
Supplementary material for “Modelling The Dynamics Of Phase Separation In
Amorphous Solid Dispersions”

Appendix A. Linearization and stability analysis

In the main body of the paper, we derived conditions for stability of a solid dispersion based
on the bulk free energy. Here we indicate how the interfacial energy may be incorporated in the
analysis. We begin by recalling that the initial boundary value problem developed in the paper
for the mole fraction of the drug Xd in the solid dispersion. This is given by:

∂Xd

∂t
= ∇ ·

{
Deff(Xd)∇Xd −Ddδ

2
dXd∇

(
∇2Xd

)}
in Ω,

∇Xd · n = 0, ∇(∇2Xd) · n = 0 on ∂Ω, (1)
Xd(x, y, t = 0) = X0

d(x, y) for (x, y) ∈ Ω,

where Ω is the square region {(x, y)|0 < x, y < L}.
When manufacturing solid dispersions, the initial drug loading in the polymer is approxi-

mately uniform, so that we can write

X0
d(x, y) = Xa +R(x, y) (2)

where Xa is a constant and R(x, y)� Xa is some small noisy perturbtion of Xa. In view of (2),
we write

Xd(x, y, t) = Xa + X̂(x, y, t), (3)

where X̂(x, y, t) is a small perturbation about Xa. If we find that X̂ → 0 as t→∞, we conclude
that the solid dispersion is stable. The solid dispersion is unstable if X̂ grows in time.

Substituting (3) into (1) and neglecting quadratic terms in X̂, we obtain the linear problem

∂X̂

∂t
= Deff(Xa)

(
∂2X̂

∂x2 + ∂2X̂

∂y2

)
−Ddδ

2
dXa

(
∂4X̂

∂x4 + ∂4X̂

∂y4 + 2 ∂4X̂

∂x2∂y2

)
in 0 < x, y < L,

∂X̂

∂x
= 0, ∂3X̂

∂x3 = 0 on x = 0, L for 0 < y < L, (4)

∂X̂

∂y
= 0, ∂3X̂

∂y3 = 0 on y = 0, L for 0 < x < L,

X̂(x, y, t = 0) = R(x, y) for 0 < x, y < L.

This linear problem that can be solved using the method of separation of variables, and we find
that

X̂(x, y, t) = Xa +
∞∑

M=1
cM0e

−λM0t cos
(
Mπx

L

)
+
∞∑
N=1

c0Ne
−λ0N t cos

(
Nπy

L

)

+
∞∑

M,N=1
cMNe

−λMN t cos
(
Mπx

L

)
cos

(
Nπy

L

)
(5)

where

λMN = (M2 +N2)π2

L2

(
Deff(Xa) +DdXaδ

2
d

(M2 +N2)π2

L2

)
for M,N = 0, 1, 2, 3, ..... (6)

and where the cMN are Fourier cosine coefficients. For the special case in which the initial data
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depends only on x, so that X̂(x, y, t = 0) = R(x), the solution takes the one-dimensional form

X̂(x, t) = Xa +
∞∑

M=1
cMe

−λM t cos
(
Mπx

L

)
, (7)

where
λM = M2π2

L2

(
Deff(Xa) +DdXaδ

2
d

M2π2

L2

)
for M = 1, 2, 3, ..... (8)

and where the cM are Fourier cosine coefficients.
We now note that solid dispersion is stable if the λ’s appearing in (5) or (7) are all positive.

This will clearly be the case if λ10 = λ01 = λ1 > 0, and this implies that

Deff(Xa) > −DdXaδ
2
d

π2

L2 . (9)

Notice that this expression includes the interfacial energy term δ2
d. Setting δd = 0 we recover

Deff(Xa) > 0, which is equivalent to d2gb/dX
2
d > 0 at Xd = Xa, and this is the classical

thermodynamic criterion for stability discussed in Section 2.4 of the main body of the paper.
We can re-write (9) as

2χdpm2Xa(1−Xa) < Xaδ
2
d

π2

L2 (m− (m− 1)Xa)3 + (m− (m− 1)Xa)(m2 − (m2 − 1)Xa). (10)

This last equation gives the criterion for solid dispersion stability in terms of the key model
parameters.

Pattern formation

However, Deff(Xa) can be negative, and so some of the λ’s can also be negative. For such
cases, Xa is clearly an unstable steady state. The first mode only in the one-dimensional solution
(7) is driven unstable if we choose Deff(Xa) such that λ1 < 0 < λ2 < λ3 < λ4 < ...... This is
achieved by choosing Deff(Xa) so that (see (8))

Deff(Xa) +DdXaδ
2
d

π2

L2 < 0 and Deff(Xa) + 4DdXaδ
2
d

π2

L2 > 0

which implies

−4DdXaδ
2
d

π2

L2 < Deff(Xa) < −DdXaδ
2 π

2

L2 . (11)

For a given Xa andm, it is possible to select a Deff(Xa) satisfying (11) by making an appropriate
choice for χdp. In summary then, if we solve the fully nonlinear initial boundary value problem
(1) subject to an initial condition of the form X(x, y, t = 0) = Xa + R(x) with R(x) a noisy
one-dimensional perturbation about Xa, then there will be an initial time period when the mode
cos (πx/L) dominates. This will manifest itself as a single black stripe adjacent to a single white
stripe if we colour regions where Xd > Xa black, and regions where Xd < Xa white.

Similarly, the first two modes of the one-dimensional solution are driven unstable for the
choice

−9DdXaδ
2
d

π2

L2 < Deff(Xa) < −4DdXaδ
2
d

π2

L2 . (12)

In this case, the λ2 and λ1 modes emerge in the solution. The λ2 mode will dominate if
−λ2 > −λ1. Hence, in this case, there will be an initial time period when the shape cos (2πx/L)
dominates, and this will manifest itself as either a black-white-black or white-black-white striped
pattern if we plot regions where Xd > Xa black, and regions where Xd < Xa white.

The discussion for the fully two-dimensional case is similar. For example, for initial data of
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the form X(x, y, t = 0) = Xa + R(x, y) with R(x, y) a noisy perturbation about Xa, then the
λ11 mode is driven unstable if

−4DdXaδ
2
d

π2

L2 < Deff(Xa) < −2DdXaδ
2
d

π2

L2 . (13)

Hence, as the solution evolves and if λ11 is dominant, the mode cos(πx/L) cos(πy/L) emerges,
and this manifests itself as a two by two black and white chequered pattern using the colouring
scheme described above.
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