, let-

7a81-83, let-7b81, let-7c84, let-7d83, let-7e83 and let-7f83, are downregulated in iCCA and have been 

shown to inhibit self-renewal capacity and subcutaneous cancer cell growth in vivo84,85. In 

concordance, inhibition of let-7a in bile duct-ligated mice increased intrahepatic bile duct mass and 

expression of nerve growth factor86. Deregulated expression of miRNAs may also lead to alteration in 

DNA methylation. MiR-191 expression is increased in iCCA promoting proliferation, invasion, and 

migration87. The DNA demethylase TET1 is a direct target of miR-191 and reduced TET1 expression in 

CCA increased DNA methylation at the TP53 gene transcription start site resulting in reduced p53 

expression87. Although, these studies show that miRNAs may play key roles in 

cholangiocarcinogenesis, it is still unclear how these miRNAs may be exploited as therapeutic 

targets. Only few miRNAs have been confirmed to be deregulated in CCA by independent studies. 

This might be caused by the use of relatively small cohorts which differed greatly in etiology, CCA 

subtypes and ethnicity. Thus, larger cohorts are needed to identify relevant patient subgroups which 

may benefit from miRNA-based targeted therapies. 

Interestingly, miRNAs may themselves be targeted by lncRNA, thereby, inhibiting the miRNA’s 

function. LncRNAs may act as regulatory factors by presenting `decoy´ binding sites which bind 

miRNAs leading in turn to reduced inhibition of the miRNA’s targets and thus, functioning like a 

miRNA `sponge´88. The lncRNA H19 may bind let-7a which can no longer inhibit IL6 a potent 

antiapoptotic signaling mechanism in CCA89-91. Another example, of sponging is the lncRNA HULC 

which may bind miR-372 and miR-373 leading to increased expression of their target CXCR4 91. The 

lncRNA NEAT1 is a functional downstream target of BAP1 and negatively regulated by BAP192. BAP1 

expression is reduced in CCA inducing NEAT-1 expression and decreasing cytotoxicity to 

gemcitabine92. Although, the role of lncRNAs has received increasing attention during the last years 

and large numbers of lncRNAs have bene shown to be differentially expressed, only little is known 

about the function of lncRNAs. It is also crucial to analyze larger cohorts to better understand their 

function in CCA. A recent large-scale CRISPR-based screen assessing the function of ∼17,000 lncRNAs 

in seven human cell lines found that the function of lncRNAs was highly cell type-specific, often 

limited to just one cell type93. Given the large heterogeneity of CCA between anatomical subtypes 

and different etiologies, it is highly likely that most lncRNAs are functional in a subset of CCA only. 

Thus, additional research is needed to understand the concrete function of lncRNAs in CCA patient 

subgroups and to potentially utilize or target lncRNAs in the clinic. 



 

CONCLUDING REMARKS 

Aside from being categorized by heterogeneous anatomic location, CCA is categorized based on 

histopathological analysis and by growth-type patterns as well. A prominent histological feature of 

CCA is the abundant desmoplasia (tumor stroma), which is a fibrogenic tissue completely 

surrounding and tangled into the tumor epithelia and constitutes myofibroblasts, immune cells and 

vessels. This is a milieu that supports active cross-talk between the stromal and epithelial tumor cells 

and plays a causal role in tumor onset, metastasis and the pronounced drug resistance. CCA is highly 

heterogeneous not only in initiation and location but in progression as well, making it difficult to 

categorize CCA into distinct molecular subtypes. It is apparent that our current approaches to CCA 

are lacking as evidenced by the continued poor survival rates and limited treatment options. For 

these reasons, it is critical that new and effective therapies be developed. Indeed, most patients are 

diagnosed at a stage with locally advanced disease or distal metastasis when 705 to 90% of the 

patients are ineligible for surgery. Even amongst patients, who undergo surgery, more than 50% of 

cases are at risk of developing recurrence within 12 months due to inadequate adjuvant 

therapy94. Therefore, understanding the causal biology of CCA metastasis is urgently needed.  

A comprehensive and multi-layered understanding of the disease pathogenesis is fundamental in the 

development of novel therapeutic strategies. For example, the inception of epigenomic profiling 

technologies rapidly confirmed such modes of genetic regulation to be far more complex than 

traditional genomics, invoking new challenges in experimental design and interpretation. CCA lags 

behind the majority of cancers in epigenomics, though this may afford opportunity to prospectively 

in the future design robust molecular studies. We need to focus on genome-wide integromics for 

patient characterization, stratification and discovery of biomarkers to advance early diagnosis and 

precision therapy. Thus, to get to this stage in the clinical management of cholangiocarcinoma, it will 

be essential to further 1) elucidated the genome perturbations that dictate unique regulatory 

networks in primary and metastatic sites, 2) delineated synergistic drug repositioning and 

chemosensitization in CCA, 3) investigate the role of desmoplastic stromal cells in CCA tumor growth 

and resistance to treatment (for example the potential for immunotherapy targeting this niche), 4) 

comprehensively define the involvement of DNA methylation regions in transcriptional regulation 

and as driving factors in CCA, and capitalize on the potential of epigenome-based targeted therapy. 

Finally, we currently know surprisingly little about 5) the role of non-coding RNAs both as markers in 

CCA diagnosis and prognosis, and importantly also as regulators in drug responses.  

 

FIGURE LEGEND 



Figure 1. Schematic representation of the changes occurring in the molecular make-up of 

advanced CCA. (A) Little information is available on the molecular landscape of advanced CCA and 

on the evolutionary dynamics of these tumors. Based on evidence available so far, we can speculate 

that CCAs have polyclonal seeding potential where only the fittest clones survive. In addition, 

emergence of new clones induced by anti-cancer treatment has been detected in isolated cases of 

relapsed CCA which were not present in the primary tumor. (B) The differences in the molecular 

profile of primary and advanced cancers can be explained according two different hypotheses. There 

is evidence that isolated cancer cells with a specific phenotype can initially form a pre-metastatic 

niche, causing changes in the stroma that in turns induces molecular and phenotypic changes of the 

cancer cells that will populate the metastatic deposit. The poly-clonality of the metastatic deposit 

may alternatively be justified by a potential synergism of cancer clones that can give rise to a 

metastatic growth only when their oncogenic properties are combined. 
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