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56 The alkaline lamprophyres of the Dolomitic Area (Southern Alps, Italy): markers of the 

57 Late Triassic change from orogenic-like to anorogenic magmatism

58

59 ABSTRACT

60 In this paper, the first complete petrological, geochemical and geochronological 

61 characterization of the oldest lamprophyric rocks in Italy cropping out around Predazzo 

62 (Dolomitic Area) is presented, with the aim of deciphering their relationship with the Triassic 

63 magmatic events of the whole Southern Alps. Their Mg# between 37 and 70, together with their 

64 trace element content, suggest that fractional crystallization was the main process responsible 

65 of their differentiation, together with small scale mixing, as evidenced by some complex 

66 amphibole textures. Moreover, the occurrence of primary carbonate ocelli suggests an intimate 

67 association between alkaline lamprophyric magmas and a carbonatitic melt. 40Ar/39Ar data 

68 show that lamprophyres were emplaced at 219.22 ± 0.73 Ma (2σ; full systematic uncertainties), 

69 around 20 Ma after the high K calc-alkaline to shoshonitic short-lived Ladinian (237-238 Ma) 

70 magmatic event of the Dolomitic Area. Their trace element and Sr-Nd isotopic signature 

71 (87Sr/86Sri = 0.7033-0.7040; 143Nd/144Ndi = 0.51260-0.51265) is likely related to a garnet-

72 amphibole-bearing lithosphere interacting with an asthenospheric component, significantly 

73 more depleted than the mantle source of the high K calc-alkaline to shoshonitic magmas. These 

74 features suggest that Predazzo lamprophyres belong to the same alkaline-carbonatitic magmatic 

75 event that intruded the mantle beneath the Southern Alps (i.e. Finero peridotite) between 190 

76 and 225 Ma. In this scenario, Predazzo lamprophyres cannot be considered as a late-stage pulse 

77 of the orogenic-like Ladinian magmatism of the Dolomitic Area, but most likely represent the 

78 petrological bridge to the opening of the Alpine Tethys.

79

80 KEYWORDS
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81 Carbonatitic alkaline lamprophyre; Amphibole texture; Camptonite; Dolomitic Area; Predazzo; 

82 Southern Alps; Triassic magmatism. 

83

84 INTRODUCTION

85 The late-stage emplacement of lamprophyric dykes typifies a large number of plutonic 

86 complexes, providing important information of the local geodynamic evolution. According to 

87 Rock et al. (1987), Le Maitre et al. (1989), Rock (1991), Woolley et al. (1996) and Le Maitre 

88 et al. (2002), lamprophyres are defined as H2O-, CO2-, and alkali-rich rocks with a porphyritic 

89 texture, characterized by the compulsory presence of amphibole and/or phlogopite-biotite 

90 phenocrysts and the common occurrence of halides, carbonates, sulphides and zeolites. 

91 Feldspars and/or feldspathoids are often present in the groundmass. Mineral chemistry is by far 

92 a key factor for the identification/classification of these rocks: high-Ti, -Ba and -F amphiboles 

93 and micas, high-Al clinopyroxenes, high-Zn spinels and Fe3+-rich micas are in fact diagnostic 

94 phases of lamprophyres. The genesis of lamprophyres is commonly attributed to partial melting 

95 of a metasomatised mantle (Rock, 1991; Stoppa et al., 2014; Pandey et al., 2017a; 2017b; Soder 

96 & Romer, 2018), while their emplacement is usually associated with the onset of lithospheric 

97 extensional-transtensional tectonic regimes. Lamprophyres are often associated with strike-slip 

98 movements, and may mark a change in the geodynamic regime (Scarrow et al., 2011). 

99 Following Le Maitre et al. (2002), lamprophyric rocks are grouped, on the basis of their 

100 mineralogy, into three associations: i) minette-kersantite; ii) vogesite-spessartite; and iii) 

101 sannaite-camptonite-monchiquite. This discrimination partially reflects what was originally 

102 proposed by Le Maitre et al. (1989) and Rock (1991), according to whom the first two 

103 associations belong to the “calc-alkaline (shoshonitic) lamprophyres”, whereas the third to the 

104 “alkaline lamprophyres”. While the calc-alkaline variety is commonly associated with 

105 convergent settings, alkaline lamprophyres are typical of divergent margins and continental 

106 intra-plate settings (Rock, 1991; Batki et al., 2014; Stoppa et al., 2014; Ubide et al., 2014; Lu 
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107 et al., 2015; Pandey et al., 2017a; 2017b), their composition resembling volatile-enriched alkali 

108 basalts, basanites and nephelinites.

109 Several authors have investigated the main geochemical features of the Cretaceous (110 Ma) to 

110 Oligocenic (29 Ma) alkaline lamprophyres across Italy, suggesting their formation by partial 

111 melting of a mantle metasomatized by alkaline carbonatitic components (Galassi et al., 1994; 

112 Vichi et al., 2005; Stoppa, 2008; Stoppa et al., 2014). Lesser known are the alkaline 

113 lamprophyres of the Dolomitic Area (Southern Alps, NE Italy), intruded in and around the 

114 Middle Triassic Predazzo Intrusive Complex, to which they seemed geochemically and 

115 temporally related (Lucchini et al., 1969). This complex is one of the few plutonic expressions 

116 of the high-K calc-alkaline to shoshonitic magmatism that shaped the Dolomitic Area between 

117 237 and 238 Ma (Gasparotto & Simboli, 1991; Bonadiman et al., 1994; Mundil et al., 1996; 

118 Abbas et al., 2018; Casetta et al., 2018a; 2018b; Storck et al., 2018; Wotzlaw et al., 2018). 

119 Recent petrologic and Sr-Nd isotopic studies on the Predazzo pluton, complemented by field 

120 observations, revealed: i) the existence of three different SiO2-oversaturated to -undersaturated 

121 magma batches and their precise emplacement sequence at shallow crustal depth (1.4-5.6 km); 

122 ii) the gradual transition between the intrusion and the overlying hypabyssal and volcanic 

123 (basaltic/latitic) deposits; iii) the EM I-like Sr-Nd isotopic signature of the intrusive rocks and 

124 the low degree of crustal assimilation experienced by Ladinian magmas during ascent; and iv) 

125 the slight isotopic depletion of the mantle source moving towards higher 143Nd/144Nd ratios 

126 from the older SiO2-saturated to the younger SiO2-undersaturated batches (Casetta et al., 2018a; 

127 2018b).  

128 The connection between the alkaline lamprophyres and the host volcano-plutonic complex has 

129 never been investigated, despite being a key factor in deciphering the evolution of the 

130 magmatism of the Dolomitic Area. For this reason, whole-rock major, trace element and Sr-Nd 

131 isotopic determinations, together with mineral phases major and trace element chemistry, were 

132 used to characterize the Predazzo alkaline lamprophyres mantle source, and identify how the 
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133 melts differentiated at shallow depths. Finally, 40Ar/39Ar dating constrained their emplacement 

134 within the temporal evolution of the Dolomitic Area and the whole Southern Alps magmatism. 

135

136 GEOLOGICAL AND GEODYNAMIC OVERVIEW

137 The geodynamic framework of the Austroalpine and Southalpine domains during Middle-Late 

138 Triassic is complicated by the short timescales, variety of magma types, and overprinting by 

139 Alpine orogenesis. Magmas with calc-alkaline to shoshonitic affinity intruded in several 

140 localities of the Southern Alps, Dynarides and Hellenides between ~242 and 227±6 Ma 

141 (Barbieri et al., 1982; Pamić, 1984; Gianolla, 1992; Mundil et al., 1996; Pe-Piper, 1998; 

142 Armienti et al., 2003; Beccaluva et al., 2005; Cassinis et al., 2008; Bellieni et al., 2010; Beltràn-

143 Trivino et al., 2016; Bianchini et al., 2018; Storck et al., 2018; Wotzlaw et al., 2018). 

144 Simultaneously, scattered intrusions of alkaline magmas emplaced between 231±1 and 227±7 

145 Ma along the Periadriatic lineament (Karawanken) and in the Carpathians (Ditrau) area (Lippolt 

146 & Pidgeon, 1974; Dallmeyer et al., 1997; Morogan et al., 2000; Visonà & Zanferrari, 2000; 

147 Batki et al., 2014; Pál-Molnár et al., 2015).

148 The close relationship between the orogenic magmatism and the onset of extensional-

149 transtensional tectonics (Doglioni, 1984, 1987, 2007; Stampfli & Borel, 2002; 2004) led some 

150 to hypothesize various possible geodynamic scenarios for the Southern Alps. They include: i) 

151 aborted rifting in a passive margin (Bernoulli & Lemoine, 1980); ii) active mantle upwelling 

152 (Stӓhle et al., 2001); iii) arc system at the Paleo-Tethys NW limb (Castellarin et al., 1988); iv) 

153 back-arc development connected to the subduction of the Paleo-Tethys (Ziegler & Stampfli, 

154 2001; Stampfli & Borel, 2002; 2004; Stampfli et al., 2002; Armienti et al., 2003; Stampfli, 

155 2005; Cassinis et al., 2008; Schmid et al., 2008; Zanetti et al., 2013); v) anorogenic rifting with 

156 subduction signature inherited from the Hercynian orogeny (Sloman, 1989; Bonadiman et al., 

157 1994; Pe-Piper, 1998; Beltràn-Trivino et al., 2016). Other authors, trying to encompass the 

158 Austroalpine and Carnian-Dinaric domains in the geodynamic reconstruction, hypothesized: vi) 
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159 the presence, beneath the Southern Alps-Austroalpine and Carnian-Dinaric plates, of different 

160 mantle sources affected by Palaeozoic subduction-related and plume-related processes, 

161 respectively (Visonà & Zanferrari, 2000); and vii) the existence of a Palaeozoic oceanic basin 

162 between Austroalpine and Southern Alps, closed by a subduction dipping beneath the latter 

163 (Bianchini et al., 2018). 

164

165 MATERIALS AND METHODS

166 Whole-rock major and trace element analyses were carried out at the Department of Physics 

167 and Earth Sciences of the University of Ferrara using an ARL Advant-XP automated X-ray 

168 fluorescence spectrometer. Full matrix correction procedure and intensities were completed 

169 following Traill & Lachance (1966). Accuracy and precision are better than 2-5% for major 

170 elements and 5-10% for trace elements. Detection limits are 0.01 wt% and 1-3 ppm for most of 

171 the major and trace element concentrations, respectively. 

172 Rb, Sr, Y, Zr, Nb, Hf, Ta, Th, U, and rare-earth elements (REE) were analyzed at the 

173 Department of Physics and Earth Sciences of the University of Ferrara by inductively coupled 

174 plasma-mass spectrometry (ICP-MS) using a Thermo Series X spectrometer. Precision and 

175 accuracy were better than 10% for all elements, well above the detection limit.

176 Mineral phase major element compositions were analyzed at the Department of Lithospheric 

177 Research of the University of Wien, using a CAMECA SX100 electron microprobe equipped 

178 with four WD and one ED spectrometers. The operating conditions were as follows: 15 kV 

179 accelerating voltage, 20 nA beam current, and 20 s counting time on peak position. Natural and 

180 synthetic standards were used for calibration, and PAP corrections were applied to the intensity 

181 data (Pouchou & Pichoir, 1991).

182 Trace element concentration of pyroxene and amphibole crystals was carried out at the CNR - 

183 Istituto di Georisorse of Pavia by laser ablation microprobe-inductively coupled plasma-mass 

184 spectrometry (LAM-ICP-MS). The basic set and protocol were described by Tiepolo et al. 
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185 (2003). NIST 610 and NIST 612 standard glasses were used to calibrate relative element 

186 sensitivity. Precision and accuracy for trace element analyses were assessed by standard sample 

187 BCR-2 (reference values from USGS Geochemical Reference Materials Database). Each 

188 analysis was corrected with internal standards using CaO for both clinopyroxene and 

189 amphibole. The detection limit was function of the ablation volume and counting time and was 

190 therefore calculated for each analysis; indeed, ablation volume greatly depends on instrument 

191 configuration. As a consequence, the detection limit reduces if spot size, beam power and cell 

192 gas flow are decreased. A 40-100 μm beam diameter and 20 μm s1 scanning rate were used. 

193 The theoretical detection limit ranges from 10 to 20 ppb for REE, Ba, Th, U, Zr and are about 

194 2 ppm for Ti.

195 Whole-rock 87Sr/86Sr and 143Nd/144Nd analyses were made at the Scottish Universities 

196 Environmental Research Centre (SUERC) by thermal ionization mass spectrometry (TIMS) 

197 following procedures described by Casetta et al. (2018a). Eight measurements of SRM-987 and 

198 12 of JNdi-1 made during the course of this analytical programme yielded mean values of 

199 0.710244±0.000016, and 0.512079±0.000018 (2 SD), consistent with the consensus values of 

200 ~0.71025 and ~0.51210.

201 40Ar/39Ar analyses on amphibole and plagioclase separates were made at SUERC. Samples for 

202 40Ar/39Ar dating were prepared using the methods described in Mark et al. (2011a). All samples 

203 were subsequently cleaned in de-ionised water. They were parcelled in high purity Al discs for 

204 irradiation. International standards Fish Canyon sanidine (FCs) (28.294 ± 0.036 Ma, Renne et 

205 al., 2011; Morgan et al., 2014) and GA1550 biotite (99.738 ± 0.104 Ma, Renne et al., 2011) 

206 were loaded adjacent to the samples to permit accurate characterisation of the neutron flux (J 

207 parameter). Samples were irradiated for 50 hours in the Cd-lined facility of the CLICIT Facility 

208 at the OSU TRIGA reactor. Standards were analyzed on a MAP 215-50 system (described 

209 below briefly and in more detail by Ellis et al., 2012) - FCs was analyzed by CO2 laser total 

210 fusion as single crystals (n = 20). GA1550 (n = 20) was also analyzed by CO2 laser total fusion 
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211 and step-heated using a CO2 scanning laser (n = 5) (Barfod et al., 2014). Using GA1550 the J-

212 parameter was determined to a precision approaching 0.1% uncertainty. 

213 Wafers were loaded into an Ultra-High-Vacuum (UHV) laser cell with a SiO2 window. In situ 

214 UVLAMP Ar extraction was conducted using a New Wave UP-213 nm UV laser system 

215 (described in Moore et al., 2011). 50 × 50 × 5 µm3 (amounts of ablated material approximately 

216 1250 µm3) raster pits were made in mineral surfaces to extract the Ar isotopes. All gas fractions 

217 were subjected to 180 seconds of purification by exposure to two SAES GP50 getters (one 

218 maintained at room temperature, the other held at ca. 450˚C). A cold finger was maintained at 

219 -95.5˚C using a mixture of dry ice (CO2[S]) and acetone. Ion beam intensities (i.e., Ar isotope 

220 intensities and hence ratios) were measured using a MAP 215-50 mass spectrometer in peak 

221 jumping mode. Measurements were made using a Balzers SEV-217 electron multiplier. The 

222 system had a measured sensitivity of 1.12 × 10-13 moles/Volt. The extraction and cleanup, as 

223 well as mass spectrometer inlet and measurement protocols and data acquisition were 

224 automated. Blanks (full extraction line and mass spectrometer) were made following every two 

225 analyses of unknowns. The average blank ± standard deviation (n = 28) from the entire blank 

226 run sequence was used to correct raw isotope measurements from unknowns. Mass 

227 discrimination was monitored by analysis of air pipette aliquots after every five analyses of 

228 unknowns (n = 13, 7.21 x 10-14 moles 40Ar, 40Ar/36Ar = 289.67 ± 0.63). 

229 The samples were step-heated using a CO2 laser (approximately 500-1500˚C, optical pyrometer 

230 measurements). Extracted gases were subjected to 300 seconds of purification by exposure to 

231 two SAES GP50 getters (one maintained at room temperature, the other held at ca. 450˚C). A 

232 cold finger was maintained at -95.5˚C using a mixture of dry ice (CO2[S]) and acetone. Ion beam 

233 intensities were measured using a MAP 215-50 mass spectrometer in peak jumping mode. 

234 Measurements were made using a Balzers SEV-217 electron multiplier. The system had a 

235 measured sensitivity of 1.12 × 10-13 moles/Volt. The extraction and cleanup, as well as mass 

236 spectrometer inlet and measurement protocols and data acquisition were automated. Blanks 
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237 (full extraction line and mass spectrometer) were made following every analysis of an unknown. 

238 The average blank ± standard deviation for each experiment (n = 14) from the entire blank run 

239 sequence was used to correct raw isotope measurements from unknowns. Mass discrimination 

240 was monitored by analysis of air pipette aliquots after every three analyses. 

241 All Ar isotope data were corrected for backgrounds, mass discrimination, and reactor-produced 

242 nuclides and processed using standard data reduction protocols and reported according to the 

243 criteria of Renne et al. (2009). The atmospheric argon isotope ratios of Lee et al. (2006), which 

244 have been independently verified by Mark et al. (2011b), were employed. The 40Ar/39Ar ages 

245 for were determined relative to the statistical optimization model of Renne et al. (2010; 2011) 

246 and are reported including analytical and full systematic uncertainties at the 2 sigma level. All 

247 raw Ar/Ar data with associated parameters are presented in Electronic Appendix 1.

248

249 PETROGRAPHY AND WHOLE-ROCK GEOCHEMISTRY

250 Petrography

251 The lamprophyres are part of a swarm of dykes that intrudes the Predazzo Intrusive Complex, 

252 the overlying volcanites and the Permo-Triassic sedimentary host rocks (Fig. 1). The dykes are 

253 mainly porphyritic basalts to trachytes, the great majority of them having the same high-K calc-

254 alkaline to shoshonitic affinity of the intrusive rocks (Casetta et al., 2018a; 2018b). 

255 Lamprophyres are 20-200 cm in thickness, NNW-SSW to N-S oriented and can be easily 

256 distinguished by their greenish colour, strongly contrasting with the pink granitic/syenogranitic 

257 body that they preferentially intrude (Fig. 1; see also Lucchini et al., 1969). Contacts are 

258 generally sharp, and no significant thermometamorphic structures are present, although intense 

259 alteration often obscures hand-sample scale textures.

260 A distinctive feature is the common presence of carbonate-bearing ocelli, feldspar and 

261 amphibole megacrysts (up to 5 cm), and xenoliths (Fig. 1; Vardabasso, 1929; Lucchini et al., 

262 1969; 1982). The latters are mainly cumulate clinopyroxenites (Morten, 1980) or fragments of 
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263 the Triassic intrusive rocks and the Permian basement, but also a few spinel lherzolites can be 

264 found (Carraro & Visonà, 2003). The petrology and geochemistry of lamprophyres led Lucchini 

265 et al. (1969) to classify them as camptonites, an alkaline variety of lamprophyres characterized 

266 by abundant plagioclase (modally more abundant than K-feldspar), and the absence of leucite 

267 and Na-foids (Rock, 1991).

268 The dykes are panidiomorphic, with, in order of decreasing abundance, amphibole, plagioclase, 

269 clinopyroxene and olivine phenocrysts, embedded in a microcrystalline assemblage of 

270 amphibole, plagioclase, clinopyroxene, K-feldspar and Fe-Ti oxides (Fig. 2). Accessory phases 

271 include carbonate, ilmenite, titanite, apatite and analcime. The modal abundances are: 

272 amphibole 35-55 vol.%, plagioclase 30-40 vol.%, clinopyroxene 0-10 vol.%, olivine 0-10 

273 vol.%, K-feldspar 2-6 vol.%, Fe-Ti oxides 3-6 vol.%. Clinopyroxene and olivine are only absent 

274 in MA1 sample (Fig. 2b), where the presence of plagioclase, K-feldspar and Fe-Ti oxides 

275 strongly increases. Carbonate is present as pseudomorphic phase replacing olivine, in secondary 

276 veins/fractures, or as a major constituent of small (200-250 µm in diameter) spherical ocelli, 

277 variably distributed and surrounded by the orthogonal growth of multiple small plagioclase, 

278 amphibole and/or clinopyroxene crystals (see the following section for a more detailed 

279 descripton). These features confirm the definition of camptonites proposed by the previous 

280 authors for all Predazzo lamprophyres. 

281 Amphibole, pale brown to reddish in colour, occurs as euhedral, elongate crystals as both 

282 phenocrysts and in the groundmass. In sample MA1, amphibole is often acicular and has a pale 

283 brown to yellowish colour (Fig. 2b). It ranges in size from 20-30 µm (groundmass) to 2.5 mm 

284 (phenocryst), excluding megacrysts, whose colour ranges from dark brown to black.

285 Plagioclase crystals are generally euhedral and vary in size between 10-20 and 400-450 µm. 

286 Larger plagioclase xenocrysts, fragments and xenoliths (0.5-1 mm) of crustal origin can be 

287 easily distinguished from the phenocrysts by their rounded shape and by the presence of well 

288 developed reaction rims made of Fe-Ti oxides, secondary feldspar and rare clinopyroxene.
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289 Clinopyroxene, pale brown in colour, is less abundant and smaller than amphibole, rarely 

290 exceeding 150-200 µm in size among the phenocrysts. Relicts of bigger euhedral crystals (1-2 

291 mm) are almost totally replaced by plagioclase, amphibole and Fe-Ti oxides, resulting in an 

292 “atoll-like” shape, where only the outermost rim of clinopyroxene is preserved. The formation 

293 of secondary epidote and chlorite often occurs at the expense of clinopyroxene.

294 Olivine phenocrysts (100-350 µm) are rare and usually pseudomorphosed by calcite and 

295 serpentine. This kind of alteration, typical in lamprophyres, is indicated by the general term 

296 pilite (Velde, 1968; Rock, 1991). K-feldspar and Fe-Ti oxides are present only in the 

297 groundmass, rarely exceeding 40-50 µm in size. 

298

299 Whole-rock major and trace element chemistry

300 Predazzo camptonites generally have a SiO2 range of 44.1 to 47.9 wt%, 1.6-3.2 Na2O wt% and 

301 1.0-3.7 K2O wt%; sample MA1 is an exception, and has higher silica (52.8 wt%) and alkali 

302 contents (2.9 Na2O wt%; 5.0 K2O wt%; Table 1). Mg# is variable, varying between 37 and 70, 

303 and mainly controlled by a wide range in MgO. Again, sample MA1 has the lowest FeO content, 

304 and is probably more differentiated than the rest of the samples. All lamprophyres have a K-

305 affinity (Fig. 3), and their CaO contents are variable depending upon alteration and presence of 

306 carbonates. In the Al2O3-MgO-CaO and SiO2/10-CaO-TiO2×4 ternary diagrams, all samples 

307 plot in the alkaline lamprophyres field (Rock, 1987; 1991), and are enriched in Al2O3 with 

308 respect to the Cretaceous to Oligocene Italian lamprophyres (Stoppa et al., 2014, and references 

309 therein). CIPW norm calculations highlight the moderate to strong Si-undersaturation, with 1-

310 13% normative nepheline for all samples and 3-5% normative leucite for two samples with high 

311 K/Si. MgO is negatively correlated with compatible elements, such as Ni (237-27 ppm) and Cr 

312 (585-14 ppm; Fig. 3).

313 Whole-rock chondrite-normalized incompatible element patterns (Fig. 4) have positive 

314 anomalies in Nb, Ta, Zr, Ti and LILE (especially Sr), and negative anomalies in Th and U. 
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315 These features are similar to the Central Iberia lamprophyres (Scarrow et al., 2011). Predazzo 

316 lamprophyre patterns resemble those of alkaline rocks, but, when compared to the average 

317 composition of oceanic island basalts, they are depleted in all elements except Rb, Ba and Sr. 

318 This feature is even more evident when compared to the worldwide camptonites (Fig. 4; Rock, 

319 1991). Chondrite-normalized REE patterns are characterised by LREE enrichment and flat M-

320 HREE profiles, with absence of Eu negative anomaly, consistent with the lack of significant 

321 plagioclase fractionation (Fig. 4). The less differentiated camptonite (Mg# 70) is slightly LREE-

322 depleted with respect to the other samples. The GdN/YbN ratios of Predazzo camptonites range 

323 between 1.7 and 2.7, contrasting with the typical steep-sloping shape of OIB rocks in general, 

324 and of camptonites in particular (Fig. 4; Sun & McDonough, 1989; Rock, 1991). Compared to 

325 the other Italian lamprophyres (Galassi et al., 1994; Vichi et al., 2005; Stoppa, 2008; Stoppa et 

326 al., 2014), Predazzo camptonites are generally depleted in all incompatible elements, except for 

327 Rb and K. A common feature is the absence of a Ta-Nb-Ti negative anomaly (Fig. 4). The 

328 HFSE distribution in the less differentiated Predazzo camptonites fall in the OIB field on a ThN 

329 vs. NbN tectonic discrimination diagram (Fig. 5a; Saccani, 2015), suggesting a within-plate 

330 setting. The alkaline nature of Predazzo lamprophyres is clearly evidenced by the Ti/Y vs. Nb/Y 

331 and Zr/Y vs. Zr diagrams (Fig. 5b-c; Pearce & Norry, 1979; Pearce, 1982), as well as by the 

332 Th-Hf-Ta and Zr-Nb-Y ternary diagrams (Fig. 5e-f; Wood, 1980; Meschede, 1986). 

333

334 MINERAL CHEMISTRY AND TEXTURAL RELATIONSHIPS

335 Major element composition of amphibole, clinopyroxene, feldspars, oxides and trace element 

336 analyses of amphibole and clinopyroxene were determined on representative lamprophyre 

337 samples. The intense state of alteration of olivine in pilite prevented its chemical analysis: 

338 according to Carraro & Visonà (2003), olivine phenocrysts in the less evolved Predazzo 

339 camptonites range in composition from Fo72.5 to Fo87.5, suggesting a primitive, mantle-derived 

340 nature of these rocks.
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341

342 Amphibole

343 We adopted the Locock (2014) a.p.f.u. amphibole classification, consistent with the 

344 recommendations of the IMA-CNMNC subcommittee on amphiboles (Table 2; Hawthorne et 

345 al., 2012; Oberti et al., 2012). This cation site distribution assigns the proper nomenclature 

346 while minimizing the OH and Fe3+ effects. Amphibole in Predazzo camptonites belongs to both 

347 the W(OH, F, Cl)- and the W(O)-dominant (oxo-amphibole) groups, and to the Ca subgroup. Its 

348 composition, extremely variable between the less and the more differentiated samples, varies 

349 from pargasite to ferri-kaersutite, Ti-rich magnesio-hastingsite and Ti-rich ferro-ferri-

350 sadanagaite (Mg# from 28 to 75; Table 2). The sadanagaitic composition is quite rare and 

351 represents the most Si-poor variety of amphibole reported from lamprophyres (Rock, 1991). In 

352 terms of CaO/Na2O and Al2O3/TiO2 ratios, most of the analyzed amphiboles are similar to those 

353 reported by Rock (1991) from alkaline lamprophyres (Fig. 6). Some crystals have a quite high 

354 Al2O3/TiO2 ratio, similar to that of calc-alkaline hastingsites, but maintaining a CaO/Na2O ratio 

355 comparable to alkaline kaersutites (Fig. 6).

356

357 Amphibole textural features and major element composition

358 Optical and electron microscope observations, coupled with major element chemical data, 

359 enabled us to identify the occurrence of five distinct textural types of amphibole, following a 

360 scheme analogous to that proposed for plagioclase and clinopyroxene crystals at Mt. Etna by 

361 Giacomoni et al. (2014; 2016).

362 Type 1 amphiboles (Fig. 7a) are the most common and occur both phenocrysts and in the 

363 groundmass. They have euhedral contour with homogeneous pale brown to orange rounded 

364 dissolved cores; the more differentiated is the host rock, the more elongated is the crystal shape, 

365 becoming acicular in sample MA1. Type 1 crystals are pargasitic to Ti-rich magnesio-

366 hastingsitic (Mg# = 71-74), usually surrounded by a reddish ferri-kaersutitic rim (Mg# =59-66) 
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367 with euhedral shape, in optical continuity with the cores. In Type 1 crystals an intermediate 

368 magnesio-hastingsitic (Mg# = 72-74) overgrowth is often visible by means of electron 

369 microscope. Groundmass amphiboles reflect the composition of the outermost rims of the 

370 phenocrysts (ferri-kaersutite to Ti-rich magnesio-hastingsite). Type 2 crystals (Fig. 7b), Ti-rich 

371 magnesio-hastingsitic in composition, have brown rounded cores (Mg# = 62-64), characterized 

372 by the presence of dispersed Fe-Ti oxides and melt pockets, and ferri-kaersutitic rims (Mg# = 

373 60-68). The cores are often surrounded by magnesio-hastingsitic intermediate overgrowths 

374 analogous to those documented in Type 1 amphiboles. Both the intermediate overgrowth and 

375 the external rim are in optical continuity with the core. Type 3 crystals (Fig. 7c) have blackish 

376 dusty cores with euhedral edges. As in case of Type 1 crystals, they are surrounded by Ti-rich 

377 magnesio-hastingsitic to ferri-kaersutitic rims (Mg# 53-70). Type 4 amphiboles (Fig. 7d) are 

378 those previously defined xenocrysts. They usually are cm in size, black coloured and markedly 

379 altered, sometimes being resorbed in entire portions. Their Ti-rich magnesio-hastingsitic core 

380 (Mg# 51-62) is often pervaded by the incipient formation of fibrous minerals and micrometric 

381 veins bearing Fe-Ti oxides. The outer portions of the core present strongly dusty resorbed zones 

382 comparable to those recognized in Type 3 crystals cores. Type 4 xenocrysts are surrounded by 

383 a pale brown to reddish magnesio-hastingsitic to ferri-kaersutitic rim (Mg# ~68). Type 5 

384 amphiboles (Fig. 7e), documented only in sample MA1, occur both as phenocrysts and 

385 centimeter-scale megacrysts. They have dark brown Ti-rich ferri-sadanagaitic to Ti-rich ferro-

386 ferri-sadanagaitic cores (Mg# = 29-39) and pale brown Ti-rich magnesio-hastingsitic rims (Mg# 

387 68-72), grown in optical continuity. With respect to Type 4 xenocrysts, megacrysts are 

388 identified by their euhedral habitus and the absence of resorption/alteration features. It should 

389 be noticed that, although important indicators of the physico-chemical conditions of the 

390 magmatic system, Type 2 to Type 5 are much rarer than Type 1 amphiboles, rarely exceeding 

391 1-5 vol.% of the specimens. 

392
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393 Amphibole trace element composition

394 Due to the small size and general alteration of most of the amphiboles, in situ trace element 

395 analyses were performed only on Type 1 (both core/rim of the larger phenocrysts and smaller 

396 groundmass specimens), Type 2 (rim) crystals and Type 4 (core/rim) xenocrysts (Table 3). 

397 Chondrite-normalized incompatible element patterns have Ba, Sr positive spikes and Th, U and 

398 Zr negative anomalies; REE patterns are convex-upward (Fig. 8). Type 4 amphibole core and 

399 Type 1 groundmass crystals have the most Nb-, Zr-, Hf-, and REE-enriched composition, 

400 whereas Type 1 phenocrysts have the less enriched patterns, relatively Zr-Hf-Nb-depleted at the 

401 core and REE-depleted at the rim. In all amphiboles, rims are generally REE-depleted with 

402 respect to the related cores (Fig. 8).

403

404 Clinopyroxene 

405 Clinopyroxene is generally aluminian- to ferrian-titanian-diopside (Fig. 6; Table 4). Large 

406 clinopyroxene phenocrysts are typically zoned in Mg#, ranging from ~82 in the centres to 68-

407 72 in the rims. Smaller phenocrysts have Mg# down to 64, being similar in composition to the 

408 outermost rim of the larger “atoll-like” clinopyroxene crystals. TiO2 content reaches high values 

409 (5.2 wt%), as already highlighted by Carraro & Visonà (2003). 

410 Clinopyroxene trace element analyses were performed on euhedral phenocrysts as well as on 

411 the outermost rims of the larger crystal with evident compositional zoning (Table 3; Fig.8) No 

412 significant trace element compositional variations are present between the smaller phenocrysts 

413 and the rims of the larger crystals.

414

415 Feldspar

416 From textural relationships, plagioclase and K-feldspar crystallization occurs later than olivine, 

417 clinopyroxene and amphibole. Plagioclase compositions vary from An74 to An23 (Fig. 6; Table 
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418 5). K-Feldspar, usually present as groundmass phase, becames modally and dimensionally 

419 significant in sample MA1, where it ranges in composition from Or54 to Or57 (Fig. 6; Table 5).

420  

421 Fe-Ti oxides

422 Fe-Ti oxides are widespread in the groundmass assemblage of all camptonites and generally 

423 have TiO2 and Al2O3 contents ranging from 12.1 to 19.0 wt% and from 2.3 to 7.8 wt%, 

424 respectively (Fig. 6; Table 6). Micrometer-sized Ti-magnetite crystals can be also found 

425 included in Type 2 amphibole cores or within the reaction assemblages pervading some 

426 clinopyroxene crystals and Type 4 amphibole xenocrysts. 

427

428 CARBONATE OCELLI

429 Rounded ocellar structures with carbonatic composition were identified in all Predazzo 

430 camptonites. Unfortunately, the remarkable alteration of the dykes prevented any accurate 

431 evaluation of their distribution at the macro-scale. Sample MA1 is the only ocelli-free, 

432 consistently with its more differentiated character (Rock, 1991). The ocelli-hosted carbonate 

433 can be subdivided in two groups (Fig. 9; Table 7): i) dolomite-ankerite type (FeO = 5.0-14.4 

434 wt%; MgO = 12.7-18.7 wt%); and ii) magnesite-siderite type (FeO = 27.5-39.0 wt%; MgO = 

435 14.3-24.0 wt%). These compositions are similar to those identified by Rock (1991) for the 

436 worldwide carbonate-bearing lamprophyres (Fig. 9). SrO content is low in all carbonate types, 

437 reaching the maximum values of 0.16-0.30 wt% in some dolomite-ankerite grains; BaO was 

438 often below the EMPA detection limit. MnO content varies from 0.24 to 0.62 wt%. Some of 

439 the ocelli are texturally composite, including both smaller dolomite-ankerite crystals and larger 

440 well-developed magnesite-siderite ones, the latters mainly occurring in the inner portions; some 

441 others are instead constituted of sole dolomite-ankerite crystals (Fig. 9).

442 An intriguing topic in the study of carbonates in magmatic rocks is the determination of their 

443 primary (carbonatitic) or secondary (hydrothermal) origin. If the carbonate ocelli are derived 
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444 from a melt, the relationship between lamprophyric and carbonatitic melts would be 

445 strengthened by Predazzo camptonites, and liquid immiscibility processes probably drove the 

446 generation of the carbonate ocelli globular structures (Rock, 1991; Le Roex & Lanyon, 1998; 

447 Leat et al., 2000; Vichi et al., 2005). If not, their nature would be linked to the occurrence of 

448 late-stage hydrothermal processes. From a textural point of view, carbonate ocelli in Predazzo 

449 camptonites are characterized by: i) spherical shape, easily distinguishable from secondary-

450 filled amygdalae, elongated in shape; ii) flow-aligned tangential growth of high-temperature-

451 forming silicates (plagioclase, amphibole and/or clinopyroxene); and iii) lack of more typically 

452 hydrothermal minerals, such as zeolites (Fig. 9). According to Vichi et al. (2005) and Gozzi et 

453 al. (2014), all these features support the primary magmatic nature of the ocelli, and, therefore, 

454 the existence of carbonatitic-like droplets within the silicate melt. 

455 To discriminate between primary and secondary carbonates, some authors have suggested that 

456 low SrO (<0.6 wt%) is consistent with a late-stage origin (Hay & O'Neil, 1983; Hogarth, 1989; 

457 Leat et al., 2000), whereas some others suggested that carbonates with SrO >0.3 wt% and MnO 

458 >0.2 wt% can be considered primary (Vichi et al., 2005). Alternatively, the magnesite-siderite 

459 carbonates in carbonatitic complexes often have low SrO contents (Buckley & Woolley, 1990; 

460 Zaitsev et al., 2004). When plotting our data in a CaO/MgO vs. SrO + MnO space, which 

461 discriminates between high temperature and late-stage secondary carbonates (Vichi et al., 

462 2005), a positive correlation is displayed by most of the magnesite-siderite crystals, whereas an 

463 almost constant CaO/MgO accompanies a large scattered (SrO + MnO) sum for the dolomite-

464 ankerite grains (Fig. 9). Such a feature is consistent with a late-stage crystallization of the 

465 magnesite-siderite crystals, and a magmatic origin for the dolomite-ankerite grains. This 

466 hypothesis is also supported by the occurrence of magnesite-siderite-free ocelli in the analyzed 

467 camptonites. A similar combination has been also recognized by Leat et al. (2000) in carbonate 

468 ocelli inside the Middle Jurassic lamprophyres of the Ferrar region (Antarctica): according to 

469 these authors, an earlier formation of magmatic calcite-dolomite was followed by a late-stage 
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470 deposition of Fe-rich, Sr-poor carbonates towards the core of the ocelli. Such an interpretation, 

471 well fitting both the chemical and textural features of the carbonate ocelli of Predazzo 

472 lamprophyres, lead us to hypothesize that magnesite-siderite precipitation probably occurred 

473 during late-stage hydrothermal fluid circulation, whereas dolomite-ankerite crystallization was 

474 primary (magmatic), likely derived from a carbonatitic-like melt that coexisted with the 

475 lamprophyric one. It is not clear whether these carbonatites are primary melts generated by 

476 mantle partial melting or formed by exsolution of immiscible carbonate fractions from alkaline 

477 magmas (Wallace & Green, 1988). The almost perfectly rounded shape of the analyzed ocelli 

478 seems to favour immiscibility, however further studies are required to investigate the 

479 association between carbonatites and lamprophyres in the Southern Alps subcontinental 

480 lithospheric mantle.

481

482 AGE AND ISOTOPIC SIGNATURE OF PREDAZZO CAMPTONITES

483 40Ar/39Ar geochronology

484 The 40Ar/39Ar incremental heating method was applied to amphibole and plagioclase separates 

485 from two different camptonite samples (FF2 and FF37). Results and age spectra are shown in 

486 Fig. 10. Sample FF2 (plagioclase): The data defined a plateau (>90% 39Ar, n = 16, MSWD 0.9) 

487 with an age of 218.90 ± 0.59 Ma. The younger discordant steps in the age spectrum likely 

488 related to alteration of the plagioclase. Sample FF37 (amphibole): The data defined a plateau 

489 (>50% 39Ar, n = 6, MSWD 1.98) with an age of 219.70 ± 0.73 Ma. Younger apparent ages in 

490 the early steps of amphibole age spectrum, concomitant with high K/Ca ratios, were probably 

491 due to secondary alteration. The plagioclase and amphibole age are in good agreement and 

492 define a crystallisation age for the Predazzo camptonites of 219.22 ± 0.46/0.73 Ma (2σ; 

493 analytical/full systematic uncertainties).

494

495 87Sr/86Sr and 143Nd/144Nd isotopes
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496 Whole-rock 87Sr/86Sr and 143Nd/144Nd isotopic ratios were measured on representative samples 

497 among the Predazzo lamprophyres (Table 1). Initial isotopic ratios, respectively named 

498 87Sr/86Sri and 143Nd/144Ndi, were corrected to an age of 220 Ma, in accordance with the 40Ar/39Ar 

499 dating results. Lamprophyres have 87Sr/86Sri values ranging between 0.7033 and 0.7040, for a 

500 143Nd/144Ndi range of 0.51260-0.51265 (Fig. 11). The isotopic data, in accordance to what 

501 hypothesized by Marrocchino et al. (2002), highlight a discrepancy between the isotopic 

502 signature of the lamprophyres and their “hosting” Predazzo Intrusive Complex (Casetta et al., 

503 2018a). The lamprophyres isotopic signature lies in fact between the DMM and the EM I mantle 

504 end-members, in contrast to that of the Predazzo intrusive rocks, purely EM I-like (Fig. 11).

505

506 LAMPROPHYRE DIFFERENTIATION 

507 The differentiation processes of worldwide alkaline lamprophyres are often characterized by 

508 the occurrence, both at local (ocelli, veins, globules) and regional scale (coeval dykes/plutons), 

509 of co-magmatic intermediate/felsic rocks, mainly foid-syenitic in composition (Rock, 1987; 

510 1991). In these samples, the Ni, Cr decrease at decreasing MgO (Fig. 3), together with the 

511 mineral phase compositional variations, are consistent with fractional crystallization. The 

512 absence of a significant interaction with crustal components during ascent/emplacement is 

513 supported by the high whole-rock MgO, Cr and Ni contents, the presence of forsteritic olivine 

514 and the initial 87Sr/86Sr and 143Nd/144Nd values that approach the DMM isotopic component. 

515 These features point towards a mantle-derived origin for our samples, in accordance with most 

516 of the worldwide alkaline lamprophyres (Rock, 1991).

517 The extent of fractional crystallization was estimated assuming Rayleigh distillation (e.g. Shaw, 

518 1970). Assuming Zr as perfectly incompatible element (e.g. a mineral-melt distribution 

519 coefficient of zero), the most differentiated camptonite MA1 was generated by ~40% fractional 

520 crystallization of a starting primitive camptonitic melt. This estimate is consistent with mass 

521 balance calculations from major elements. Major element vectors (Fig. 12) show that ~35% 
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522 fractional crystallization of an assemblage made of olivine (19.1%), clinopyroxene (53.4%), 

523 amphibole (19.1%) and Ti-magnetite (8.4%) from a starting primitive camptonitic magma can 

524 in fact reproduce the MA1 composition.

525

526 T-P-fO2 CONDITIONS OF CRYSTALLIZATION AND WATER CONTENT OF 

527 LAMPROPHYRIC MELTS

528 The determination of T-P-fO2 parameters and water content of lamprophyric systems is 

529 challenging. Following Rock (1987, 1991), we assume that the whole-rock samples 

530 approximate the composition of melt + suspended crystals + volatiles. On this basis, the 

531 physico-chemical crystallization conditions of Predazzo camptonites were estimated by means 

532 of several thermo-, oxy-barometric and hygrometric equations applied to chosen mineral 

533 (clinopyroxene, Ti-magnetite, amphibole)-melt pairs. Errors related to each applied method are 

534 reported in Table 8.

535 Equilibrium between clinopyroxene (Cpx) phenocrysts and camptonitic melt was evaluated by 

536 means of their Fe-Mg partitioning, assuming a Cpx-LiqKdFe-Mg of 0.26±0.05 (Akinin et al., 2005), 

537 which ideally reflect clinopyroxene equilibrium conditions in an alkali-dominated basic melt 

538 (i.e. camptonites; Ubide et al., 2014). Since most of clinopyroxene-liquid thermobarometers 

539 require as input the H2O content of the crystallizing melt, and this parameter is highly variable 

540 in the lamprophyre system, T and P of clinopyroxene crystallization were determined by means 

541 of the single-mineral H2O-independent equations 32a and 32d of Putirka (2008), in turn derived 

542 by the T-dependent barometer and the P-independent thermometer of Putirka et al. (1996). This 

543 rational scheme enabled us to retrieve the T-P path of clinopyroxene crystallization without 

544 implying any circular reference. The equilibrium between amphibole (Amp) crystals and the 

545 camptonitic melts was evaluated by means of the T- and P-independent Amp-LiqKdFe-Mg exchange 

546 coefficient, which should be 0.28±0.11 in conditions of equilibrium (Putirka, 2016). The H2O 

547 content of the melt from which amphibole crystallized was calculated by the single-mineral 
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548 hygrometer of Ridolfi et al. (2010). Afterwards, the T-P conditions of amphibole crystallization 

549 were calculated by means of the amphibole-melt P-independent thermometer (Equation 5) and 

550 the T-independent, H2O-dependent barometer (Equation 7b) of Putirka (2016). In this latter 

551 equation, the H2O values obtained by the Ridolfi et al. (2010) hygrometer were used as input. 

552 The oxygen fugacity of the magmatic system was calculated by means of the oxy-barometer of 

553 Ishibashi (2013), based on the Fe2+/Fe3+ partitioning between spinel and melt.

554

555 Clinopyroxene and Ti-magnetite crystallization conditions

556 Equilibrium check results indicated that most of the clinopyroxene phenocrysts were not in 

557 equilibrium with the high Mg# (59-65) camptonitic melts (Cpx-LiqKdFe-Mg = 0.32-0.96), requiring 

558 instead a more evolved melt to attain equilibrium (Mg# 44-49). The disequilibrium is also 

559 supported by the compositional zoning between cores (Mg# 82) and rims (Mg# 68) of many 

560 crystals, as well as by the dusty reaction zones of the larger phenocrysts. The few crystals 

561 attaining equilibrium belong to slightly more evolved camptonitic samples (Cpx-LiqKdFe-Mg = 

562 0.17-0.40). Thermobarometric results indicate that clinopyroxene in equilibrium with their host 

563 rock composition crystallized at P of 490±180 MPa and T of 1087±27°C (Table 8). According 

564 to these ranges, T-P values of 1100-1050°C and 500 MPa were considered to apply the Ishibashi 

565 (2013) oxy-barometer to Ti-magnetite crystals. Results yielded a fO2 interval of -8.3/-10.0 log 

566 fO2 at 1100°C, and a -9.4/-11.0 log fO2 range at 1050°C (between -1 and +1 FMQ; Table 8).

567

568 Amphibole crystallization conditions 

569 Amphibole crystals in the less evolved camptonite resulted not in equilibrium with their host 

570 rock composition, having an Amp-LiqKdFe-Mg of 0.42-0.89. On the other side, equilibrium was 

571 attained by some crystals in the more evolved MA1 sample (Amp-LiqKdFe-Mg = 0.29-1.0). As 

572 expected, Type 4 xenocrysts and Type 5 amphiboles cores yielded extreme disequilibrium 

573 conditions, with Amp-LiqKdFe-Mg values as high as 1.94.
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574 The Ridolfi et al. (2010) hygrometer indicates that Type 1, Type 2 and Type 3 amphiboles 

575 crystallized at water contents of 7.3±0.3 wt% in the less evolved camptonitic melt, and 6.8±0.7 

576 wt% in the more differentiated one (Table 8). Higher values were calculated for Type 4 

577 xenocrysts and Type 5 amphibole cores, which yielded H2O contents up to 9.8 wt%. By 

578 considering only the crystals in equilibrium with their host rock composition, a range of 6.4±0.3 

579 H2O wt% is obtained. Putirka (2016) thermobarometers yielded T-P intervals of 1074-927°C 

580 and 1230-470 MPa for all amphibole crystals (Table 8). The highest P were calculated for Type 

581 4 xenocrysts (1190±50 MPa) and Type 5 amphiboles cores (1030±50 MPa), at corresponding 

582 crystallization T of 1037±21°C and 952±21°C, respectively (Table 8). It is worth noting that, 

583 due to the significant disequilibrium between Type 4 and Type 5 crystals and the melt, these 

584 values should be considered with caution. By taking into account only the crystals in 

585 equilibrium with the host rock, T-P ranges of 1027±12°C and 600±60 MPa are obtained. These 

586 values can likely represent the shallower amphibole crystallization conditions in the magmatic 

587 system. The deeper crystallization conditions can be instead roughly approached by some Type 

588 1, Type 2 and Type 3 crystals close to the equilibrium with the host camptonite (Amp-LiqKdFe-Mg 

589 = 0.42-0.46), which yield P and T up to 1160 MPa and 1067°C. In any case, the obtained T-P 

590 ranges are consistent with the experimental simulations proposed by Pilet et al. (2010), who 

591 demonstrated that kaersutite crystallization can start at 1130°C and 1.5 GPa in volatile-enriched 

592 (5-6 H2O wt%) basanitic melts, thus in conditions similar to those of Predazzo camptonites. If 

593 combined to the thermobarometric results obtained by clinopyroxene, these T-P values suggest 

594 that crystallization in the lamprophyric system occurred continuously between 690 and 230 

595 MPa, at T decreasing from 1124 to ~1000°C, with an H2O content ≥ 6.4±0.3 wt%.

596

597 Interpretation of amphibole textures

598 A correlation between the obtained T-P and H2O results and the previously identified textures 

599 enable us to infer amphibole crystallization processes. The homogeneous composition of Type 
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600 1 amphibole cores, close to the equilibrium with the less evolved melt (Amp-LiqKdFe-Mg = 0.42-

601 0.58) records a growth at high T-P (1057±12°C; 980±50 MPa), and 7.5±0.3 H2O wt% in the 

602 melt. The crystallization of Type 1 crystals continued during differentiation of the melt towards 

603 more evolved compositions (MA1 sample), where crystals attain equilibrium (Amp-LiqKdFe-Mg = 

604 0.32-0.36), at T-P down to 1013±34°C and 740±120 MPa, and water content of 7.3±0.9 wt%. 

605 Type 2 crystal cores, in marked disequilibrium with the melt (Amp-LiqKdFe-Mg = 0.73-0.80), record 

606 crystallization T and P of 1004±3°C and 900±10 MPa, at 7.0±0.1 H2O wt%. The rounded shape 

607 of both Type 1 and Type 2 cores reflects an event of dissolution after reaction with a melt 

608 undersaturated in amphibole. Subsequently, the melt differentiated and re-saturated in 

609 amphibole, allowing the precipitation of the rims at lower T-P (1048±15°C, 750±110 MPa Type 

610 1; 1029±24°C and 750±20 MPa Type 2) and H2O content (6.9±0.3 wt%; Fig. 7). The magnesio-

611 hastingsitic overgrowth in both Type 1 and Type 2 crystals, similar to the diopsidic bands 

612 identified by Petrone et al. (2018) in clinopyroxenes from Stromboli volcano (Aeolian Islands), 

613 probably formed in response of new pulse of primitive melts that introduced additional high T 

614 components (Mg and Ca) in the magmatic system. An abrupt T increase (from 1051 to 1071°C) 

615 is recorded in this intermediate overgrowth (Figg. 7a and 7b), which can provide the evidence 

616 of small-scale mixing dynamics between differentiated and primitive batches inside the 

617 magmatic system. Dusty zones of Type 3 amphibole cores formed as result of pseudomorphic 

618 replacement by interface-coupled dissolution-precipitation processes, resulting in Ti-magnetite, 

619 plagioclase and clinopyroxene formation at the interface (Ruiz-Agudo et al., 2014). The 

620 overgrowth of a newly formed rim in Type 3 crystals is likely concomitant with the formation 

621 of Type 1 and Type 2 rims. Type 3 rim, in fact, approaches the equilibrium towards the more 

622 evolved camptonitic melt (Amp-LiqKdFe-Mg = 0.34-0.69). Its crystallization conditions are the 

623 following: T = 1017±40°C; P = 760±120 MPa; melt H2O content = 7.2±0.4 wt%. Type 4 

624 xenocrysts probably represent relicts of larger crystals of deep crustal origin, brought to the 

625 surface by the ascent of lamprophyres. The incipient alteration and resorption features of their 
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626 cores suggest disequilibrium with the hosting melt, as also confirmed by the high Amp-LiqKdFe-

627 Mg (1.22). Their dusty portions probably formed as consequence of interface-coupled 

628 dissolution-precipitation. The outermost rim, compositionally analogous to most phenocryst 

629 rims and groundmass crystals (Type 1, Type 2 and Type 3) represent a late overgrowth 

630 approaching the equilibrium with the melt (Amp-LiqKdFe-Mg down to 0.61), as evidenced by the 

631 crystallization T (1051±9°C), P (1180±50 MPa) and H2O (8.6±0.3 wt%). The sharp edges and 

632 optical continuity between Type 5 amphiboles core and rim, as well as the absence of resorption 

633 zones, suggest that this texture is a consequence of a magnesio-hastingsitic overgrowth around 

634 preexisting sadanagaitic (Mg# = 29-39) crystals (Fig. 7e). The high Amp-LiqKdFe-Mg of the cores 

635 (1.18 to 1.94) indicates significant disequilibrium with respect to the host rock composition, 

636 implying that they would attain equilibrium only in an extremely differentiated melt. The 

637 related thermobarometric results, which should be considered with caution, suggest high P 

638 (1030±50 MPa) and low T (952±21°C) of crystallization, at high water content (up to 9.8 wt%). 

639 The peculiar composition of Type 5 cores, rare even in lamprophyres (Rock, 1991), makes it 

640 difficult to clearly define their origin, deserving further studies. Type 5 rims represent a 

641 subsequent growth in equilibrium with the melt (Amp-LiqKdFe-Mg = 0.29-0.55), at T of 1015±18°C, 

642 P of 570±60 MPa and H2O content down to 5.8 wt%. 

643 The observed simple dissolution and pseudomorphic replacement textures indicate a very 

644 dynamic regime of the lamprophyres magmatic system. Chemical zoning associated with 

645 dissolution-reprecipitation textures suggest that amphibole stability was affected by T changes 

646 due to small scale mixing between variably differentiated and/or volatile-rich melts. The 

647 repeated occurrence of such small-scale mixing processes resulted in fact in multiple and abrupt 

648 changes of amphibole liquidus conditions during lamprophyre differentiation.

649

650 LAMPROPHYRE MANTLE SOURCE AND MELTING MODEL
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651 An intriguing topic is the nature of the mantle source from which Predazzo lamprophyres were 

652 generated, especially in the light of their HFSE/REE distribution and Sr-Nd isotopic signature. 

653 Indirect evidence of the minimum depth of segregation is provided by the lherzolite xenoliths, 

654 which record a re-equilibration process at about 45 km of depth, in the spinel stability field 

655 (Carraro & Visonà, 2003). The Zr/Y (6-11), Lu/Hf (0.07-0.12) and DyN/YbN (1.1-1.7) ratios of 

656 Predazzo lamprophyres suggest that garnet played a significant role during melting in their 

657 mantle source, as also suggested by Pinzuti et al. (2013) for Asal Rift magmas. However, the 

658 LaN/YbN and GdN/YbN ratios of the less evolved camptonites are not very high, suggesting that 

659 their source differs from those of the “typical” alkaline lamprophyres and OIB magmas (Sun & 

660 McDonough, 1989; Rock, 1991). According to the Sr-Nd isotopic data (Fig. 11), lamprophyres 

661 were generated by a depleted mantle, as also confirmed by the Nb/La vs. La/Yb diagram of 

662 Smith et al. (1999), which indicates that an asthenospheric contribution was required for their 

663 generation (Fig. 13a). 

664 On the basis of these constraints, we modelled the nature of the mantle domain from which 

665 Predazzo lamprophyres were segregated by non-modal batch melting (Shaw, 1970). To account 

666 for the HFSE and REE budget of our samples, several mantle melting domains were used as 

667 starting point of our simulations. The modal composition and melting proportion of each of the 

668 considered mantle sources are reported in Table 9. A first discrimination between the role of 

669 spinel and garnet in the hypothetical source was put forward by using as starting mantle 

670 domains a spinel- and a garnet-bearing fertile lherzolites with Primordial Mantle (PM; Sun & 

671 McDonough, 1989) composition (curves II and III in Fig. 13). Consistently with the Sr-Nd 

672 isotopic data, a melting path was also proposed by using as starting source a depleted mantle 

673 composition (DMM; Workman & Hart, 2005; curve I in Fig. 13). The obtained melting curves 

674 suggest that none of the chosen starting components were able to reproduce the Sm/Yb ratio of 

675 Predazzo lamprophyres (Fig. 13). Their Gd/Yb ratio was better approximated by the melting 

676 curve of the garnet-bearing source, even if the match was not perfect (curve III in Fig. 13). 
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677 Consequently, amphibole and/or phlogopite were introduced as additional components of the 

678 starting mantle domains in our simulations. The calculated curves showed that garnet-

679 amphibole- (curve V), garnet-phlogopite- (curve VI) and garnet-spinel-amphibole-bearing 

680 (curve IV) sources are able to account for the Sm/Yb and Gd/Yb ratios of our samples (Fig. 

681 13), though the garnet-phlogopite-lherzolite assemblage was not able to reproduce the HREE 

682 systematics. Among the melting trends of garnet-amphibole- and the garnet-spinel-amphibole-

683 bearing sources, the former better reproduced the features of the less evolved camptonites, both 

684 in the Sm/Yb, La/Yb and Gd/Yb ratios and in the REE pattern (Fig. 13d). Accordingly, we 

685 suggest that the Predazzo lamprophyres could have been generated by low melting percentages 

686 (1.0 to 2.5%) of a garnet-amphibole-bearing lherzolite, with a fertile PM starting composition 

687 (Sun & McDonough, 1989). 

688 Such mantle source modal composition and melting degrees are similar to those proposed by 

689 Batki et al. (2014) for the generation of Ditrau lamprophyres (1-4% partial melting). However, 

690 the mantle source composition required by Predazzo lamprophyres is more depleted than the 

691 Ditrau one, being this latter a REE-enriched mantle with significant contribution of 

692 asthenospheric HIMU-OIB-like components (EAM, Seghedi et al., 2004; Batki et al., 2014). 

693 The presence of a LILE- and volatiles-enriched garnet-bearing mantle source with an 

694 asthenospheric signature was also proposed by Stoppa et al. (2014) to model the genesis of the 

695 Cretaceous to Oligocenic alkaline/ultramafic lamprophyres of Central-Southern Italy, whose 

696 REE patterns are strongly LREE-enriched and HREE-depleted with respect to the Predazzo 

697 ones. The involvement of amphibole and garnet during melting was required to simulate the 

698 relatively low LREE/HREE ratios of Predazzo lamprophyres, as well as to get rid of their H2O-

699 CO2-alkali-rich nature. Considering that the spinel-garnet transition in a continental lithospheric 

700 setting occurs at 60-90 km (2-3 GPa; Takahashi & Kushiro, 1983; Falloon & Green, 1988; 

701 Kinzler & Grove, 1992; Robinson & Wood, 1998; Pinzuti et al., 2013), we can constrain the 

702 melting region of Predazzo lamprophyres to >60 km depth. Amphibole stability in the mantle 

Page 27 of 137

http://www.petrology.oupjournals.org/

Manuscript submitted to Journal of Petrology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

703 is limited to ~3 GPa (Frost, 2006; Fumagalli et al., 2009; Tumiati et al., 2013; Mandler & 

704 Grove, 2016), suggesting that the mantle source depth is <90 km. Based on these constraints, 

705 we suggest that a depth of 70-80 km is most likely for the source region of these camptonites. 

706 Similar depths are also consistent with those proposed by Hammouda & Keshav (2015), 

707 according to whom carbonatite and silicate melts can coexist between 2 and 2.6 GPa (ca. 60-80 

708 km) along the convecting mantle adiabat (asthenosphere). 

709

710 GEODYNAMIC IMPLICATIONS

711 The magmatism of the Dolomitic Area 

712 The late-stage occurrence of alkaline lamprophyric dykes in intrusive complexes often acquires 

713 a double significance, since they do not only act as younger chronological boundary of the 

714 magmatic episodes, but they also constitute the most primitive (and least contaminated by the 

715 crust) magma types (Rock, 1991). In the case of the Predazzo area, several authors suggested a 

716 close relationship between the alkaline lamprophyres and the host pluton (Lucchini et al., 1969; 

717 1982; Carraro & Visonà, 2003). The new 40Ar/39Ar age results (from 218.90 ± 0.59/0.66 to 

718 219.70 ± 0.73/0.85 Ma; Fig. 10) lead us to point out that the lamprophyric rocks belong to a 

719 distinct magmatic pulse that occurred about 17-20 Ma later than the emplacement of the 

720 Predazzo Intrusive Complex (U-Pb zircon age of 238.075 ± 0.087 Ma, Storck et al., 2018). 

721 Moreover, since the entire Ladinian volcano-plutonic event in the Dolomitic Area has a limited 

722 duration (from 239.04±0.04 to 237.77±0.05 Ma; Brack et al., 1996; Mundil et al., 1996; Mietto 

723 et al., 2012; Abbas et al., 2018; Storck et al., 2018; Wotzlaw et al., 2018), it is evident that the 

724 lamprophyres represent a distinct magmatic event. This chronological gap is also reinforced by 

725 the geochemical discrepancies: despite showing a K-affinity comparable to that of the high-K 

726 calc-alkaline to shoshonitic volcano-plutonic rocks of the entire Dolomitic Area (Bonadiman et 

727 al., 1994; Casetta et al., 2018a; 2018b), camptonites have peculiar trace element profiles and 

728 Sr-Nd isotopic signature (Figg. 4 and 11). In fact, whereas the Ladinian high-K calc-alkaline to 
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729 shoshonitic rocks display the typical subduction-related incompatible element patterns, alkaline 

730 lamprophyres lack any Ta-Nb-Ti and U-Th negative anomaly, suggesting the involvement of 

731 an OIB-like component in their mantle source. The 87Sr/86Sri and 143Nd/144Ndi signature of 

732 Predazzo camptonites points towards a genesis from a mantle source more depleted than the 

733 EM I-like source that produced the Ladinian high-K calc-alkaline to shoshonitic rocks. As 

734 shown in Fig. 11, in fact, they plot close to the DMM end-member (Workman & Hart, 2005), 

735 suggesting that a significant contribution of the asthenospheric mantle was involved in their 

736 genesis. This feature confirms a time-related progressive depletion of the mantle source beneath 

737 the Dolomitic Area during Middle-Late Triassic, as already hypothesized for the source of 

738 Predazzo Intrusive Complex by Casetta et al. (2018a). Our study indicates that the magmatic 

739 activity in the Dolomitic Area was not confined to the Ladinian, but re-activated at about 218.5-

740 220.5 Ma, with the emplacement of a small alkaline pulse generated from a 143Nd/144Nd-

741 enriched mantle domain. At shallow depth, the ascent of such small melts was probably 

742 favoured by extensional-transtensional dynamics, to which lamprophyres are often associated 

743 (e.g. Scarrow et al., 2011, and reference therein). The (if any) relationships between Predazzo 

744 lamprophyres and the Triassic NE-SW transtensive-transpressive regimes of the Dolomitic 

745 Area (Doglioni, 2007; Doglioni & Carminati, 2008; Abbas et al., 2018), however, has never 

746 been investigated, and requires further studies, especially in the light of the new age data. The 

747 occurrence of extensional dynamics during lamprophyres ascent is also implied by the 

748 amphibole and clinopyroxene T-P path of crystallization. In contrast to the Ladinian magmatic 

749 event, when the crystallization of the high-K calc-alkaline to shoshonitic melts occurred 

750 preferentially in batches located at shallow crustal depths (1.4-5.6 km; Casetta et al., 2018a), 

751 lamprophyres crystallization started at 24 km (considering a ΔP/Δz of 29 MPa/km) and 

752 continued towards the surface (at least until 8 km). Such a condition is consistent with the 

753 presence of a polybaric vertical plumbing system and suggests that the fractional crystallization 

754 and (small-scale) mixing processes recorded by amphibole crystals took place en route to the 
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755 surface, without implying the presence of a magma chamber. This hypothesis, fostered by the 

756 presence of mantle xenoliths in few Predazzo camptonites, further suggest that lamprophyres 

757 are unrelated to the host plutonic complex.

758

759 Late-stage magmas or alkaline precursors?

760 When considered at a geodynamic scale, the significance of Predazzo lamprophyres is 

761 intriguing, since several magmatic episodes with variable geochemical affinity shaped the 

762 Southalpine-Austroalpine and Carnic-Dinaric domains from Permian to Middle-Late Triassic. 

763 The most similar and chronologically closer magmatic occurrence was documented in the 

764 Ditrau Alkaline Massif (Carpathians), where late-stage alkaline lamprophyres (camptonites) 

765 intruded a Middle-Triassic (231-227 Ma) alkaline intrusion (Dallmeyer et al., 1997; Morogan 

766 et al., 2000; Pana et al., 2000; Batki et al., 2014; Pál-Molnár et al., 2015). The major and trace 

767 elements and isotopic similarities between the Ditrau lamprophyres and the host pluton led to 

768 interpret them as the parental magmas of the intrusive suite (Batki et al., 2014). Such a model 

769 cannot be applied to the Predazzo case, where the geochronological and geochemical 

770 discrepancies between the alkaline lamprophyres and the plutonic complex rule out any possible 

771 correlation between camptonites and the trachybasaltic/shoshonitic rocks. Notwithstanding a 

772 slight relative depletion in Th, U, Nb, Zr and LREE with respect to the Ditrau lamprophyres, 

773 Predazzo lamprophyres have comparable Sr-Nd isotopic signature (Figg. 4 and 11), suggesting 

774 that similar mantle sources were involved in their genesis. According to Batki et al. (2014), 

775 Ditrau lamprophyres were generated in an early extensional phase of the Middle Triassic to 

776 Jurassic rifting that separated the Getic microplate from the Bucovinian margin (Batki et al., 

777 2014), thus representing the Alpine Tethys rift portion located northward of the Meliata basin 

778 (Stampfli et al., 2002; Stampfli, 2005). Precursors of the Tethyan opening were also 

779 documented in the Brescian Alps, not far from the Dolomitic Area, where intra-plate tholeiitic 
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780 lavas and dykes with depleted Sr-Nd isotopic signature emplaced almost simultaneously with 

781 the Predazzo lamprophyres, at about 217±3 Ma (Cassinis et al., 2008).

782 Coeval magmatic occurrences were also recognized in the Western Alps, where alkaline dykes, 

783 generated by an upwelling mantle with significant asthenospheric contribution, emplaced in the 

784 Finero area between 190-212.5 and 225±13 Ma (Stähle et al., 1990; 2001; Schaltegger et al., 

785 2015). Moreover, ages of 215±35 Ma and 220±4 Ma were determined by Morishita et al. (2008) 

786 and Malitch et al. (2017), respectively, for the formation of the metasomatic apatite-rich and 

787 chromitite layers in the Finero peridotite. This temporal overlap, bolstered by the similar Sr-Nd 

788 isotopic systematics between the alkaline dykes and the apatite-rich layers (Fig. 11), led several 

789 authors (Ferrario & Garuti, 1990; Morishita et al., 2003; 2008; Zaccarini et al., 2004) to 

790 associate all these occurrences to a unique alkaline-carbonatitic magmatic event. The generation 

791 of such H2O-CO2-rich fluids was attributed to mantle upwelling dynamics in a continental 

792 rifting setting (Zaccarini et al., 2004). Further evidence of an intimate association between 

793 alkaline and carbonatitic magmas in the Western Alps has been recently provided by Galli et 

794 al. (2019), who documented the existence of alkaline-carbonatitic bodies with emplacement 

795 age of 185-195 Ma throughout the Ivrea zone.

796 The 219.22 ± 0.73 Ma occurrence of alkaline lamprophyres at Predazzo can be easily 

797 incorporated in such a context, taking into account that their Sr-Nd isotopic signature totally 

798 overlap those of the alkaline dykes and the apatite-rich layers at Finero (Fig. 11; Stähle et al., 

799 1990; 2001; Morishita et al., 2008). The less differentiated alkaline dykes intruded at Finero 

800 (Stähle et al., 2001) are also characterized by trace element patterns comparable to those of 

801 Predazzo lamprophyres, except for Nb, Ta and Zr, slightly enriched in the formers. A marked 

802 U-Th depletion characterizes both Predazzo lamprophyres and the alkaline dykes at Finero, and 

803 their REE patterns almost totally overlap. Furthermore, the Sr-Nb enrichment of Predazzo 

804 lamprophyres matches the main features of the apatite-bearing assemblages at Finero (Zanetti 

805 et al., 1999), confirming the involvement of a carbonate-rich component in their genesis. This 
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806 parallelism is also supported by the presence, in Predazzo camptonites, of carbonate ocelli with 

807 a dolomite-ankerite composition comparable to that of the interstitial dolomite grains in the 

808 Finero peridotite (Zanetti et al., 1999).

809 According to our findings, Predazzo lamprophyres can be considered as an expression of the 

810 190-225 Ma alkaline-carbonatitic magmatism that intruded the subcontinental mantle portion 

811 beneath the Southern Alps (Ferrario & Garuti, 1990; Stähle et al., 1990; 2001; Zanetti et al., 

812 1999; Morishita et al., 2003; 2008; Zaccarini et al., 2004; Matsumoto et al., 2005; Raffone et 

813 al., 2006; Schaltegger et al., 2015; Malitch et al., 2017). This magmatic pulse, characterized by 

814 a mantle-upwelling signature, is distinguished from the previous, subduction-related, K- and 

815 LILE-rich metasomatic episode that produced amphibole and phlogopite in the Finero 

816 peridotite (Fig. 11; Coltorti & Siena, 1984; Morishita et al., 2003; 2008; Malitch et al., 2017). 

817 According to the U-Pb zircon ages (190-180 Ma and 230-180 Ma) proposed by Zanetti et al. 

818 (2016) and Langone et al. (2018), the alkaline-carbonatitic metasomatism affected the 

819 subcontinental mantle immediately prior to its exhumation, which was precisely related to the 

820 extensional stages of the Alpine Tethys rift.

821 Rather than to a late-stage episode connected to the Middle Triassic high-K calc-alkaline to 

822 shoshonitic (orogenic) magmatism, the generation of Predazzo lamprophyres should be 

823 considered, together with the Ditrau lamprophyres, the Brescian Alps basalts and the Ivrea 

824 alkaline-carbonatitic magmas, as a Late Triassic precursor of the Alpine Tethys rifting event. 

825 This hypothesis is supported by their depleted Sr-Nd isotopic signature, consistent with a 

826 genesis from a mantle source influenced by an asthenospheric contribution (Fig. 11). Further 

827 evidence is given by the incompatible elements pattern of the alkaline lamprophyres that, when 

828 compared to the Ladinian shoshonitic rocks of the Dolomitic Area, appear depleted in U, Th, 

829 K and La, more than enriched in Nb and Ta (Fig. 4). Such a feature is consistent with the 

830 progressive shift of the magmatism from orogenic-like to anorogenic, and thus to a progressive 
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831 evolution of the subcontinental mantle source towards a more depleted, asthenospheric-related 

832 nature.

833

834 CONCLUSIVE REMARKS

835 The petrological, geochronological and isotopic study of the Predazzo alkaline lamprophyres 

836 enabled us to provide new insights on the geodynamic evolution of the Dolomitic Area and the 

837 Southern Alps during Middle-Late Triassic. The most relevant findings can be summarized as 

838 follows:

839 1. The compositional spectrum of Predazzo alkaline lamprophyres (camptonites) can be 

840 explained by assuming 35-40% fractional crystallization of olivine, clinopyroxene, 

841 amphibole and Ti-magnetite from an initial primitive camptonitic melt.

842 2. Amphibole textural and compositional features suggest that the lamprophyre magmatic 

843 system was subjected to small scale mixing between variably differentiated and/or volatile 

844 rich melts during differentiation. Moreover, the occurrence, composition and textural 

845 features of carbonate-bearing ocelli suggest that a carbonatitic melt was intimately 

846 associated to the alkaline lamprophyric one.

847 3. 40Ar/39Ar ages of Predazzo alkaline lamprophyres demonstrated that they were emplaced at 

848 219.22 ± 0.73 Ma (Late Triassic; 40Ar/39Ar; 2σ; full systematic uncertainties), suggesting 

849 an origin unrelated to the short-lived Ladinian high-K calc-alkaline to shoshonitic 

850 magmatism of the Predazzo-Mt. Monzoni intrusions in the Dolomitic Area.

851 4. The difference between alkaline lamprophyres and the host Ladinian rocks is illustrated by 

852 the absence of Ta-Nb-Ti negative anomalies, the presence of U-Th negative peaks, and their 

853 HFSE distribution, which point towards a genesis in an intra-plate geodynamic setting, from 

854 a garnet-bearing mantle source. This is also confirmed by their Sr-Nd isotopic systematics, 

855 which are consistent with a depleted mantle contribution in their source, in contrast to the 
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856 pure EM I-like signature of the Predazzo-Mt.Monzoni Ladinian intrusions, which was 

857 ascribed to a subduction-modified mantle.

858 5. Thermo-, oxy-barometric and hygrometric calculations based on clinopyroxene, amphibole 

859 and Ti-magnetite composition suggest that the crystallization in the lamprophyre magmatic 

860 system occurred at least between 690 and 230 MPa, a T decreasing from 1124 to ~1000°C. 

861 The oxygen fugacity of the magmatic system varied between -1 and +1 FMQ, whereas the 

862 H2O content of the lamprophyric melts resulted ≥ 6.4±0.3 wt%, decreasing with decreasing 

863 temperature. These results strengthen the distinction between lamprophyres and the 

864 Ladinian high-K calc-alkaline to shoshonitic magmatism: whereas the latter was dominated 

865 by crystallization processes at shallow crustal levels (1.4-5.6 km; Casetta et al., 2018), 

866 lamprophyres started crystallizing at about 24 km and continued towards the surface, 

867 probably in an extensional-transtensional tectonic regime.

868 6. Mantle melting models suggest that low melting percentages (1.0-2.5%) of a fertile garnet-

869 amphibole-bearing lherzolite can account for the generation of Predazzo lamprophyres. The 

870 melting region was probably located between 70 and 80 km of depth.

871 7. Predazzo lamprophyres are temporally, spatially and geochemically correlable to several 

872 magmatic occurrences of the Southern Alps-Carpathians area: i) the Ditrau alkaline 

873 lamprophyres (Batki et al., 2014); ii) the Brescian Alps intra-plate tholeiitic lavas and dykes 

874 (Cassinis et al., 2008); and iii) the alkaline dykes, apatite-rich and chromitite layers in the 

875 Ivrea zone (Ferrario & Garuti, 1990; Stähle et al., 1990; 2001; Morishita et al., 2003; 2008; 

876 Zaccarini et al., 2004; Schaltegger et al., 2015; Malitch et al., 2017; Galli et al., 2019). A 

877 further geochemical and geochronological comparison with the alkaline magmas at 

878 Karawanken (Austroalpine domain, Visonà & Zanferrari, 2000) is instead required, since 

879 the only available age data for this complex (230±9 Ma, Lippolt & Pidgeon, 1974) overlaps 

880 with both the ~237 Ma high-K calc-alkaline to shoshonitic and the 218.5-220.5 Ma alkaline 

881 lamprophyres of the Dolomitic Area. 
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882 8. Rather than a late-stage episode related to the Ladinian high-K calc-alkaline to shoshonitic 

883 magmatism of the Dolomitic Area, Predazzo lamprophyres should be considered part of the 

884 alkaline-carbonatitic magmatic pulse that intruded the Southern Alps subcontinental mantle 

885 between 225 and 190 Ma. Such a magmatic event likely represents a precursor of the rifting 

886 stage connected to the Alpine Tethys opening, as also suggested by its asthenospheric-

887 influenced Sr-Nd isotopic signature. The generation of such H2O-CO2-rich alkaline-

888 carbonatitic melts is therefore ascribable to mantle upwelling dynamics in a continental 

889 rifting setting (Stähle et al., 1990; 2001; Zaccarini et al., 2004; Batki et al., 2014; 

890 Schaltegger et al., 2015; Galli et al., 2019).

891 9. Predazzo alkaline lamprophyres can be considered as geochemical and geochronological 

892 markers of the shift from orogenic-like to anorogenic magmatism in the Southern Alps. 

893 Their Sr-Nd isotopic signature and incompatible elements pattern suggest that the mantle 

894 source that generated the Ladinian (~237 Ma) subduction-related magmas was 

895 progressively being depleted, during Late Triassic, by the asthenospheric influx related to 

896 the Alpine Tethys opening.
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1332 FIGURE CAPTIONS

1333 Fig. 1. (colour online)

1334 (a) Map of the tectonic units of the eastern portion of the Alps (partly modified from Castellarin 

1335 et al., 1988; Dal Piaz et al., 2003; Schmid et al., 2016). LO: Ligurian Ophiolites; AM: deformed 

1336 Adriatic margin; AD: Adriatic Microplate; SA: Southern Alps; DI: Dinarides; SM: Southern 

1337 margin of Meliata; HB: Eoalpine High-Pressure Belt; TW: Tauern tectonic Window; EW: 

1338 Engadine tectonic Window; OTW: Ossola-Tessin tectonic Window; EA: Eastern Austroalpine; 
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1339 H: Helvetic domain; M: Molasse foredeep. The Middle Triassic magmatic occurrences in the 

1340 Southern Alps domain are evidenced in black. They are, from west to east: Brescian Alps, Alto 

1341 Vicentino, Valsugana, Dolomitic Area (identified by the circle), Carnia and Karawanken. (b) 

1342 Simplified geological map of the Predazzo Intrusive Complex (PIC), showing the occurrence 

1343 of lamprophyric dykes (modified from Casetta et al., 2018a). SS: Shoshonitic Silica Saturated 

1344 unit; SU: Shoshonitic Silica Undersaturated unit; GU: Granitic Unit. (c) Lamprophyric dyke 

1345 intruded in the syenogranites (Sygr) at Predazzo. (d) Amphibole megacryst (indicated by the 

1346 arrow) and (e) clinopyroxenitic xenolith included in the lamprophyric rocks.

1347

1348 Fig. 2. (colour online)

1349 Photomicrographs in transmitted plane-polarized light of (a) a less evolved and (b) a more 

1350 evolved (sample MA1) camptonite. Amp: amphibole; Cpx: clinopyroxene; Ol: olivine; Pl: 

1351 plagioclase; Ti-Mag: Ti-magnetite. Mineral abbreviations following Whitney & Evans (2010).

1352

1353 Fig. 3. (colour online)

1354 (a) K2O vs. Na2O diagram, (b) Cr vs. MgO and (c) Ni vs. MgO variations diagrams for Predazzo 

1355 camptonites. (d) Al2O3-MgO-CaO and (e) SiO2/10-CaO-TiO2×4 ternary diagrams showing the 

1356 composition of Predazzo camptonites compared to those of worldwide alkaline lamprophyres 

1357 (AL), ultramafic lamprophyres (UML) and calc-alkaline lamprophyres (CAL; data from Rock, 

1358 1991). The compositional field of Cretaceous to Oligocenic Italian lamprophyres (grey field) is 

1359 also reported for comparison (data from Stoppa et al., 2014).

1360

1361 Fig. 4. (colour online)

1362 Chondrite-normalized (Sun & McDonough, 1989) trace element (a) and REE patterns (b) of 

1363 Predazzo camptonites. The OIB pattern (Sun & McDonough, 1989), the average composition 

1364 of the worldwide camptonites (Rock, 1991), Italian lamprophyres (Galassi et al., 1994; Vichi 
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1365 et al., 2005; Stoppa et al., 2008; 2014), Ditrau lamprophyres (Batki et al., 2014) and Predazzo 

1366 Intrusive Complex Shoshonitic Silica Saturated (SS) and Undersaturated (SU) rocks (Casetta 

1367 et al., 2018a; 2018b) are reported for comparison.

1368

1369 Fig. 5. (colour online)

1370 Trace element discrimination diagrams for Predazzo camptonites: (a) ThN vs. NbN diagram 

1371 (Saccani, 2015); (b) Ti/Y vs. Nb/Y diagram (Pearce, 1982); (c) Zr/Y vs. Zr diagram (Pearce 

1372 and Norry, 1979); (d) Th-Hf-Ta ternary diagram (Wood, 1980); (e) Zr-Nb-Y ternary diagram 

1373 (Meschede, 1986). Fractional Crystallization (FC) and Assimilation and Fractional 

1374 Crystallization (AFC) vectors reported in (a) are in accordance with Saccani (2015).

1375

1376 Fig. 6. (colour online)

1377 Mineral phase classification diagrams showing the composition of the main crystals of Predazzo 

1378 camptonites. (a) Orthoclase (Or)-Albite (Ab)-Anorthite (An) ternary diagram for plagioclase 

1379 and K-Feldspar; (b) Rutile (Rt)-Wustite (Wus)-Hematite (Hem) ternary diagram for Fe-Ti 

1380 oxide; (c) Wollastonite (Wo)-Enstatite (En)-Ferrosilite (Fs) diagram for clinopyroxene (after 

1381 Morimoto, 1988). (d) CaO/Na2O vs. Al2O3/TiO2 diagram for amphibole (after Rock, 1991). 

1382 Compositional field of kaersutite in ultramafic (UML) and alkaline lamprophyres (AL), 

1383 hastingsite in calc-alkaline lamprophyres (CAL), and K-richterite, arfvedsonite and 

1384 eckermannite in lamproites (LL) are also reported in (d) for comparison (data from Rock, 1991).

1385

1386 Fig. 7. (colour online)

1387 Photomicrographs in transmitted plane-polarized light, back scattered SEM images and core-

1388 to-rim compositional (Mg# and TiO2) profiles of (a) Type 1, (b) Type 2, (c) Type 3, (d) Type 4 

1389 and (e) Type 5 amphiboles recognized in Predazzo camptonites. For each amphibole type, the 

1390 determination of the water content (H2O wt%) dissolved in the melt obtained by the equation 

Page 54 of 137

http://www.petrology.oupjournals.org/

Manuscript submitted to Journal of Petrology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

1391 of Ridolfi et al. (2010) and the crystallization temperature (T°C) calculated by means of Putirka 

1392 (2016) thermometer are also reported.

1393

1394 Fig. 8. (colour online)

1395 Chondrite-normalized (Sun & McDonough, 1989) trace element (a, c) and REE (b, d) patterns 

1396 of amphibole (Amp) and clinopyroxene (Cpx) crystals analysed in Predazzo camptonites. Solid 

1397 lines: core composition; dotted lines: rim composition.

1398

1399 Fig. 9. (colour online)

1400 Compositional and textural features of the carbonate ocelli inside Predazzo camptonites. (a) 

1401 Calcite-magnesite-siderite ternary diagram and (b) SrO + MnO vs. CaO/MgO diagram (after 

1402 Vichi et al., 2005) showing the composition of carbonates from the inner and outer portions of 

1403 the ocelli. Grey fields in (a) are referred to the composition of carbonates documented in 

1404 worldwide lamprophyres (data from Rock, 1991). Dotted arrow in (b) represent the positive 

1405 correlation between SrO + MnO and CaO/MgO, typical of low-temperature (low-T) carbonates 

1406 (Vichi et al., 2005). (c, d, e) Back scattered SEM images of carbonate ocelli composed of (c, 

1407 d) both dolomite-ankerite/magnesite-siderite or (e) dolomite-ankerite crystals only. The flow-

1408 aligned tangential growth of amphibole, plagioclase and clinopyroxene is particularly evident 

1409 in (d) and (e).

1410

1411 Fig. 10. (colour online)

1412 40Ar/39Ar age spectra for mineral separates from Predazzo camptonites, with apparent ages and 

1413 K/Ca ratios spectra plotted against the cumulative percentage of 39Ar released. (a) Age spectrum 

1414 yielded by amphibole crystals from sample FF37; (b) age spectrum yielded by plagioclase 

1415 crystals from sample FF2. Plateau ages are indicated in bold.

1416
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1417 Fig. 11. (colour online)

1418 87Sr/86Sr vs. 143Nd/144Nd diagram showing the isotopic signature of Predazzo camptonites 

1419 corrected to 220 Ma. Fields indicate the Sr-Nd isotopic signature of the: Finero (Voshage et al., 

1420 1987), Balmuccia and Baldissero peridotites (Mukasa & Shervais 1999; Mazzucchelli et al., 

1421 2009); alkaline dykes intruded in the Finero peridotite (220 Ma; Stahle et al., 2001); apatite-

1422 rich layers of the Finero peridotite (215 Ma; Morishita et al., 2008); Ditrau lamprophyres (220 

1423 Ma; Batki et al., 2014); Predazzo Intrusive Complex (PIC) Shoshonitic Silica Saturated (SS) 

1424 and Undersaturated (SU) rocks (234 Ma; Casetta et al., 2018a). DMM (Workman & Hart, 2005) 

1425 and EM I (Zindler & Hart, 1986) mantle end-members (corrected to 220 Ma) are also reported 

1426 for comparison.

1427

1428 Fig. 12. (colour online)

1429 (a) FeO vs. MgO and (b) Al2O3/TiO2 vs. MgO diagrams showing the fractional crystallization 

1430 (FC) vectors used to simulate the compositional trend of Predazzo camptonites. The dotted 

1431 vectors represent the contribution of the single mineral phases during fractional crystallization; 

1432 the black solid arrows represent the sum vector at 35% fractional crystallization. The relative 

1433 percentages of fractionation of the single phases are also reported. Ol: olivine; Cpx: 

1434 clinopyroxene; Amp: amphibole; Ti-Mag: Ti-magnetite; Pl: plagioclase.

1435

1436 Fig. 13. (colour online)

1437 (a) Nb/La vs. La/Yb diagram (Smith et al., 1999) used to discriminate between the contribution 

1438 of lithosphere and asthenosphere in the mantle source of Predazzo camptonites. (b) Gd/Yb vs. 

1439 La/Yb and (c) Sm/Yb vs. La/Sm diagrams for the less differentiated Predazzo camptonites. 

1440 Melting curves in (b) and (c) are modelled using the non-modal batch melting equations of 

1441 Shaw (1970). Starting mantle sources: I = Spl-lherzolite with DMM composition (Workman & 

1442 Hart, 2005); II = Spl-lherzolite; III = Grt-lherzolite; IV = Spl-Grt-Amp-lherzolite; V = Grt-
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1443 Amp-lherzolite; VI = Grt-Phl-lherzolite. Starting REE composition of II, III, IV, V and VI 

1444 sources is fertile PM of Sun & McDonough (1989). Source modal composition, melting 

1445 proportions and partition coefficients for olivine, orthopyroxene, clinopyroxene, spinel, garnet, 

1446 amphibole and phlogopite are reported in Table 9. (d) Chondrite-normalized (Sun & 

1447 McDonough, 1989) REE patterns of Predazzo less differentiated camptonites compared to 

1448 those simulated by partial melting of a garnet-amphibole-lherzolite (curve V) at partial melting 

1449 degrees of 0.5 to 10%.
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56 The alkaline lamprophyres of the Dolomitic Area (Southern Alps, Italy): markers of the 

57 Late Triassic change from orogenic-like to anorogenic magmatism

58

59 ABSTRACT

60 In this paper, the first complete petrological, geochemical and geochronological 

61 characterization of the oldest lamprophyric rocks in Italy cropping out around Predazzo 

62 (Dolomitic Area) is presented, with the aim of deciphering their relationship with the Triassic 

63 magmatic events of the whole Southern Alps. Their Mg# between 37 and 70, together with their 

64 trace element content, suggest that fractional crystallization was the main process responsible 

65 of their differentiation, together with small scale mixing, as evidenced by some complex 

66 amphibole textures. Moreover, the occurrence of primary carbonate ocelli suggests an intimate 

67 association between alkaline lamprophyric magmas and a carbonatitic melt. 40Ar/39Ar data 

68 show that lamprophyres were emplaced at 219.22 ± 0.73 Ma (2σ; full systematic uncertainties), 

69 around 20 Ma after the high K calc-alkaline to shoshonitic short-lived Ladinian (237-238 Ma) 

70 magmatic event of the Dolomitic Area. Their trace element and Sr-Nd isotopic signature 

71 (87Sr/86Sri = 0.7033-0.7040; 143Nd/144Ndi = 0.51260-0.51265) is likely related to a garnet-

72 amphibole-bearing lithosphere interacting with an asthenospheric component, significantly 

73 more depleted than the mantle source of the high K calc-alkaline to shoshonitic magmas. These 

74 features suggest that Predazzo lamprophyres belong to the same alkaline-carbonatitic magmatic 

75 event that intruded the mantle beneath the Southern Alps (i.e. Finero peridotite) between 190 

76 and 225 Ma. In this scenario, Predazzo lamprophyres cannot be considered as a late-stage pulse 

77 of the orogenic-like Ladinian magmatism of the Dolomitic Area, but most likely represent the 

78 petrological bridge to the opening of the Alpine Tethys.

79

80 KEYWORDS
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81 Carbonatitic alkaline lamprophyre; Amphibole texture; Camptonite; Dolomitic Area; Predazzo; 

82 Southern Alps; Triassic magmatism. 

83

84 INTRODUCTION

85 The late-stage emplacement of lamprophyric dykes typifies a large number of plutonic 

86 complexes, providing important information of the local geodynamic evolution. According to 

87 Rock et al. (1987), Le Maitre et al. (1989), Rock (1991), Woolley et al. (1996) and Le Maitre 

88 et al. (2002), lamprophyres are defined as H2O-, CO2-, and alkali-rich rocks with a porphyritic 

89 texture, characterized by the compulsory presence of amphibole and/or phlogopite-biotite 

90 phenocrysts and the common occurrence of halides, carbonates, sulphides and zeolites. 

91 Feldspars and/or feldspathoids are often present in the groundmass. Mineral chemistry is by far 

92 a key factor for the identification/classification of these rocks: high-Ti, -Ba and -F amphiboles 

93 and micas, high-Al clinopyroxenes, high-Zn spinels and Fe3+-rich micas are in fact diagnostic 

94 phases of lamprophyres. The genesis of lamprophyres is commonly attributed to partial melting 

95 of a metasomatised mantle (Rock, 1991; Stoppa et al., 2014; Pandey et al., 2017a; 2017b; Soder 

96 & Romer, 2018), while their emplacement is usually associated with the onset of lithospheric 

97 extensional-transtensional tectonic regimes. Lamprophyres are often associated with strike-slip 

98 movements, and may mark a change in the geodynamic regime (Scarrow et al., 2011). 

99 Following Le Maitre et al. (2002), lamprophyric rocks are grouped, on the basis of their 

100 mineralogy, into three associations: i) minette-kersantite; ii) vogesite-spessartite; and iii) 

101 sannaite-camptonite-monchiquite. This discrimination partially reflects what was originally 

102 proposed by Le Maitre et al. (1989) and Rock (1991), according to whom the first two 

103 associations belong to the “calc-alkaline (shoshonitic) lamprophyres”, whereas the third to the 

104 “alkaline lamprophyres”. While the calc-alkaline variety is commonly associated with 

105 convergent settings, alkaline lamprophyres are typical of divergent margins and continental 

106 intra-plate settings (Rock, 1991; Batki et al., 2014; Stoppa et al., 2014; Ubide et al., 2014; Lu 
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107 et al., 2015; Pandey et al., 2017a; 2017b), their composition resembling volatile-enriched alkali 

108 basalts, basanites and nephelinites.

109 Several authors have investigated the main geochemical features of the Cretaceous (110 Ma) to 

110 Oligocenic (29 Ma) alkaline lamprophyres across Italy, suggesting their formation by partial 

111 melting of a mantle metasomatized by alkaline carbonatitic components (Galassi et al., 1994; 

112 Vichi et al., 2005; Stoppa, 2008; Stoppa et al., 2014). Lesser known are the alkaline 

113 lamprophyres of the Dolomitic Area (Southern Alps, NE Italy), intruded in and around the 

114 Middle Triassic Predazzo Intrusive Complex, to which they seemed geochemically and 

115 temporally related (Lucchini et al., 1969). This complex is one of the few plutonic expressions 

116 of the high-K calc-alkaline to shoshonitic magmatism that shaped the Dolomitic Area between 

117 237 and 238 Ma (Gasparotto & Simboli, 1991; Bonadiman et al., 1994; Mundil et al., 1996; 

118 Abbas et al., 2018; Casetta et al., 2018a; 2018b; Storck et al., 2018; Wotzlaw et al., 2018). 

119 Recent petrologic and Sr-Nd isotopic studies on the Predazzo pluton, complemented by field 

120 observations, revealed: i) the existence of three different SiO2-oversaturated to -undersaturated 

121 magma batches and their precise emplacement sequence at shallow crustal depth (1.4-5.6 km); 

122 ii) the gradual transition between the intrusion and the overlying hypabyssal and volcanic 

123 (basaltic/latitic) deposits; iii) the EM I-like Sr-Nd isotopic signature of the intrusive rocks and 

124 the low degree of crustal assimilation experienced by Ladinian magmas during ascent; and iv) 

125 the slight isotopic depletion of the mantle source moving towards higher 143Nd/144Nd ratios 

126 from the older SiO2-saturated to the younger SiO2-undersaturated batches (Casetta et al., 2018a; 

127 2018b).  

128 The connection between the alkaline lamprophyres and the host volcano-plutonic complex has 

129 never been investigated, despite being a key factor in deciphering the evolution of the 

130 magmatism of the Dolomitic Area. For this reason, whole-rock major, trace element and Sr-Nd 

131 isotopic determinations, together with mineral phases major and trace element chemistry, were 

132 used to characterize the Predazzo alkaline lamprophyres mantle source, and identify how the 
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133 melts differentiated at shallow depths. Finally, 40Ar/39Ar dating constrained their emplacement 

134 within the temporal evolution of the Dolomitic Area and the whole Southern Alps magmatism. 

135

136 GEOLOGICAL AND GEODYNAMIC OVERVIEW

137 The geodynamic framework of the Austroalpine and Southalpine domains during Middle-Late 

138 Triassic is complicated by the short timescales, variety of magma types, and overprinting by 

139 Alpine orogenesis. Magmas with calc-alkaline to shoshonitic affinity intruded in several 

140 localities of the Southern Alps, Dynarides and Hellenides between ~242 and 227±6 Ma 

141 (Barbieri et al., 1982; Pamić, 1984; Gianolla, 1992; Mundil et al., 1996; Pe-Piper, 1998; 

142 Armienti et al., 2003; Beccaluva et al., 2005; Cassinis et al., 2008; Bellieni et al., 2010; Beltràn-

143 Trivino et al., 2016; Bianchini et al., 2018; Storck et al., 2018; Wotzlaw et al., 2018). 

144 Simultaneously, scattered intrusions of alkaline magmas emplaced between 231±1 and 227±7 

145 Ma along the Periadriatic lineament (Karawanken) and in the Carpathians (Ditrau) area (Lippolt 

146 & Pidgeon, 1974; Dallmeyer et al., 1997; Morogan et al., 2000; Visonà & Zanferrari, 2000; 

147 Batki et al., 2014; Pál-Molnár et al., 2015).

148 The close relationship between the orogenic magmatism and the onset of extensional-

149 transtensional tectonics (Doglioni, 1984, 1987, 2007; Stampfli & Borel, 2002; 2004) led some 

150 to hypothesize various possible geodynamic scenarios for the Southern Alps. They include: i) 

151 aborted rifting in a passive margin (Bernoulli & Lemoine, 1980); ii) active mantle upwelling 

152 (Stӓhle et al., 2001); iii) arc system at the Paleo-Tethys NW limb (Castellarin et al., 1988); iv) 

153 back-arc development connected to the subduction of the Paleo-Tethys (Ziegler & Stampfli, 

154 2001; Stampfli & Borel, 2002; 2004; Stampfli et al., 2002; Armienti et al., 2003; Stampfli, 

155 2005; Cassinis et al., 2008; Schmid et al., 2008; Zanetti et al., 2013); v) anorogenic rifting with 

156 subduction signature inherited from the Hercynian orogeny (Sloman, 1989; Bonadiman et al., 

157 1994; Pe-Piper, 1998; Beltràn-Trivino et al., 2016). Other authors, trying to encompass the 

158 Austroalpine and Carnian-Dinaric domains in the geodynamic reconstruction, hypothesized: vi) 
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159 the presence, beneath the Southern Alps-Austroalpine and Carnian-Dinaric plates, of different 

160 mantle sources affected by Palaeozoic subduction-related and plume-related processes, 

161 respectively (Visonà & Zanferrari, 2000); and vii) the existence of a Palaeozoic oceanic basin 

162 between Austroalpine and Southern Alps, closed by a subduction dipping beneath the latter 

163 (Bianchini et al., 2018). 

164

165 MATERIALS AND METHODS

166 Whole-rock major and trace element analyses were carried out at the Department of Physics 

167 and Earth Sciences of the University of Ferrara using an ARL Advant-XP automated X-ray 

168 fluorescence spectrometer. Full matrix correction procedure and intensities were completed 

169 following Traill & Lachance (1966). Accuracy and precision are better than 2-5% for major 

170 elements and 5-10% for trace elements. Detection limits are 0.01 wt% and 1-3 ppm for most of 

171 the major and trace element concentrations, respectively. 

172 Rb, Sr, Y, Zr, Nb, Hf, Ta, Th, U, and rare-earth elements (REE) were analyzed at the 

173 Department of Physics and Earth Sciences of the University of Ferrara by inductively coupled 

174 plasma-mass spectrometry (ICP-MS) using a Thermo Series X spectrometer. Precision and 

175 accuracy were better than 10% for all elements, well above the detection limit.

176 Mineral phase major element compositions were analyzed at the Department of Lithospheric 

177 Research of the University of Wien, using a CAMECA SX100 electron microprobe equipped 

178 with four WD and one ED spectrometers. The operating conditions were as follows: 15 kV 

179 accelerating voltage, 20 nA beam current, and 20 s counting time on peak position. Natural and 

180 synthetic standards were used for calibration, and PAP corrections were applied to the intensity 

181 data (Pouchou & Pichoir, 1991).

182 Trace element concentration of pyroxene and amphibole crystals was carried out at the CNR - 

183 Istituto di Georisorse of Pavia by laser ablation microprobe-inductively coupled plasma-mass 

184 spectrometry (LAM-ICP-MS). The basic set and protocol were described by Tiepolo et al. 
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185 (2003). NIST 610 and NIST 612 standard glasses were used to calibrate relative element 

186 sensitivity. Precision and accuracy for trace element analyses were assessed by standard sample 

187 BCR-2 (reference values from USGS Geochemical Reference Materials Database). Each 

188 analysis was corrected with internal standards using CaO for both clinopyroxene and 

189 amphibole. The detection limit was function of the ablation volume and counting time and was 

190 therefore calculated for each analysis; indeed, ablation volume greatly depends on instrument 

191 configuration. As a consequence, the detection limit reduces if spot size, beam power and cell 

192 gas flow are decreased. A 40-100 μm beam diameter and 20 μm s1 scanning rate were used. 

193 The theoretical detection limit ranges from 10 to 20 ppb for REE, Ba, Th, U, Zr and are about 

194 2 ppm for Ti.

195 Whole-rock 87Sr/86Sr and 143Nd/144Nd analyses were made at the Scottish Universities 

196 Environmental Research Centre (SUERC) by thermal ionization mass spectrometry (TIMS) 

197 following procedures described by Casetta et al. (2018a). Eight measurements of SRM-987 and 

198 12 of JNdi-1 made during the course of this analytical programme yielded mean values of 

199 0.710244±0.000016, and 0.512079±0.000018 (2 SD), consistent with the consensus values of 

200 ~0.71025 and ~0.51210.

201 40Ar/39Ar analyses on amphibole and plagioclase separates were made at SUERC. Samples for 

202 40Ar/39Ar dating were prepared using the methods described in Mark et al. (2011a). All samples 

203 were subsequently cleaned in de-ionised water. They were parcelled in high purity Al discs for 

204 irradiation. International standards Fish Canyon sanidine (FCs) (28.294 ± 0.036 Ma, Renne et 

205 al., 2011; Morgan et al., 2014) and GA1550 biotite (99.738 ± 0.104 Ma, Renne et al., 2011) 

206 were loaded adjacent to the samples to permit accurate characterisation of the neutron flux (J 

207 parameter). Samples were irradiated for 50 hours in the Cd-lined facility of the CLICIT Facility 

208 at the OSU TRIGA reactor. Standards were analyzed on a MAP 215-50 system (described 

209 below briefly and in more detail by Ellis et al., 2012) - FCs was analyzed by CO2 laser total 

210 fusion as single crystals (n = 20). GA1550 (n = 20) was also analyzed by CO2 laser total fusion 

Page 65 of 137

http://www.petrology.oupjournals.org/

Manuscript submitted to Journal of Petrology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

211 and step-heated using a CO2 scanning laser (n = 5) (Barfod et al., 2014). Using GA1550 the J-

212 parameter was determined to a precision approaching 0.1% uncertainty. 

213 Wafers were loaded into an Ultra-High-Vacuum (UHV) laser cell with a SiO2 window. In situ 

214 UVLAMP Ar extraction was conducted using a New Wave UP-213 nm UV laser system 

215 (described in Moore et al., 2011). 50 × 50 × 5 µm3 (amounts of ablated material approximately 

216 1250 µm3) raster pits were made in mineral surfaces to extract the Ar isotopes. All gas fractions 

217 were subjected to 180 seconds of purification by exposure to two SAES GP50 getters (one 

218 maintained at room temperature, the other held at ca. 450˚C). A cold finger was maintained at 

219 -95.5˚C using a mixture of dry ice (CO2[S]) and acetone. Ion beam intensities (i.e., Ar isotope 

220 intensities and hence ratios) were measured using a MAP 215-50 mass spectrometer in peak 

221 jumping mode. Measurements were made using a Balzers SEV-217 electron multiplier. The 

222 system had a measured sensitivity of 1.12 × 10-13 moles/Volt. The extraction and cleanup, as 

223 well as mass spectrometer inlet and measurement protocols and data acquisition were 

224 automated. Blanks (full extraction line and mass spectrometer) were made following every two 

225 analyses of unknowns. The average blank ± standard deviation (n = 28) from the entire blank 

226 run sequence was used to correct raw isotope measurements from unknowns. Mass 

227 discrimination was monitored by analysis of air pipette aliquots after every five analyses of 

228 unknowns (n = 13, 7.21 x 10-14 moles 40Ar, 40Ar/36Ar = 289.67 ± 0.63). 

229 The samples were step-heated using a CO2 laser (approximately 500-1500˚C, optical pyrometer 

230 measurements). Extracted gases were subjected to 300 seconds of purification by exposure to 

231 two SAES GP50 getters (one maintained at room temperature, the other held at ca. 450˚C). A 

232 cold finger was maintained at -95.5˚C using a mixture of dry ice (CO2[S]) and acetone. Ion beam 

233 intensities were measured using a MAP 215-50 mass spectrometer in peak jumping mode. 

234 Measurements were made using a Balzers SEV-217 electron multiplier. The system had a 

235 measured sensitivity of 1.12 × 10-13 moles/Volt. The extraction and cleanup, as well as mass 

236 spectrometer inlet and measurement protocols and data acquisition were automated. Blanks 
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237 (full extraction line and mass spectrometer) were made following every analysis of an unknown. 

238 The average blank ± standard deviation for each experiment (n = 14) from the entire blank run 

239 sequence was used to correct raw isotope measurements from unknowns. Mass discrimination 

240 was monitored by analysis of air pipette aliquots after every three analyses. 

241 All Ar isotope data were corrected for backgrounds, mass discrimination, and reactor-produced 

242 nuclides and processed using standard data reduction protocols and reported according to the 

243 criteria of Renne et al. (2009). The atmospheric argon isotope ratios of Lee et al. (2006), which 

244 have been independently verified by Mark et al. (2011b), were employed. The 40Ar/39Ar ages 

245 for were determined relative to the statistical optimization model of Renne et al. (2010; 2011) 

246 and are reported including analytical and full systematic uncertainties at the 2 sigma level. All 

247 raw Ar/Ar data with associated parameters are presented in Electronic Appendix 1.

248

249 PETROGRAPHY AND WHOLE-ROCK GEOCHEMISTRY

250 Petrography

251 The lamprophyres are part of a swarm of dykes that intrudes the Predazzo Intrusive Complex, 

252 the overlying volcanites and the Permo-Triassic sedimentary host rocks (Fig. 1). The dykes are 

253 mainly porphyritic basalts to trachytes, the great majority of them having the same high-K calc-

254 alkaline to shoshonitic affinity of the intrusive rocks (Casetta et al., 2018a; 2018b). 

255 Lamprophyres are 20-200 cm in thickness, NNW-SSW to N-S oriented and can be easily 

256 distinguished by their greenish colour, strongly contrasting with the pink granitic/syenogranitic 

257 body that they preferentially intrude (Fig. 1; see also Lucchini et al., 1969). Contacts are 

258 generally sharp, and no significant thermometamorphic structures are present, although intense 

259 alteration often obscures hand-sample scale textures.

260 A distinctive feature is the common presence of carbonate-bearing ocelli, feldspar and 

261 amphibole megacrysts (up to 5 cm), and xenoliths (Fig. 1; Vardabasso, 1929; Lucchini et al., 

262 1969; 1982). The latters are mainly cumulate clinopyroxenites (Morten, 1980) or fragments of 
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263 the Triassic intrusive rocks and the Permian basement, but also a few spinel lherzolites can be 

264 found (Carraro & Visonà, 2003). The petrology and geochemistry of lamprophyres led Lucchini 

265 et al. (1969) to classify them as camptonites, an alkaline variety of lamprophyres characterized 

266 by abundant plagioclase (modally more abundant than K-feldspar), and the absence of leucite 

267 and Na-foids (Rock, 1991).

268 The dykes are panidiomorphic, with, in order of decreasing abundance, amphibole, plagioclase, 

269 clinopyroxene and olivine phenocrysts, embedded in a microcrystalline assemblage of 

270 amphibole, plagioclase, clinopyroxene, K-feldspar and Fe-Ti oxides (Fig. 2). Accessory phases 

271 include carbonate, ilmenite, titanite, apatite and analcime. The modal abundances are: 

272 amphibole 35-55 vol.%, plagioclase 30-40 vol.%, clinopyroxene 0-10 vol.%, olivine 0-10 

273 vol.%, K-feldspar 2-6 vol.%, Fe-Ti oxides 3-6 vol.%. Clinopyroxene and olivine are only absent 

274 in MA1 sample (Fig. 2b), where the presence of plagioclase, K-feldspar and Fe-Ti oxides 

275 strongly increases. Carbonate is present as pseudomorphic phase replacing olivine, in secondary 

276 veins/fractures, or as a major constituent of small (200-250 µm in diameter) spherical ocelli, 

277 variably distributed and surrounded by the orthogonal growth of multiple small plagioclase, 

278 amphibole and/or clinopyroxene crystals (see the following section for a more detailed 

279 descripton). These features confirm the definition of camptonites proposed by the previous 

280 authors for all Predazzo lamprophyres. 

281 Amphibole, pale brown to reddish in colour, occurs as euhedral, elongate crystals as both 

282 phenocrysts and in the groundmass. In sample MA1, amphibole is often acicular and has a pale 

283 brown to yellowish colour (Fig. 2b). It ranges in size from 20-30 µm (groundmass) to 2.5 mm 

284 (phenocryst), excluding megacrysts, whose colour ranges from dark brown to black.

285 Plagioclase crystals are generally euhedral and vary in size between 10-20 and 400-450 µm. 

286 Larger plagioclase xenocrysts, fragments and xenoliths (0.5-1 mm) of crustal origin can be 

287 easily distinguished from the phenocrysts by their rounded shape and by the presence of well 

288 developed reaction rims made of Fe-Ti oxides, secondary feldspar and rare clinopyroxene.

Page 68 of 137

http://www.petrology.oupjournals.org/

Manuscript submitted to Journal of Petrology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

289 Clinopyroxene, pale brown in colour, is less abundant and smaller than amphibole, rarely 

290 exceeding 150-200 µm in size among the phenocrysts. Relicts of bigger euhedral crystals (1-2 

291 mm) are almost totally replaced by plagioclase, amphibole and Fe-Ti oxides, resulting in an 

292 “atoll-like” shape, where only the outermost rim of clinopyroxene is preserved. The formation 

293 of secondary epidote and chlorite often occurs at the expense of clinopyroxene.

294 Olivine phenocrysts (100-350 µm) are rare and usually pseudomorphosed by calcite and 

295 serpentine. This kind of alteration, typical in lamprophyres, is indicated by the general term 

296 pilite (Velde, 1968; Rock, 1991). K-feldspar and Fe-Ti oxides are present only in the 

297 groundmass, rarely exceeding 40-50 µm in size. 

298

299 Whole-rock major and trace element chemistry

300 Predazzo camptonites generally have a SiO2 range of 44.1 to 47.9 wt%, 1.6-3.2 Na2O wt% and 

301 1.0-3.7 K2O wt%; sample MA1 is an exception, and has higher silica (52.8 wt%) and alkali 

302 contents (2.9 Na2O wt%; 5.0 K2O wt%; Table 1). Mg# is variable, varying between 37 and 70, 

303 and mainly controlled by a wide range in MgO. Again, sample MA1 has the lowest FeO content, 

304 and is probably more differentiated than the rest of the samples. All lamprophyres have a K-

305 affinity (Fig. 3), and their CaO contents are variable depending upon alteration and presence of 

306 carbonates. In the Al2O3-MgO-CaO and SiO2/10-CaO-TiO2×4 ternary diagrams, all samples 

307 plot in the alkaline lamprophyres field (Rock, 1987; 1991), and are enriched in Al2O3 with 

308 respect to the Cretaceous to Oligocene Italian lamprophyres (Stoppa et al., 2014, and references 

309 therein). CIPW norm calculations highlight the moderate to strong Si-undersaturation, with 1-

310 13% normative nepheline for all samples and 3-5% normative leucite for two samples with high 

311 K/Si. MgO is negatively correlated with compatible elements, such as Ni (237-27 ppm) and Cr 

312 (585-14 ppm; Fig. 3).

313 Whole-rock chondrite-normalized incompatible element patterns (Fig. 4) have positive 

314 anomalies in Nb, Ta, Zr, Ti and LILE (especially Sr), and negative anomalies in Th and U. 
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315 These features are similar to the Central Iberia lamprophyres (Scarrow et al., 2011). Predazzo 

316 lamprophyre patterns resemble those of alkaline rocks, but, when compared to the average 

317 composition of oceanic island basalts, they are depleted in all elements except Rb, Ba and Sr. 

318 This feature is even more evident when compared to the worldwide camptonites (Fig. 4; Rock, 

319 1991). Chondrite-normalized REE patterns are characterised by LREE enrichment and flat M-

320 HREE profiles, with absence of Eu negative anomaly, consistent with the lack of significant 

321 plagioclase fractionation (Fig. 4). The less differentiated camptonite (Mg# 70) is slightly LREE-

322 depleted with respect to the other samples. The GdN/YbN ratios of Predazzo camptonites range 

323 between 1.7 and 2.7, contrasting with the typical steep-sloping shape of OIB rocks in general, 

324 and of camptonites in particular (Fig. 4; Sun & McDonough, 1989; Rock, 1991). Compared to 

325 the other Italian lamprophyres (Galassi et al., 1994; Vichi et al., 2005; Stoppa, 2008; Stoppa et 

326 al., 2014), Predazzo camptonites are generally depleted in all incompatible elements, except for 

327 Rb and K. A common feature is the absence of a Ta-Nb-Ti negative anomaly (Fig. 4). The 

328 HFSE distribution in the less differentiated Predazzo camptonites fall in the OIB field on a ThN 

329 vs. NbN tectonic discrimination diagram (Fig. 5a; Saccani, 2015), suggesting a within-plate 

330 setting. The alkaline nature of Predazzo lamprophyres is clearly evidenced by the Ti/Y vs. Nb/Y 

331 and Zr/Y vs. Zr diagrams (Fig. 5b-c; Pearce & Norry, 1979; Pearce, 1982), as well as by the 

332 Th-Hf-Ta and Zr-Nb-Y ternary diagrams (Fig. 5e-f; Wood, 1980; Meschede, 1986). 

333

334 MINERAL CHEMISTRY AND TEXTURAL RELATIONSHIPS

335 Major element composition of amphibole, clinopyroxene, feldspars, oxides and trace element 

336 analyses of amphibole and clinopyroxene were determined on representative lamprophyre 

337 samples. The intense state of alteration of olivine in pilite prevented its chemical analysis: 

338 according to Carraro & Visonà (2003), olivine phenocrysts in the less evolved Predazzo 

339 camptonites range in composition from Fo72.5 to Fo87.5, suggesting a primitive, mantle-derived 

340 nature of these rocks.
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341

342 Amphibole

343 We adopted the Locock (2014) a.p.f.u. amphibole classification, consistent with the 

344 recommendations of the IMA-CNMNC subcommittee on amphiboles (Table 2; Hawthorne et 

345 al., 2012; Oberti et al., 2012). This cation site distribution assigns the proper nomenclature 

346 while minimizing the OH and Fe3+ effects. Amphibole in Predazzo camptonites belongs to both 

347 the W(OH, F, Cl)- and the W(O)-dominant (oxo-amphibole) groups, and to the Ca subgroup. Its 

348 composition, extremely variable between the less and the more differentiated samples, varies 

349 from pargasite to ferri-kaersutite, Ti-rich magnesio-hastingsite and Ti-rich ferro-ferri-

350 sadanagaite (Mg# from 28 to 75; Table 2). The sadanagaitic composition is quite rare and 

351 represents the most Si-poor variety of amphibole reported from lamprophyres (Rock, 1991). In 

352 terms of CaO/Na2O and Al2O3/TiO2 ratios, most of the analyzed amphiboles are similar to those 

353 reported by Rock (1991) from alkaline lamprophyres (Fig. 6). Some crystals have a quite high 

354 Al2O3/TiO2 ratio, similar to that of calc-alkaline hastingsites, but maintaining a CaO/Na2O ratio 

355 comparable to alkaline kaersutites (Fig. 6).

356

357 Amphibole textural features and major element composition

358 Optical and electron microscope observations, coupled with major element chemical data, 

359 enabled us to identify the occurrence of five distinct textural types of amphibole, following a 

360 scheme analogous to that proposed for plagioclase and clinopyroxene crystals at Mt. Etna by 

361 Giacomoni et al. (2014; 2016).

362 Type 1 amphiboles (Fig. 7a) are the most common and occur both phenocrysts and in the 

363 groundmass. They have euhedral contour with homogeneous pale brown to orange rounded 

364 dissolved cores; the more differentiated is the host rock, the more elongated is the crystal shape, 

365 becoming acicular in sample MA1. Type 1 crystals are pargasitic to Ti-rich magnesio-

366 hastingsitic (Mg# = 71-74), usually surrounded by a reddish ferri-kaersutitic rim (Mg# =59-66) 
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367 with euhedral shape, in optical continuity with the cores. In Type 1 crystals an intermediate 

368 magnesio-hastingsitic (Mg# = 72-74) overgrowth is often visible by means of electron 

369 microscope. Groundmass amphiboles reflect the composition of the outermost rims of the 

370 phenocrysts (ferri-kaersutite to Ti-rich magnesio-hastingsite). Type 2 crystals (Fig. 7b), Ti-rich 

371 magnesio-hastingsitic in composition, have brown rounded cores (Mg# = 62-64), characterized 

372 by the presence of dispersed Fe-Ti oxides and melt pockets, and ferri-kaersutitic rims (Mg# = 

373 60-68). The cores are often surrounded by magnesio-hastingsitic intermediate overgrowths 

374 analogous to those documented in Type 1 amphiboles. Both the intermediate overgrowth and 

375 the external rim are in optical continuity with the core. Type 3 crystals (Fig. 7c) have blackish 

376 dusty cores with euhedral edges. As in case of Type 1 crystals, they are surrounded by Ti-rich 

377 magnesio-hastingsitic to ferri-kaersutitic rims (Mg# 53-70). Type 4 amphiboles (Fig. 7d) are 

378 those previously defined xenocrysts. They usually are cm in size, black coloured and markedly 

379 altered, sometimes being resorbed in entire portions. Their Ti-rich magnesio-hastingsitic core 

380 (Mg# 51-62) is often pervaded by the incipient formation of fibrous minerals and micrometric 

381 veins bearing Fe-Ti oxides. The outer portions of the core present strongly dusty resorbed zones 

382 comparable to those recognized in Type 3 crystals cores. Type 4 xenocrysts are surrounded by 

383 a pale brown to reddish magnesio-hastingsitic to ferri-kaersutitic rim (Mg# ~68). Type 5 

384 amphiboles (Fig. 7e), documented only in sample MA1, occur both as phenocrysts and 

385 centimeter-scale megacrysts. They have dark brown Ti-rich ferri-sadanagaitic to Ti-rich ferro-

386 ferri-sadanagaitic cores (Mg# = 29-39) and pale brown Ti-rich magnesio-hastingsitic rims (Mg# 

387 68-72), grown in optical continuity. With respect to Type 4 xenocrysts, megacrysts are 

388 identified by their euhedral habitus and the absence of resorption/alteration features. It should 

389 be noticed that, although important indicators of the physico-chemical conditions of the 

390 magmatic system, Type 2 to Type 5 are much rarer than Type 1 amphiboles, rarely exceeding 

391 1-5 vol.% of the specimens. 

392
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393 Amphibole trace element composition

394 Due to the small size and general alteration of most of the amphiboles, in situ trace element 

395 analyses were performed only on Type 1 (both core/rim of the larger phenocrysts and smaller 

396 groundmass specimens), Type 2 (rim) crystals and Type 4 (core/rim) xenocrysts (Table 3). 

397 Chondrite-normalized incompatible element patterns have Ba, Sr positive spikes and Th, U and 

398 Zr negative anomalies; REE patterns are convex-upward (Fig. 8). Type 4 amphibole core and 

399 Type 1 groundmass crystals have the most Nb-, Zr-, Hf-, and REE-enriched composition, 

400 whereas Type 1 phenocrysts have the less enriched patterns, relatively Zr-Hf-Nb-depleted at the 

401 core and REE-depleted at the rim. In all amphiboles, rims are generally REE-depleted with 

402 respect to the related cores (Fig. 8).

403

404 Clinopyroxene 

405 Clinopyroxene is generally aluminian- to ferrian-titanian-diopside (Fig. 6; Table 4). Large 

406 clinopyroxene phenocrysts are typically zoned in Mg#, ranging from ~82 in the centres to 68-

407 72 in the rims. Smaller phenocrysts have Mg# down to 64, being similar in composition to the 

408 outermost rim of the larger “atoll-like” clinopyroxene crystals. TiO2 content reaches high values 

409 (5.2 wt%), as already highlighted by Carraro & Visonà (2003). 

410 Clinopyroxene trace element analyses were performed on euhedral phenocrysts as well as on 

411 the outermost rims of the larger crystal with evident compositional zoning (Table 3; Fig.8) No 

412 significant trace element compositional variations are present between the smaller phenocrysts 

413 and the rims of the larger crystals.

414

415 Feldspar

416 From textural relationships, plagioclase and K-feldspar crystallization occurs later than olivine, 

417 clinopyroxene and amphibole. Plagioclase compositions vary from An74 to An23 (Fig. 6; Table 
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418 5). K-Feldspar, usually present as groundmass phase, becames modally and dimensionally 

419 significant in sample MA1, where it ranges in composition from Or54 to Or57 (Fig. 6; Table 5).

420  

421 Fe-Ti oxides

422 Fe-Ti oxides are widespread in the groundmass assemblage of all camptonites and generally 

423 have TiO2 and Al2O3 contents ranging from 12.1 to 19.0 wt% and from 2.3 to 7.8 wt%, 

424 respectively (Fig. 6; Table 6). Micrometer-sized Ti-magnetite crystals can be also found 

425 included in Type 2 amphibole cores or within the reaction assemblages pervading some 

426 clinopyroxene crystals and Type 4 amphibole xenocrysts. 

427

428 CARBONATE OCELLI

429 Rounded ocellar structures with carbonatic composition were identified in all Predazzo 

430 camptonites. Unfortunately, the remarkable alteration of the dykes prevented any accurate 

431 evaluation of their distribution at the macro-scale. Sample MA1 is the only ocelli-free, 

432 consistently with its more differentiated character (Rock, 1991). The ocelli-hosted carbonate 

433 can be subdivided in two groups (Fig. 9; Table 7): i) dolomite-ankerite type (FeO = 5.0-14.4 

434 wt%; MgO = 12.7-18.7 wt%); and ii) magnesite-siderite type (FeO = 27.5-39.0 wt%; MgO = 

435 14.3-24.0 wt%). These compositions are similar to those identified by Rock (1991) for the 

436 worldwide carbonate-bearing lamprophyres (Fig. 9). SrO content is low in all carbonate types, 

437 reaching the maximum values of 0.16-0.30 wt% in some dolomite-ankerite grains; BaO was 

438 often below the EMPA detection limit. MnO content varies from 0.24 to 0.62 wt%. Some of 

439 the ocelli are texturally composite, including both smaller dolomite-ankerite crystals and larger 

440 well-developed magnesite-siderite ones, the latters mainly occurring in the inner portions; some 

441 others are instead constituted of sole dolomite-ankerite crystals (Fig. 9).

442 An intriguing topic in the study of carbonates in magmatic rocks is the determination of their 

443 primary (carbonatitic) or secondary (hydrothermal) origin. If the carbonate ocelli are derived 
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444 from a melt, the relationship between lamprophyric and carbonatitic melts would be 

445 strengthened by Predazzo camptonites, and liquid immiscibility processes probably drove the 

446 generation of the carbonate ocelli globular structures (Rock, 1991; Le Roex & Lanyon, 1998; 

447 Leat et al., 2000; Vichi et al., 2005). If not, their nature would be linked to the occurrence of 

448 late-stage hydrothermal processes. From a textural point of view, carbonate ocelli in Predazzo 

449 camptonites are characterized by: i) spherical shape, easily distinguishable from secondary-

450 filled amygdalae, elongated in shape; ii) flow-aligned tangential growth of high-temperature-

451 forming silicates (plagioclase, amphibole and/or clinopyroxene); and iii) lack of more typically 

452 hydrothermal minerals, such as zeolites (Fig. 9). According to Vichi et al. (2005) and Gozzi et 

453 al. (2014), all these features support the primary magmatic nature of the ocelli, and, therefore, 

454 the existence of carbonatitic-like droplets within the silicate melt. 

455 To discriminate between primary and secondary carbonates, some authors have suggested that 

456 low SrO (<0.6 wt%) is consistent with a late-stage origin (Hay & O'Neil, 1983; Hogarth, 1989; 

457 Leat et al., 2000), whereas some others suggested that carbonates with SrO >0.3 wt% and MnO 

458 >0.2 wt% can be considered primary (Vichi et al., 2005). Alternatively, the magnesite-siderite 

459 carbonates in carbonatitic complexes often have low SrO contents (Buckley & Woolley, 1990; 

460 Zaitsev et al., 2004). When plotting our data in a CaO/MgO vs. SrO + MnO space, which 

461 discriminates between high temperature and late-stage secondary carbonates (Vichi et al., 

462 2005), a positive correlation is displayed by most of the magnesite-siderite crystals, whereas an 

463 almost constant CaO/MgO accompanies a large scattered (SrO + MnO) sum for the dolomite-

464 ankerite grains (Fig. 9). Such a feature is consistent with a late-stage crystallization of the 

465 magnesite-siderite crystals, and a magmatic origin for the dolomite-ankerite grains. This 

466 hypothesis is also supported by the occurrence of magnesite-siderite-free ocelli in the analyzed 

467 camptonites. A similar combination has been also recognized by Leat et al. (2000) in carbonate 

468 ocelli inside the Middle Jurassic lamprophyres of the Ferrar region (Antarctica): according to 

469 these authors, an earlier formation of magmatic calcite-dolomite was followed by a late-stage 
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470 deposition of Fe-rich, Sr-poor carbonates towards the core of the ocelli. Such an interpretation, 

471 well fitting both the chemical and textural features of the carbonate ocelli of Predazzo 

472 lamprophyres, lead us to hypothesize that magnesite-siderite precipitation probably occurred 

473 during late-stage hydrothermal fluid circulation, whereas dolomite-ankerite crystallization was 

474 primary (magmatic), likely derived from a carbonatitic-like melt that coexisted with the 

475 lamprophyric one. It is not clear whether these carbonatites are primary melts generated by 

476 mantle partial melting or formed by exsolution of immiscible carbonate fractions from alkaline 

477 magmas (Wallace & Green, 1988). The almost perfectly rounded shape of the analyzed ocelli 

478 seems to favour immiscibility, however further studies are required to investigate the 

479 association between carbonatites and lamprophyres in the Southern Alps subcontinental 

480 lithospheric mantle.

481

482 AGE AND ISOTOPIC SIGNATURE OF PREDAZZO CAMPTONITES

483 40Ar/39Ar geochronology

484 The 40Ar/39Ar incremental heating method was applied to amphibole and plagioclase separates 

485 from two different camptonite samples (FF2 and FF37). Results and age spectra are shown in 

486 Fig. 10. Sample FF2 (plagioclase): The data defined a plateau (>90% 39Ar, n = 16, MSWD 0.9) 

487 with an age of 218.90 ± 0.59 Ma. The younger discordant steps in the age spectrum likely 

488 related to alteration of the plagioclase. Sample FF37 (amphibole): The data defined a plateau 

489 (>50% 39Ar, n = 6, MSWD 1.98) with an age of 219.70 ± 0.73 Ma. Younger apparent ages in 

490 the early steps of amphibole age spectrum, concomitant with high K/Ca ratios, were probably 

491 due to secondary alteration. The plagioclase and amphibole age are in good agreement and 

492 define a crystallisation age for the Predazzo camptonites of 219.22 ± 0.46/0.73 Ma (2σ; 

493 analytical/full systematic uncertainties).

494

495 87Sr/86Sr and 143Nd/144Nd isotopes
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496 Whole-rock 87Sr/86Sr and 143Nd/144Nd isotopic ratios were measured on representative samples 

497 among the Predazzo lamprophyres (Table 1). Initial isotopic ratios, respectively named 

498 87Sr/86Sri and 143Nd/144Ndi, were corrected to an age of 220 Ma, in accordance with the 40Ar/39Ar 

499 dating results. Lamprophyres have 87Sr/86Sri values ranging between 0.7033 and 0.7040, for a 

500 143Nd/144Ndi range of 0.51260-0.51265 (Fig. 11). The isotopic data, in accordance to what 

501 hypothesized by Marrocchino et al. (2002), highlight a discrepancy between the isotopic 

502 signature of the lamprophyres and their “hosting” Predazzo Intrusive Complex (Casetta et al., 

503 2018a). The lamprophyres isotopic signature lies in fact between the DMM and the EM I mantle 

504 end-members, in contrast to that of the Predazzo intrusive rocks, purely EM I-like (Fig. 11).

505

506 LAMPROPHYRE DIFFERENTIATION 

507 The differentiation processes of worldwide alkaline lamprophyres are often characterized by 

508 the occurrence, both at local (ocelli, veins, globules) and regional scale (coeval dykes/plutons), 

509 of co-magmatic intermediate/felsic rocks, mainly foid-syenitic in composition (Rock, 1987; 

510 1991). In these samples, the Ni, Cr decrease at decreasing MgO (Fig. 3), together with the 

511 mineral phase compositional variations, are consistent with fractional crystallization. The 

512 absence of a significant interaction with crustal components during ascent/emplacement is 

513 supported by the high whole-rock MgO, Cr and Ni contents, the presence of forsteritic olivine 

514 and the initial 87Sr/86Sr and 143Nd/144Nd values that approach the DMM isotopic component. 

515 These features point towards a mantle-derived origin for our samples, in accordance with most 

516 of the worldwide alkaline lamprophyres (Rock, 1991).

517 The extent of fractional crystallization was estimated assuming Rayleigh distillation (e.g. Shaw, 

518 1970). Assuming Zr as perfectly incompatible element (e.g. a mineral-melt distribution 

519 coefficient of zero), the most differentiated camptonite MA1 was generated by ~40% fractional 

520 crystallization of a starting primitive camptonitic melt. This estimate is consistent with mass 

521 balance calculations from major elements. Major element vectors (Fig. 12) show that ~35% 
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522 fractional crystallization of an assemblage made of olivine (19.1%), clinopyroxene (53.4%), 

523 amphibole (19.1%) and Ti-magnetite (8.4%) from a starting primitive camptonitic magma can 

524 in fact reproduce the MA1 composition.

525

526 T-P-fO2 CONDITIONS OF CRYSTALLIZATION AND WATER CONTENT OF 

527 LAMPROPHYRIC MELTS

528 The determination of T-P-fO2 parameters and water content of lamprophyric systems is 

529 challenging. Following Rock (1987, 1991), we assume that the whole-rock samples 

530 approximate the composition of melt + suspended crystals + volatiles. On this basis, the 

531 physico-chemical crystallization conditions of Predazzo camptonites were estimated by means 

532 of several thermo-, oxy-barometric and hygrometric equations applied to chosen mineral 

533 (clinopyroxene, Ti-magnetite, amphibole)-melt pairs. Errors related to each applied method are 

534 reported in Table 8.

535 Equilibrium between clinopyroxene (Cpx) phenocrysts and camptonitic melt was evaluated by 

536 means of their Fe-Mg partitioning, assuming a Cpx-LiqKdFe-Mg of 0.26±0.05 (Akinin et al., 2005), 

537 which ideally reflect clinopyroxene equilibrium conditions in an alkali-dominated basic melt 

538 (i.e. camptonites; Ubide et al., 2014). Since most of clinopyroxene-liquid thermobarometers 

539 require as input the H2O content of the crystallizing melt, and this parameter is highly variable 

540 in the lamprophyre system, T and P of clinopyroxene crystallization were determined by means 

541 of the single-mineral H2O-independent equations 32a and 32d of Putirka (2008), in turn derived 

542 by the T-dependent barometer and the P-independent thermometer of Putirka et al. (1996). This 

543 rational scheme enabled us to retrieve the T-P path of clinopyroxene crystallization without 

544 implying any circular reference. The equilibrium between amphibole (Amp) crystals and the 

545 camptonitic melts was evaluated by means of the T- and P-independent Amp-LiqKdFe-Mg exchange 

546 coefficient, which should be 0.28±0.11 in conditions of equilibrium (Putirka, 2016). The H2O 

547 content of the melt from which amphibole crystallized was calculated by the single-mineral 
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548 hygrometer of Ridolfi et al. (2010). Afterwards, the T-P conditions of amphibole crystallization 

549 were calculated by means of the amphibole-melt P-independent thermometer (Equation 5) and 

550 the T-independent, H2O-dependent barometer (Equation 7b) of Putirka (2016). In this latter 

551 equation, the H2O values obtained by the Ridolfi et al. (2010) hygrometer were used as input. 

552 The oxygen fugacity of the magmatic system was calculated by means of the oxy-barometer of 

553 Ishibashi (2013), based on the Fe2+/Fe3+ partitioning between spinel and melt.

554

555 Clinopyroxene and Ti-magnetite crystallization conditions

556 Equilibrium check results indicated that most of the clinopyroxene phenocrysts were not in 

557 equilibrium with the high Mg# (59-65) camptonitic melts (Cpx-LiqKdFe-Mg = 0.32-0.96), requiring 

558 instead a more evolved melt to attain equilibrium (Mg# 44-49). The disequilibrium is also 

559 supported by the compositional zoning between cores (Mg# 82) and rims (Mg# 68) of many 

560 crystals, as well as by the dusty reaction zones of the larger phenocrysts. The few crystals 

561 attaining equilibrium belong to slightly more evolved camptonitic samples (Cpx-LiqKdFe-Mg = 

562 0.17-0.40). Thermobarometric results indicate that clinopyroxene in equilibrium with their host 

563 rock composition crystallized at P of 490±180 MPa and T of 1087±27°C (Table 8). According 

564 to these ranges, T-P values of 1100-1050°C and 500 MPa were considered to apply the Ishibashi 

565 (2013) oxy-barometer to Ti-magnetite crystals. Results yielded a fO2 interval of -8.3/-10.0 log 

566 fO2 at 1100°C, and a -9.4/-11.0 log fO2 range at 1050°C (between -1 and +1 FMQ; Table 8).

567

568 Amphibole crystallization conditions 

569 Amphibole crystals in the less evolved camptonite resulted not in equilibrium with their host 

570 rock composition, having an Amp-LiqKdFe-Mg of 0.42-0.89. On the other side, equilibrium was 

571 attained by some crystals in the more evolved MA1 sample (Amp-LiqKdFe-Mg = 0.29-1.0). As 

572 expected, Type 4 xenocrysts and Type 5 amphiboles cores yielded extreme disequilibrium 

573 conditions, with Amp-LiqKdFe-Mg values as high as 1.94.
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574 The Ridolfi et al. (2010) hygrometer indicates that Type 1, Type 2 and Type 3 amphiboles 

575 crystallized at water contents of 7.3±0.3 wt% in the less evolved camptonitic melt, and 6.8±0.7 

576 wt% in the more differentiated one (Table 8). Higher values were calculated for Type 4 

577 xenocrysts and Type 5 amphibole cores, which yielded H2O contents up to 9.8 wt%. By 

578 considering only the crystals in equilibrium with their host rock composition, a range of 6.4±0.3 

579 H2O wt% is obtained. Putirka (2016) thermobarometers yielded T-P intervals of 1074-927°C 

580 and 1230-470 MPa for all amphibole crystals (Table 8). The highest P were calculated for Type 

581 4 xenocrysts (1190±50 MPa) and Type 5 amphiboles cores (1030±50 MPa), at corresponding 

582 crystallization T of 1037±21°C and 952±21°C, respectively (Table 8). It is worth noting that, 

583 due to the significant disequilibrium between Type 4 and Type 5 crystals and the melt, these 

584 values should be considered with caution. By taking into account only the crystals in 

585 equilibrium with the host rock, T-P ranges of 1027±12°C and 600±60 MPa are obtained. These 

586 values can likely represent the shallower amphibole crystallization conditions in the magmatic 

587 system. The deeper crystallization conditions can be instead roughly approached by some Type 

588 1, Type 2 and Type 3 crystals close to the equilibrium with the host camptonite (Amp-LiqKdFe-Mg 

589 = 0.42-0.46), which yield P and T up to 1160 MPa and 1067°C. In any case, the obtained T-P 

590 ranges are consistent with the experimental simulations proposed by Pilet et al. (2010), who 

591 demonstrated that kaersutite crystallization can start at 1130°C and 1.5 GPa in volatile-enriched 

592 (5-6 H2O wt%) basanitic melts, thus in conditions similar to those of Predazzo camptonites. If 

593 combined to the thermobarometric results obtained by clinopyroxene, these T-P values suggest 

594 that crystallization in the lamprophyric system occurred continuously between 690 and 230 

595 MPa, at T decreasing from 1124 to ~1000°C, with an H2O content ≥ 6.4±0.3 wt%.

596

597 Interpretation of amphibole textures

598 A correlation between the obtained T-P and H2O results and the previously identified textures 

599 enable us to infer amphibole crystallization processes. The homogeneous composition of Type 
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600 1 amphibole cores, close to the equilibrium with the less evolved melt (Amp-LiqKdFe-Mg = 0.42-

601 0.58) records a growth at high T-P (1057±12°C; 980±50 MPa), and 7.5±0.3 H2O wt% in the 

602 melt. The crystallization of Type 1 crystals continued during differentiation of the melt towards 

603 more evolved compositions (MA1 sample), where crystals attain equilibrium (Amp-LiqKdFe-Mg = 

604 0.32-0.36), at T-P down to 1013±34°C and 740±120 MPa, and water content of 7.3±0.9 wt%. 

605 Type 2 crystal cores, in marked disequilibrium with the melt (Amp-LiqKdFe-Mg = 0.73-0.80), record 

606 crystallization T and P of 1004±3°C and 900±10 MPa, at 7.0±0.1 H2O wt%. The rounded shape 

607 of both Type 1 and Type 2 cores reflects an event of dissolution after reaction with a melt 

608 undersaturated in amphibole. Subsequently, the melt differentiated and re-saturated in 

609 amphibole, allowing the precipitation of the rims at lower T-P (1048±15°C, 750±110 MPa Type 

610 1; 1029±24°C and 750±20 MPa Type 2) and H2O content (6.9±0.3 wt%; Fig. 7). The magnesio-

611 hastingsitic overgrowth in both Type 1 and Type 2 crystals, similar to the diopsidic bands 

612 identified by Petrone et al. (2018) in clinopyroxenes from Stromboli volcano (Aeolian Islands), 

613 probably formed in response of new pulse of primitive melts that introduced additional high T 

614 components (Mg and Ca) in the magmatic system. An abrupt T increase (from 1051 to 1071°C) 

615 is recorded in this intermediate overgrowth (Figg. 7a and 7b), which can provide the evidence 

616 of small-scale mixing dynamics between differentiated and primitive batches inside the 

617 magmatic system. Dusty zones of Type 3 amphibole cores formed as result of pseudomorphic 

618 replacement by interface-coupled dissolution-precipitation processes, resulting in Ti-magnetite, 

619 plagioclase and clinopyroxene formation at the interface (Ruiz-Agudo et al., 2014). The 

620 overgrowth of a newly formed rim in Type 3 crystals is likely concomitant with the formation 

621 of Type 1 and Type 2 rims. Type 3 rim, in fact, approaches the equilibrium towards the more 

622 evolved camptonitic melt (Amp-LiqKdFe-Mg = 0.34-0.69). Its crystallization conditions are the 

623 following: T = 1017±40°C; P = 760±120 MPa; melt H2O content = 7.2±0.4 wt%. Type 4 

624 xenocrysts probably represent relicts of larger crystals of deep crustal origin, brought to the 

625 surface by the ascent of lamprophyres. The incipient alteration and resorption features of their 
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626 cores suggest disequilibrium with the hosting melt, as also confirmed by the high Amp-LiqKdFe-

627 Mg (1.22). Their dusty portions probably formed as consequence of interface-coupled 

628 dissolution-precipitation. The outermost rim, compositionally analogous to most phenocryst 

629 rims and groundmass crystals (Type 1, Type 2 and Type 3) represent a late overgrowth 

630 approaching the equilibrium with the melt (Amp-LiqKdFe-Mg down to 0.61), as evidenced by the 

631 crystallization T (1051±9°C), P (1180±50 MPa) and H2O (8.6±0.3 wt%). The sharp edges and 

632 optical continuity between Type 5 amphiboles core and rim, as well as the absence of resorption 

633 zones, suggest that this texture is a consequence of a magnesio-hastingsitic overgrowth around 

634 preexisting sadanagaitic (Mg# = 29-39) crystals (Fig. 7e). The high Amp-LiqKdFe-Mg of the cores 

635 (1.18 to 1.94) indicates significant disequilibrium with respect to the host rock composition, 

636 implying that they would attain equilibrium only in an extremely differentiated melt. The 

637 related thermobarometric results, which should be considered with caution, suggest high P 

638 (1030±50 MPa) and low T (952±21°C) of crystallization, at high water content (up to 9.8 wt%). 

639 The peculiar composition of Type 5 cores, rare even in lamprophyres (Rock, 1991), makes it 

640 difficult to clearly define their origin, deserving further studies. Type 5 rims represent a 

641 subsequent growth in equilibrium with the melt (Amp-LiqKdFe-Mg = 0.29-0.55), at T of 1015±18°C, 

642 P of 570±60 MPa and H2O content down to 5.8 wt%. 

643 The observed simple dissolution and pseudomorphic replacement textures indicate a very 

644 dynamic regime of the lamprophyres magmatic system. Chemical zoning associated with 

645 dissolution-reprecipitation textures suggest that amphibole stability was affected by T changes 

646 due to small scale mixing between variably differentiated and/or volatile-rich melts. The 

647 repeated occurrence of such small-scale mixing processes resulted in fact in multiple and abrupt 

648 changes of amphibole liquidus conditions during lamprophyre differentiation.

649

650 LAMPROPHYRE MANTLE SOURCE AND MELTING MODEL
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651 An intriguing topic is the nature of the mantle source from which Predazzo lamprophyres were 

652 generated, especially in the light of their HFSE/REE distribution and Sr-Nd isotopic signature. 

653 Indirect evidence of the minimum depth of segregation is provided by the lherzolite xenoliths, 

654 which record a re-equilibration process at about 45 km of depth, in the spinel stability field 

655 (Carraro & Visonà, 2003). The Zr/Y (6-11), Lu/Hf (0.07-0.12) and DyN/YbN (1.1-1.7) ratios of 

656 Predazzo lamprophyres suggest that garnet played a significant role during melting in their 

657 mantle source, as also suggested by Pinzuti et al. (2013) for Asal Rift magmas. However, the 

658 LaN/YbN and GdN/YbN ratios of the less evolved camptonites are not very high, suggesting that 

659 their source differs from those of the “typical” alkaline lamprophyres and OIB magmas (Sun & 

660 McDonough, 1989; Rock, 1991). According to the Sr-Nd isotopic data (Fig. 11), lamprophyres 

661 were generated by a depleted mantle, as also confirmed by the Nb/La vs. La/Yb diagram of 

662 Smith et al. (1999), which indicates that an asthenospheric contribution was required for their 

663 generation (Fig. 13a). 

664 On the basis of these constraints, we modelled the nature of the mantle domain from which 

665 Predazzo lamprophyres were segregated by non-modal batch melting (Shaw, 1970). To account 

666 for the HFSE and REE budget of our samples, several mantle melting domains were used as 

667 starting point of our simulations. The modal composition and melting proportion of each of the 

668 considered mantle sources are reported in Table 9. A first discrimination between the role of 

669 spinel and garnet in the hypothetical source was put forward by using as starting mantle 

670 domains a spinel- and a garnet-bearing fertile lherzolites with Primordial Mantle (PM; Sun & 

671 McDonough, 1989) composition (curves II and III in Fig. 13). Consistently with the Sr-Nd 

672 isotopic data, a melting path was also proposed by using as starting source a depleted mantle 

673 composition (DMM; Workman & Hart, 2005; curve I in Fig. 13). The obtained melting curves 

674 suggest that none of the chosen starting components were able to reproduce the Sm/Yb ratio of 

675 Predazzo lamprophyres (Fig. 13). Their Gd/Yb ratio was better approximated by the melting 

676 curve of the garnet-bearing source, even if the match was not perfect (curve III in Fig. 13). 
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677 Consequently, amphibole and/or phlogopite were introduced as additional components of the 

678 starting mantle domains in our simulations. The calculated curves showed that garnet-

679 amphibole- (curve V), garnet-phlogopite- (curve VI) and garnet-spinel-amphibole-bearing 

680 (curve IV) sources are able to account for the Sm/Yb and Gd/Yb ratios of our samples (Fig. 

681 13), though the garnet-phlogopite-lherzolite assemblage was not able to reproduce the HREE 

682 systematics. Among the melting trends of garnet-amphibole- and the garnet-spinel-amphibole-

683 bearing sources, the former better reproduced the features of the less evolved camptonites, both 

684 in the Sm/Yb, La/Yb and Gd/Yb ratios and in the REE pattern (Fig. 13d). Accordingly, we 

685 suggest that the Predazzo lamprophyres could have been generated by low melting percentages 

686 (1.0 to 2.5%) of a garnet-amphibole-bearing lherzolite, with a fertile PM starting composition 

687 (Sun & McDonough, 1989). 

688 Such mantle source modal composition and melting degrees are similar to those proposed by 

689 Batki et al. (2014) for the generation of Ditrau lamprophyres (1-4% partial melting). However, 

690 the mantle source composition required by Predazzo lamprophyres is more depleted than the 

691 Ditrau one, being this latter a REE-enriched mantle with significant contribution of 

692 asthenospheric HIMU-OIB-like components (EAM, Seghedi et al., 2004; Batki et al., 2014). 

693 The presence of a LILE- and volatiles-enriched garnet-bearing mantle source with an 

694 asthenospheric signature was also proposed by Stoppa et al. (2014) to model the genesis of the 

695 Cretaceous to Oligocenic alkaline/ultramafic lamprophyres of Central-Southern Italy, whose 

696 REE patterns are strongly LREE-enriched and HREE-depleted with respect to the Predazzo 

697 ones. The involvement of amphibole and garnet during melting was required to simulate the 

698 relatively low LREE/HREE ratios of Predazzo lamprophyres, as well as to get rid of their H2O-

699 CO2-alkali-rich nature. Considering that the spinel-garnet transition in a continental lithospheric 

700 setting occurs at 60-90 km (2-3 GPa; Takahashi & Kushiro, 1983; Falloon & Green, 1988; 

701 Kinzler & Grove, 1992; Robinson & Wood, 1998; Pinzuti et al., 2013), we can constrain the 

702 melting region of Predazzo lamprophyres to >60 km depth. Amphibole stability in the mantle 
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703 is limited to ~3 GPa (Frost, 2006; Fumagalli et al., 2009; Tumiati et al., 2013; Mandler & 

704 Grove, 2016), suggesting that the mantle source depth is <90 km. Based on these constraints, 

705 we suggest that a depth of 70-80 km is most likely for the source region of these camptonites. 

706 Similar depths are also consistent with those proposed by Hammouda & Keshav (2015), 

707 according to whom carbonatite and silicate melts can coexist between 2 and 2.6 GPa (ca. 60-80 

708 km) along the convecting mantle adiabat (asthenosphere). 

709

710 GEODYNAMIC IMPLICATIONS

711 The magmatism of the Dolomitic Area 

712 The late-stage occurrence of alkaline lamprophyric dykes in intrusive complexes often acquires 

713 a double significance, since they do not only act as younger chronological boundary of the 

714 magmatic episodes, but they also constitute the most primitive (and least contaminated by the 

715 crust) magma types (Rock, 1991). In the case of the Predazzo area, several authors suggested a 

716 close relationship between the alkaline lamprophyres and the host pluton (Lucchini et al., 1969; 

717 1982; Carraro & Visonà, 2003). The new 40Ar/39Ar age results (from 218.90 ± 0.59/0.66 to 

718 219.70 ± 0.73/0.85 Ma; Fig. 10) lead us to point out that the lamprophyric rocks belong to a 

719 distinct magmatic pulse that occurred about 17-20 Ma later than the emplacement of the 

720 Predazzo Intrusive Complex (U-Pb zircon age of 238.075 ± 0.087 Ma, Storck et al., 2018). 

721 Moreover, since the entire Ladinian volcano-plutonic event in the Dolomitic Area has a limited 

722 duration (from 239.04±0.04 to 237.77±0.05 Ma; Brack et al., 1996; Mundil et al., 1996; Mietto 

723 et al., 2012; Abbas et al., 2018; Storck et al., 2018; Wotzlaw et al., 2018), it is evident that the 

724 lamprophyres represent a distinct magmatic event. This chronological gap is also reinforced by 

725 the geochemical discrepancies: despite showing a K-affinity comparable to that of the high-K 

726 calc-alkaline to shoshonitic volcano-plutonic rocks of the entire Dolomitic Area (Bonadiman et 

727 al., 1994; Casetta et al., 2018a; 2018b), camptonites have peculiar trace element profiles and 

728 Sr-Nd isotopic signature (Figg. 4 and 11). In fact, whereas the Ladinian high-K calc-alkaline to 
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729 shoshonitic rocks display the typical subduction-related incompatible element patterns, alkaline 

730 lamprophyres lack any Ta-Nb-Ti and U-Th negative anomaly, suggesting the involvement of 

731 an OIB-like component in their mantle source. The 87Sr/86Sri and 143Nd/144Ndi signature of 

732 Predazzo camptonites points towards a genesis from a mantle source more depleted than the 

733 EM I-like source that produced the Ladinian high-K calc-alkaline to shoshonitic rocks. As 

734 shown in Fig. 11, in fact, they plot close to the DMM end-member (Workman & Hart, 2005), 

735 suggesting that a significant contribution of the asthenospheric mantle was involved in their 

736 genesis. This feature confirms a time-related progressive depletion of the mantle source beneath 

737 the Dolomitic Area during Middle-Late Triassic, as already hypothesized for the source of 

738 Predazzo Intrusive Complex by Casetta et al. (2018a). Our study indicates that the magmatic 

739 activity in the Dolomitic Area was not confined to the Ladinian, but re-activated at about 218.5-

740 220.5 Ma, with the emplacement of a small alkaline pulse generated from a 143Nd/144Nd-

741 enriched mantle domain. At shallow depth, the ascent of such small melts was probably 

742 favoured by extensional-transtensional dynamics, to which lamprophyres are often associated 

743 (e.g. Scarrow et al., 2011, and reference therein). The (if any) relationships between Predazzo 

744 lamprophyres and the Triassic NE-SW transtensive-transpressive regimes of the Dolomitic 

745 Area (Doglioni, 2007; Doglioni & Carminati, 2008; Abbas et al., 2018), however, has never 

746 been investigated, and requires further studies, especially in the light of the new age data. The 

747 occurrence of extensional dynamics during lamprophyres ascent is also implied by the 

748 amphibole and clinopyroxene T-P path of crystallization. In contrast to the Ladinian magmatic 

749 event, when the crystallization of the high-K calc-alkaline to shoshonitic melts occurred 

750 preferentially in batches located at shallow crustal depths (1.4-5.6 km; Casetta et al., 2018a), 

751 lamprophyres crystallization started at 24 km (considering a ΔP/Δz of 29 MPa/km) and 

752 continued towards the surface (at least until 8 km). Such a condition is consistent with the 

753 presence of a polybaric vertical plumbing system and suggests that the fractional crystallization 

754 and (small-scale) mixing processes recorded by amphibole crystals took place en route to the 
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755 surface, without implying the presence of a magma chamber. This hypothesis, fostered by the 

756 presence of mantle xenoliths in few Predazzo camptonites, further suggest that lamprophyres 

757 are unrelated to the host plutonic complex.

758

759 Late-stage magmas or alkaline precursors?

760 When considered at a geodynamic scale, the significance of Predazzo lamprophyres is 

761 intriguing, since several magmatic episodes with variable geochemical affinity shaped the 

762 Southalpine-Austroalpine and Carnic-Dinaric domains from Permian to Middle-Late Triassic. 

763 The most similar and chronologically closer magmatic occurrence was documented in the 

764 Ditrau Alkaline Massif (Carpathians), where late-stage alkaline lamprophyres (camptonites) 

765 intruded a Middle-Triassic (231-227 Ma) alkaline intrusion (Dallmeyer et al., 1997; Morogan 

766 et al., 2000; Pana et al., 2000; Batki et al., 2014; Pál-Molnár et al., 2015). The major and trace 

767 elements and isotopic similarities between the Ditrau lamprophyres and the host pluton led to 

768 interpret them as the parental magmas of the intrusive suite (Batki et al., 2014). Such a model 

769 cannot be applied to the Predazzo case, where the geochronological and geochemical 

770 discrepancies between the alkaline lamprophyres and the plutonic complex rule out any possible 

771 correlation between camptonites and the trachybasaltic/shoshonitic rocks. Notwithstanding a 

772 slight relative depletion in Th, U, Nb, Zr and LREE with respect to the Ditrau lamprophyres, 

773 Predazzo lamprophyres have comparable Sr-Nd isotopic signature (Figg. 4 and 11), suggesting 

774 that similar mantle sources were involved in their genesis. According to Batki et al. (2014), 

775 Ditrau lamprophyres were generated in an early extensional phase of the Middle Triassic to 

776 Jurassic rifting that separated the Getic microplate from the Bucovinian margin (Batki et al., 

777 2014), thus representing the Alpine Tethys rift portion located northward of the Meliata basin 

778 (Stampfli et al., 2002; Stampfli, 2005). Precursors of the Tethyan opening were also 

779 documented in the Brescian Alps, not far from the Dolomitic Area, where intra-plate tholeiitic 
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780 lavas and dykes with depleted Sr-Nd isotopic signature emplaced almost simultaneously with 

781 the Predazzo lamprophyres, at about 217±3 Ma (Cassinis et al., 2008).

782 Coeval magmatic occurrences were also recognized in the Western Alps, where alkaline dykes, 

783 generated by an upwelling mantle with significant asthenospheric contribution, emplaced in the 

784 Finero area between 190-212.5 and 225±13 Ma (Stähle et al., 1990; 2001; Schaltegger et al., 

785 2015). Moreover, ages of 215±35 Ma and 220±4 Ma were determined by Morishita et al. (2008) 

786 and Malitch et al. (2017), respectively, for the formation of the metasomatic apatite-rich and 

787 chromitite layers in the Finero peridotite. This temporal overlap, bolstered by the similar Sr-Nd 

788 isotopic systematics between the alkaline dykes and the apatite-rich layers (Fig. 11), led several 

789 authors (Ferrario & Garuti, 1990; Morishita et al., 2003; 2008; Zaccarini et al., 2004) to 

790 associate all these occurrences to a unique alkaline-carbonatitic magmatic event. The generation 

791 of such H2O-CO2-rich fluids was attributed to mantle upwelling dynamics in a continental 

792 rifting setting (Zaccarini et al., 2004). Further evidence of an intimate association between 

793 alkaline and carbonatitic magmas in the Western Alps has been recently provided by Galli et 

794 al. (2019), who documented the existence of alkaline-carbonatitic bodies with emplacement 

795 age of 185-195 Ma throughout the Ivrea zone.

796 The 219.22 ± 0.73 Ma occurrence of alkaline lamprophyres at Predazzo can be easily 

797 incorporated in such a context, taking into account that their Sr-Nd isotopic signature totally 

798 overlap those of the alkaline dykes and the apatite-rich layers at Finero (Fig. 11; Stähle et al., 

799 1990; 2001; Morishita et al., 2008). The less differentiated alkaline dykes intruded at Finero 

800 (Stähle et al., 2001) are also characterized by trace element patterns comparable to those of 

801 Predazzo lamprophyres, except for Nb, Ta and Zr, slightly enriched in the formers. A marked 

802 U-Th depletion characterizes both Predazzo lamprophyres and the alkaline dykes at Finero, and 

803 their REE patterns almost totally overlap. Furthermore, the Sr-Nb enrichment of Predazzo 

804 lamprophyres matches the main features of the apatite-bearing assemblages at Finero (Zanetti 

805 et al., 1999), confirming the involvement of a carbonate-rich component in their genesis. This 
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806 parallelism is also supported by the presence, in Predazzo camptonites, of carbonate ocelli with 

807 a dolomite-ankerite composition comparable to that of the interstitial dolomite grains in the 

808 Finero peridotite (Zanetti et al., 1999).

809 According to our findings, Predazzo lamprophyres can be considered as an expression of the 

810 190-225 Ma alkaline-carbonatitic magmatism that intruded the subcontinental mantle portion 

811 beneath the Southern Alps (Ferrario & Garuti, 1990; Stähle et al., 1990; 2001; Zanetti et al., 

812 1999; Morishita et al., 2003; 2008; Zaccarini et al., 2004; Matsumoto et al., 2005; Raffone et 

813 al., 2006; Schaltegger et al., 2015; Malitch et al., 2017). This magmatic pulse, characterized by 

814 a mantle-upwelling signature, is distinguished from the previous, subduction-related, K- and 

815 LILE-rich metasomatic episode that produced amphibole and phlogopite in the Finero 

816 peridotite (Fig. 11; Coltorti & Siena, 1984; Morishita et al., 2003; 2008; Malitch et al., 2017). 

817 According to the U-Pb zircon ages (190-180 Ma and 230-180 Ma) proposed by Zanetti et al. 

818 (2016) and Langone et al. (2018), the alkaline-carbonatitic metasomatism affected the 

819 subcontinental mantle immediately prior to its exhumation, which was precisely related to the 

820 extensional stages of the Alpine Tethys rift.

821 Rather than to a late-stage episode connected to the Middle Triassic high-K calc-alkaline to 

822 shoshonitic (orogenic) magmatism, the generation of Predazzo lamprophyres should be 

823 considered, together with the Ditrau lamprophyres, the Brescian Alps basalts and the Ivrea 

824 alkaline-carbonatitic magmas, as a Late Triassic precursor of the Alpine Tethys rifting event. 

825 This hypothesis is supported by their depleted Sr-Nd isotopic signature, consistent with a 

826 genesis from a mantle source influenced by an asthenospheric contribution (Fig. 11). Further 

827 evidence is given by the incompatible elements pattern of the alkaline lamprophyres that, when 

828 compared to the Ladinian shoshonitic rocks of the Dolomitic Area, appear depleted in U, Th, 

829 K and La, more than enriched in Nb and Ta (Fig. 4). Such a feature is consistent with the 

830 progressive shift of the magmatism from orogenic-like to anorogenic, and thus to a progressive 
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831 evolution of the subcontinental mantle source towards a more depleted, asthenospheric-related 

832 nature.

833

834 CONCLUSIVE REMARKS

835 The petrological, geochronological and isotopic study of the Predazzo alkaline lamprophyres 

836 enabled us to provide new insights on the geodynamic evolution of the Dolomitic Area and the 

837 Southern Alps during Middle-Late Triassic. The most relevant findings can be summarized as 

838 follows:

839 1. The compositional spectrum of Predazzo alkaline lamprophyres (camptonites) can be 

840 explained by assuming 35-40% fractional crystallization of olivine, clinopyroxene, 

841 amphibole and Ti-magnetite from an initial primitive camptonitic melt.

842 2. Amphibole textural and compositional features suggest that the lamprophyre magmatic 

843 system was subjected to small scale mixing between variably differentiated and/or volatile 

844 rich melts during differentiation. Moreover, the occurrence, composition and textural 

845 features of carbonate-bearing ocelli suggest that a carbonatitic melt was intimately 

846 associated to the alkaline lamprophyric one.

847 3. 40Ar/39Ar ages of Predazzo alkaline lamprophyres demonstrated that they were emplaced at 

848 219.22 ± 0.73 Ma (Late Triassic; 40Ar/39Ar; 2σ; full systematic uncertainties), suggesting 

849 an origin unrelated to the short-lived Ladinian high-K calc-alkaline to shoshonitic 

850 magmatism of the Predazzo-Mt. Monzoni intrusions in the Dolomitic Area.

851 4. The difference between alkaline lamprophyres and the host Ladinian rocks is illustrated by 

852 the absence of Ta-Nb-Ti negative anomalies, the presence of U-Th negative peaks, and their 

853 HFSE distribution, which point towards a genesis in an intra-plate geodynamic setting, from 

854 a garnet-bearing mantle source. This is also confirmed by their Sr-Nd isotopic systematics, 

855 which are consistent with a depleted mantle contribution in their source, in contrast to the 
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856 pure EM I-like signature of the Predazzo-Mt.Monzoni Ladinian intrusions, which was 

857 ascribed to a subduction-modified mantle.

858 5. Thermo-, oxy-barometric and hygrometric calculations based on clinopyroxene, amphibole 

859 and Ti-magnetite composition suggest that the crystallization in the lamprophyre magmatic 

860 system occurred at least between 690 and 230 MPa, a T decreasing from 1124 to ~1000°C. 

861 The oxygen fugacity of the magmatic system varied between -1 and +1 FMQ, whereas the 

862 H2O content of the lamprophyric melts resulted ≥ 6.4±0.3 wt%, decreasing with decreasing 

863 temperature. These results strengthen the distinction between lamprophyres and the 

864 Ladinian high-K calc-alkaline to shoshonitic magmatism: whereas the latter was dominated 

865 by crystallization processes at shallow crustal levels (1.4-5.6 km; Casetta et al., 2018), 

866 lamprophyres started crystallizing at about 24 km and continued towards the surface, 

867 probably in an extensional-transtensional tectonic regime.

868 6. Mantle melting models suggest that low melting percentages (1.0-2.5%) of a fertile garnet-

869 amphibole-bearing lherzolite can account for the generation of Predazzo lamprophyres. The 

870 melting region was probably located between 70 and 80 km of depth.

871 7. Predazzo lamprophyres are temporally, spatially and geochemically correlable to several 

872 magmatic occurrences of the Southern Alps-Carpathians area: i) the Ditrau alkaline 

873 lamprophyres (Batki et al., 2014); ii) the Brescian Alps intra-plate tholeiitic lavas and dykes 

874 (Cassinis et al., 2008); and iii) the alkaline dykes, apatite-rich and chromitite layers in the 

875 Ivrea zone (Ferrario & Garuti, 1990; Stähle et al., 1990; 2001; Morishita et al., 2003; 2008; 

876 Zaccarini et al., 2004; Schaltegger et al., 2015; Malitch et al., 2017; Galli et al., 2019). A 

877 further geochemical and geochronological comparison with the alkaline magmas at 

878 Karawanken (Austroalpine domain, Visonà & Zanferrari, 2000) is instead required, since 

879 the only available age data for this complex (230±9 Ma, Lippolt & Pidgeon, 1974) overlaps 

880 with both the ~237 Ma high-K calc-alkaline to shoshonitic and the 218.5-220.5 Ma alkaline 

881 lamprophyres of the Dolomitic Area. 
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882 8. Rather than a late-stage episode related to the Ladinian high-K calc-alkaline to shoshonitic 

883 magmatism of the Dolomitic Area, Predazzo lamprophyres should be considered part of the 

884 alkaline-carbonatitic magmatic pulse that intruded the Southern Alps subcontinental mantle 

885 between 225 and 190 Ma. Such a magmatic event likely represents a precursor of the rifting 

886 stage connected to the Alpine Tethys opening, as also suggested by its asthenospheric-

887 influenced Sr-Nd isotopic signature. The generation of such H2O-CO2-rich alkaline-

888 carbonatitic melts is therefore ascribable to mantle upwelling dynamics in a continental 

889 rifting setting (Stähle et al., 1990; 2001; Zaccarini et al., 2004; Batki et al., 2014; 

890 Schaltegger et al., 2015; Galli et al., 2019).

891 9. Predazzo alkaline lamprophyres can be considered as geochemical and geochronological 

892 markers of the shift from orogenic-like to anorogenic magmatism in the Southern Alps. 

893 Their Sr-Nd isotopic signature and incompatible elements pattern suggest that the mantle 

894 source that generated the Ladinian (~237 Ma) subduction-related magmas was 

895 progressively being depleted, during Late Triassic, by the asthenospheric influx related to 

896 the Alpine Tethys opening.
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1332 FIGURE CAPTIONS

1333 Fig. 1. (colour online)

1334 (a) Map of the tectonic units of the eastern portion of the Alps (partly modified from Castellarin 

1335 et al., 1988; Dal Piaz et al., 2003; Schmid et al., 2016). LO: Ligurian Ophiolites; AM: deformed 

1336 Adriatic margin; AD: Adriatic Microplate; SA: Southern Alps; DI: Dinarides; SM: Southern 

1337 margin of Meliata; HB: Eoalpine High-Pressure Belt; TW: Tauern tectonic Window; EW: 

1338 Engadine tectonic Window; OTW: Ossola-Tessin tectonic Window; EA: Eastern Austroalpine; 
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1339 H: Helvetic domain; M: Molasse foredeep. The Middle Triassic magmatic occurrences in the 

1340 Southern Alps domain are evidenced in black. They are, from west to east: Brescian Alps, Alto 

1341 Vicentino, Valsugana, Dolomitic Area (identified by the circle), Carnia and Karawanken. (b) 

1342 Simplified geological map of the Predazzo Intrusive Complex (PIC), showing the occurrence 

1343 of lamprophyric dykes (modified from Casetta et al., 2018a). SS: Shoshonitic Silica Saturated 

1344 unit; SU: Shoshonitic Silica Undersaturated unit; GU: Granitic Unit. (c) Lamprophyric dyke 

1345 intruded in the syenogranites (Sygr) at Predazzo. (d) Amphibole megacryst (indicated by the 

1346 arrow) and (e) clinopyroxenitic xenolith included in the lamprophyric rocks.

1347

1348 Fig. 2. (colour online)

1349 Photomicrographs in transmitted plane-polarized light of (a) a less evolved and (b) a more 

1350 evolved (sample MA1) camptonite. Amp: amphibole; Cpx: clinopyroxene; Ol: olivine; Pl: 

1351 plagioclase; Ti-Mag: Ti-magnetite. Mineral abbreviations following Whitney & Evans (2010).

1352

1353 Fig. 3. (colour online)

1354 (a) K2O vs. Na2O diagram, (b) Cr vs. MgO and (c) Ni vs. MgO variations diagrams for Predazzo 

1355 camptonites. (d) Al2O3-MgO-CaO and (e) SiO2/10-CaO-TiO2×4 ternary diagrams showing the 

1356 composition of Predazzo camptonites compared to those of worldwide alkaline lamprophyres 

1357 (AL), ultramafic lamprophyres (UML) and calc-alkaline lamprophyres (CAL; data from Rock, 

1358 1991). The compositional field of Cretaceous to Oligocenic Italian lamprophyres (grey field) is 

1359 also reported for comparison (data from Stoppa et al., 2014).

1360

1361 Fig. 4. (colour online)

1362 Chondrite-normalized (Sun & McDonough, 1989) trace element (a) and REE patterns (b) of 

1363 Predazzo camptonites. The OIB pattern (Sun & McDonough, 1989), the average composition 

1364 of the worldwide camptonites (Rock, 1991), Italian lamprophyres (Galassi et al., 1994; Vichi 
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1365 et al., 2005; Stoppa et al., 2008; 2014), Ditrau lamprophyres (Batki et al., 2014) and Predazzo 

1366 Intrusive Complex Shoshonitic Silica Saturated (SS) and Undersaturated (SU) rocks (Casetta 

1367 et al., 2018a; 2018b) are reported for comparison.

1368

1369 Fig. 5. (colour online)

1370 Trace element discrimination diagrams for Predazzo camptonites: (a) ThN vs. NbN diagram 

1371 (Saccani, 2015); (b) Ti/Y vs. Nb/Y diagram (Pearce, 1982); (c) Zr/Y vs. Zr diagram (Pearce 

1372 and Norry, 1979); (d) Th-Hf-Ta ternary diagram (Wood, 1980); (e) Zr-Nb-Y ternary diagram 

1373 (Meschede, 1986). Fractional Crystallization (FC) and Assimilation and Fractional 

1374 Crystallization (AFC) vectors reported in (a) are in accordance with Saccani (2015).

1375

1376 Fig. 6. (colour online)

1377 Mineral phase classification diagrams showing the composition of the main crystals of Predazzo 

1378 camptonites. (a) Orthoclase (Or)-Albite (Ab)-Anorthite (An) ternary diagram for plagioclase 

1379 and K-Feldspar; (b) Rutile (Rt)-Wustite (Wus)-Hematite (Hem) ternary diagram for Fe-Ti 

1380 oxide; (c) Wollastonite (Wo)-Enstatite (En)-Ferrosilite (Fs) diagram for clinopyroxene (after 

1381 Morimoto, 1988). (d) CaO/Na2O vs. Al2O3/TiO2 diagram for amphibole (after Rock, 1991). 

1382 Compositional field of kaersutite in ultramafic (UML) and alkaline lamprophyres (AL), 

1383 hastingsite in calc-alkaline lamprophyres (CAL), and K-richterite, arfvedsonite and 

1384 eckermannite in lamproites (LL) are also reported in (d) for comparison (data from Rock, 1991).

1385

1386 Fig. 7. (colour online)

1387 Photomicrographs in transmitted plane-polarized light, back scattered SEM images and core-

1388 to-rim compositional (Mg# and TiO2) profiles of (a) Type 1, (b) Type 2, (c) Type 3, (d) Type 4 

1389 and (e) Type 5 amphiboles recognized in Predazzo camptonites. For each amphibole type, the 

1390 determination of the water content (H2O wt%) dissolved in the melt obtained by the equation 
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1391 of Ridolfi et al. (2010) and the crystallization temperature (T°C) calculated by means of Putirka 

1392 (2016) thermometer are also reported.

1393

1394 Fig. 8. (colour online)

1395 Chondrite-normalized (Sun & McDonough, 1989) trace element (a, c) and REE (b, d) patterns 

1396 of amphibole (Amp) and clinopyroxene (Cpx) crystals analysed in Predazzo camptonites. Solid 

1397 lines: core composition; dotted lines: rim composition.

1398

1399 Fig. 9. (colour online)

1400 Compositional and textural features of the carbonate ocelli inside Predazzo camptonites. (a) 

1401 Calcite-magnesite-siderite ternary diagram and (b) SrO + MnO vs. CaO/MgO diagram (after 

1402 Vichi et al., 2005) showing the composition of carbonates from the inner and outer portions of 

1403 the ocelli. Grey fields in (a) are referred to the composition of carbonates documented in 

1404 worldwide lamprophyres (data from Rock, 1991). Dotted arrow in (b) represent the positive 

1405 correlation between SrO + MnO and CaO/MgO, typical of low-temperature (low-T) carbonates 

1406 (Vichi et al., 2005). (c, d, e) Back scattered SEM images of carbonate ocelli composed of (c, 

1407 d) both dolomite-ankerite/magnesite-siderite or (e) dolomite-ankerite crystals only. The flow-

1408 aligned tangential growth of amphibole, plagioclase and clinopyroxene is particularly evident 

1409 in (d) and (e).

1410

1411 Fig. 10. (colour online)

1412 40Ar/39Ar age spectra for mineral separates from Predazzo camptonites, with apparent ages and 

1413 K/Ca ratios spectra plotted against the cumulative percentage of 39Ar released. (a) Age spectrum 

1414 yielded by amphibole crystals from sample FF37; (b) age spectrum yielded by plagioclase 

1415 crystals from sample FF2. Plateau ages are indicated in bold.

1416
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1417 Fig. 11. (colour online)

1418 87Sr/86Sr vs. 143Nd/144Nd diagram showing the isotopic signature of Predazzo camptonites 

1419 corrected to 220 Ma. Fields indicate the Sr-Nd isotopic signature of the: Finero (Voshage et al., 

1420 1987), Balmuccia and Baldissero peridotites (Mukasa & Shervais 1999; Mazzucchelli et al., 

1421 2009); alkaline dykes intruded in the Finero peridotite (220 Ma; Stahle et al., 2001); apatite-

1422 rich layers of the Finero peridotite (215 Ma; Morishita et al., 2008); Ditrau lamprophyres (220 

1423 Ma; Batki et al., 2014); Predazzo Intrusive Complex (PIC) Shoshonitic Silica Saturated (SS) 

1424 and Undersaturated (SU) rocks (234 Ma; Casetta et al., 2018a). DMM (Workman & Hart, 2005) 

1425 and EM I (Zindler & Hart, 1986) mantle end-members (corrected to 220 Ma) are also reported 

1426 for comparison.

1427

1428 Fig. 12. (colour online)

1429 (a) FeO vs. MgO and (b) Al2O3/TiO2 vs. MgO diagrams showing the fractional crystallization 

1430 (FC) vectors used to simulate the compositional trend of Predazzo camptonites. The dotted 

1431 vectors represent the contribution of the single mineral phases during fractional crystallization; 

1432 the black solid arrows represent the sum vector at 35% fractional crystallization. The relative 

1433 percentages of fractionation of the single phases are also reported. Ol: olivine; Cpx: 

1434 clinopyroxene; Amp: amphibole; Ti-Mag: Ti-magnetite; Pl: plagioclase.

1435

1436 Fig. 13. (colour online)

1437 (a) Nb/La vs. La/Yb diagram (Smith et al., 1999) used to discriminate between the contribution 

1438 of lithosphere and asthenosphere in the mantle source of Predazzo camptonites. (b) Gd/Yb vs. 

1439 La/Yb and (c) Sm/Yb vs. La/Sm diagrams for the less differentiated Predazzo camptonites. 

1440 Melting curves in (b) and (c) are modelled using the non-modal batch melting equations of 

1441 Shaw (1970). Starting mantle sources: I = Spl-lherzolite with DMM composition (Workman & 

1442 Hart, 2005); II = Spl-lherzolite; III = Grt-lherzolite; IV = Spl-Grt-Amp-lherzolite; V = Grt-
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1443 Amp-lherzolite; VI = Grt-Phl-lherzolite. Starting REE composition of II, III, IV, V and VI 

1444 sources is fertile PM of Sun & McDonough (1989). Source modal composition, melting 

1445 proportions and partition coefficients for olivine, orthopyroxene, clinopyroxene, spinel, garnet, 

1446 amphibole and phlogopite are reported in Table 9. (d) Chondrite-normalized (Sun & 

1447 McDonough, 1989) REE patterns of Predazzo less differentiated camptonites compared to 

1448 those simulated by partial melting of a garnet-amphibole-lherzolite (curve V) at partial melting 

1449 degrees of 0.5 to 10%.
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Fig. 1. (colour online) 
(a) Map of the tectonic units of the eastern portion of the Alps (partly modified from Castellarin et al., 1988; 

Dal Piaz et al., 2003; Schmid et al., 2016). LO: Ligurian Ophiolites; AM: deformed Adriatic margin; AD: 
Adriatic Microplate; SA: Southern Alps; DI: Dinarides; SM: Southern margin of Meliata; HB: Eoalpine High-
Pressure Belt; TW: Tauern tectonic Window; EW: Engadine tectonic Window; OTW: Ossola-Tessin tectonic 

Window; EA: Eastern Austroalpine; H: Helvetic domain; M: Molasse foredeep. The Middle Triassic magmatic 
occurrences in the Southern Alps domain are evidenced in black. They are, from west to east: Brescian Alps, 
Alto Vicentino, Valsugana, Dolomitic Area (identified by the circle), Carnia and Karawanken. (b) Simplified 
geological map of the Predazzo Intrusive Complex (PIC), showing the occurrence of lamprophyric dykes 

(modified from Casetta et al., 2018a). SS: Shoshonitic Silica Saturated unit; SU: Shoshonitic Silica 
Undersaturated unit; GU: Granitic Unit. (c) Lamprophyric dyke intruded in the syenogranites (Sygr) at 

Predazzo. (d) Amphibole megacryst (indicated by the arrow) and (e) clinopyroxenitic xenolith included in the 
lamprophyric rocks. 
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Fig. 2. (colour online) 
Photomicrographs in transmitted plane-polarized light of (a) a less evolved and (b) a more evolved (sample 
MA1) camptonite. Amp: amphibole; Cpx: clinopyroxene; Ol: olivine; Pl: plagioclase; Ti-Mag: Ti-magnetite. 

Mineral abbreviations following Whitney & Evans (2010). 
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Fig. 3. (colour online) 
(a) K2O vs. Na2O diagram, (b) Cr vs. MgO and (c) Ni vs. MgO variations diagrams for Predazzo 

camptonites. (d) Al2O3-MgO-CaO and (e) SiO2/10-CaO-TiO2×4 ternary diagrams showing the composition 
of Predazzo camptonites compared to those of worldwide alkaline lamprophyres (AL), ultramafic 

lamprophyres (UML) and calc-alkaline lamprophyres (CAL; data from Rock, 1991). The compositional field of 
Cretaceous to Oligocenic Italian lamprophyres (grey field) is also reported for comparison (data from Stoppa 

et al., 2014). 
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Fig. 4. (colour online) 
Chondrite-normalized (Sun & McDonough, 1989) trace element (a) and REE patterns (b) of Predazzo 
camptonites. The OIB pattern (Sun & McDonough, 1989), the average composition of the worldwide 

camptonites (Rock, 1991), Italian lamprophyres (Galassi et al., 1994; Vichi et al., 2005; Stoppa et al., 
2008; 2014), Ditrau lamprophyres (Batki et al., 2014) and Predazzo Intrusive Complex Shoshonitic Silica 

Saturated (SS) and Undersaturated (SU) rocks (Casetta et al., 2018a; 2018b) are reported for comparison. 
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Fig. 5. (colour online) 
Trace element discrimination diagrams for Predazzo camptonites: (a) ThN vs. NbN diagram (Saccani, 2015); 
(b) Ti/Y vs. Nb/Y diagram (Pearce, 1982); (c) Zr/Y vs. Zr diagram (Pearce and Norry, 1979); (d) Th-Hf-Ta 
ternary diagram (Wood, 1980); (e) Zr-Nb-Y ternary diagram (Meschede, 1986). Fractional Crystallization 
(FC) and Assimilation and Fractional Crystallization (AFC) vectors reported in (a) are in accordance with 

Saccani (2015). 
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Fig. 6. (colour online) 
Mineral phase classification diagrams showing the composition of the main crystals of Predazzo camptonites. 

(a) Orthoclase (Or)-Albite (Ab)-Anorthite (An) ternary diagram for plagioclase and K-Feldspar; (b) Rutile 
(Rt)-Wustite (Wus)-Hematite (Hem) ternary diagram for Fe-Ti oxide; (c) Wollastonite (Wo)-Enstatite (En)-

Ferrosilite (Fs) diagram for clinopyroxene (after Morimoto, 1988). (d) CaO/Na2O vs. Al2O3/TiO2 diagram for 
amphibole (after Rock, 1991). Compositional field of kaersutite in ultramafic (UML) and alkaline 

lamprophyres (AL), hastingsite in calc-alkaline lamprophyres (CAL), and K-richterite, arfvedsonite and 
eckermannite in lamproites (LL) are also reported in (d) for comparison (data from Rock, 1991). 
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Fig. 7. (colour online) 
Photomicrographs in transmitted plane-polarized light, back scattered SEM images and core-to-rim 

compositional (Mg# and TiO2) profiles of (a) Type 1, (b) Type 2, (c) Type 3, (d) Type 4 and (e) Type 5 
amphiboles recognized in Predazzo camptonites. For each amphibole type, the determination of the water 

content (H2O wt%) dissolved in the melt obtained by the equation of Ridolfi et al. (2010) and the 
crystallization temperature (T°C) calculated by means of Putirka (2016) thermometer are also reported. 
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Fig. 8. (colour online) 
Chondrite-normalized (Sun & McDonough, 1989) trace element (a, c) and REE (b, d) patterns of amphibole 
(Amp) and clinopyroxene (Cpx) crystals analysed in Predazzo camptonites. Solid lines: core composition; 

dotted lines: rim composition. 
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Fig. 9. (colour online) 
Compositional and textural features of the carbonate ocelli inside Predazzo camptonites. (a) Calcite-

magnesite-siderite ternary diagram and (b) SrO + MnO vs. CaO/MgO diagram (after Vichi et al., 2005) 
showing the composition of carbonates from the inner and outer portions of the ocelli. Grey fields in (a) are 
referred to the composition of carbonates documented in worldwide lamprophyres (data from Rock, 1991). 
Dotted arrow in (b) represent the positive correlation between SrO + MnO and CaO/MgO, typical of low-

temperature (low-T) carbonates (Vichi et al., 2005). (c, d, e) Back scattered SEM images of carbonate ocelli 
composed of (c, d) both dolomite-ankerite/magnesite-siderite or (e) dolomite-ankerite crystals only. The 

flow-aligned tangential growth of amphibole, plagioclase and clinopyroxene is particularly evident in (d) and 
(e). 
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Fig. 10. (colour online) 
40Ar/39Ar age spectra for mineral separates from Predazzo camptonites, with apparent ages and K/Ca 
ratios spectra plotted against the cumulative percentage of 39Ar released. (a) Age spectrum yielded by 

amphibole crystals from sample FF37; (b) age spectrum yielded by plagioclase crystals from sample FF2. 
Plateau ages are indicated in bold. 
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Fig. 11. (colour online) 
87Sr/86Sr vs. 143Nd/144Nd diagram showing the isotopic signature of Predazzo camptonites corrected to 
220 Ma. Fields indicate the Sr-Nd isotopic signature of the: Finero (Voshage et al., 1987), Balmuccia and 
Baldissero peridotites (Mukasa & Shervais 1999; Mazzucchelli et al., 2009); alkaline dykes intruded in the 

Finero peridotite (220 Ma; Stahle et al., 2001); apatite-rich layers of the Finero peridotite (215 Ma; 
Morishita et al., 2008); Ditrau lamprophyres (220 Ma; Batki et al., 2014); Predazzo Intrusive Complex (PIC) 

Shoshonitic Silica Saturated (SS) and Undersaturated (SU) rocks (234 Ma; Casetta et al., 2018a). DMM 
(Workman & Hart, 2005) and EM I (Zindler & Hart, 1986) mantle end-members (corrected to 220 Ma) are 

also reported for comparison. 
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Fig. 12. (colour online) 
(a) FeO vs. MgO and (b) Al2O3/TiO2 vs. MgO diagrams showing the fractional crystallization (FC) vectors 

used to simulate the compositional trend of Predazzo camptonites. The dotted vectors represent the 
contribution of the single mineral phases during fractional crystallization; the black solid arrows represent 

the sum vector at 35% fractional crystallization. The relative percentages of fractionation of the single 
phases are also reported. Ol: olivine; Cpx: clinopyroxene; Amp: amphibole; Ti-Mag: Ti-magnetite; Pl: 

plagioclase. 
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Fig. 13. (colour online) 
(a) Nb/La vs. La/Yb diagram (Smith et al., 1999) used to discriminate between the contribution of 

lithosphere and asthenosphere in the mantle source of Predazzo camptonites. (b) Gd/Yb vs. La/Yb and (c) 
Sm/Yb vs. La/Sm diagrams for the less differentiated Predazzo camptonites. Melting curves in (b) and (c) 
are modelled using the non-modal batch melting equations of Shaw (1970). Starting mantle sources: I = 

Spl-lherzolite with DMM composition (Workman & Hart, 2005); II = Spl-lherzolite; III = Grt-lherzolite; IV = 
Spl-Grt-Amp-lherzolite; V = Grt-Amp-lherzolite; VI = Grt-Phl-lherzolite. Starting REE composition of II, III, 

IV, V and VI sources is fertile PM of Sun & McDonough (1989). Source modal composition, melting 
proportions and partition coefficients for olivine, orthopyroxene, clinopyroxene, spinel, garnet, amphibole 

and phlogopite are reported in Table 9. (d) Chondrite-normalized (Sun & McDonough, 1989) REE patterns of 
Predazzo less differentiated camptonites compared to those simulated by partial melting of a garnet-

amphibole-lherzolite (curve V) at partial melting degrees of 0.5 to 10%. 
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Table 1: Whole-rock major, trace element composition and 87Sr/86Sr and 143Nd/144Nd isotopes of Predazzo lamprophyres. Fe2O3 and FeO were calculated by considering a Fe2O3/ FeO ratio of 0.15, in agreement with a fO2 around +1FMQ buffer (Kress & Carmichael, 
1991). Mg# = MgO/[MgO+FeO] mol%; n.d. = not detected. All trace element (ppm) were analysed by ICP-MS except Pb, Zn, Ni, Co, Cr, V and Ba (XRF). The trace element composition of samples labelled with (*) was entirely determined by XRF. Sr-Nd isotopic ratios 
were corrected for 220 Ma of radiogenic ingrowth using the trace element abundances determined by ICP-MS, the decay rates of Rotenberg et al. (2012) and Lugmair & Marti (1978). Initial ratios (i) and uncertainties (2σ) were propagated according to Ickert (2013). 
Camp: Camptonite
Lithology Camp Camp Camp Camp Camp Camp Camp Camp Camp Camp Camp Camp Camp Camp Camp Camp Camp Camp
Sample 222* A 71* FF2* FF17* FF22* FF26* S3* FF37* FF38* EM97 EM99 FF14 EM20A EM87 EM37A FC80 MA5 MA1
Oxide (wt%)                   
SiO2 47.22 47.90 45.00 44.29 45.02 46.20 47.72 45.86 45.63 45.74 47.00 44.07 45.24 44.59 44.73 45.16 46.67 52.81
TiO2 2.00 1.83 1.87 2.13 2.31 2.30 2.00 1.82 1.91 2.14 1.85 2.41 1.84 1.71 1.65 1.96 2.13 1.37
Al2O3 16.74 18.82 17.97 17.01 16.23 18.15 17.77 18.46 18.36 17.62 18.78 15.29 16.39 15.75 16.25 17.74 16.65 17.45
Fe2O3 1.50 1.33 1.49 1.26 1.30 1.63 1.15 1.63 1.55 1.37 1.37 1.46 1.41 1.55 1.29 1.31 1.50 0.98
FeO 9.99 8.83 9.91 8.45 8.65 10.86 7.65 10.83 10.32 9.15 9.10 9.74 9.38 10.30 8.54 8.71 10.02 6.53
MnO 0.23 0.19 0.23 0.19 0.23 0.17 0.18 0.18 0.15 0.20 0.20 0.18 0.22 0.20 0.20 0.18 0.17 0.16
MgO 5.24 4.93 2.99 7.72 7.15 4.36 7.39 3.60 6.53 5.88 3.00 10.06 6.80 8.49 11.28 7.13 4.37 3.23
CaO 11.25 9.71 13.88 13.43 14.24 9.05 9.66 10.73 10.26 13.03 12.49 11.92 13.81 13.21 12.86 11.80 13.95 8.83
Na2O 2.77 1.95 2.45 2.73 1.92 2.81 2.40 2.23 2.20 1.56 1.75 1.89 2.08 1.54 1.59 3.27 2.47 2.90
K2O 2.38 3.61 3.25 2.27 2.29 3.37 3.66 3.74 2.48 2.64 3.58 2.25 2.01 1.89 1.02 2.14 1.61 4.97
P2O5 0.68 0.90 0.95 0.51 0.65 1.10 0.43 0.92 0.60 0.65 0.86 0.73 0.81 0.78 0.60 0.60 0.44 0.77
Tot. 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Mg# 48.30 49.90 34.97 61.94 59.58 41.68 63.24 37.20 52.99 53.41 36.96 64.77 56.34 59.52 70.19 59.33 43.75 46.88
LOI 6.65 3.72 6.39 4.92 5.41 5.88 5.52 5.53 4.81 5.33 6.53 5.70 6.11 5.13 6.68 5.17 7.36 5.94
Trace element (ppm)

                  

Pb 28.0 8.20 12.0 13.0 10.0 11.0 15.4 26.0 13.7 5.60 22.2 11.0 12.2 15.8 21.4 16.0 34.0 8.7
Zn 128 79.5 69.0 65.0 79.0 119 143 124 216 110 122 97.0 90.1 88.0 107 80.7 145 77.9
Ni 79.0 31.8 31.0 143 138 34.0 94.5 33.0 43.3 85.5 30.9 201 135 226 237 59.4 62.8 27.3
Co 30.0 28.8 28.0 40.0 43.0 26.0 32.7 34.0 43.0 30.3 34.5 45.0 32.4 44.4 48.4 40.6 41.6 25.8
Cr 211 19.8 14.0 254 364 37.0 161 23.0 24.9 185 16.0 449 326 514 585 46.8 78.9 42.2
V 144 112 124 238 231 134 197 130 187 222 125 220 167 170 212 191 223 92.8
Rb 52.0 82.8 239 114 48.0 105 102 238 54.0 146 242 318 105 63.9 32.0 30.5 52.7 331
Ba 535 790 528 542 510 571 991 522 576 910 525 405 496 504 334 546 350 590
Sr 1187 1305 1247 661 807 1545 1085 1183 1069 862 1175 1190 829 795 581 780 609 1181
Nb 45.0 58.4 60.0 16.0 30.0 72.0 n.d. 63.0 n.d. 24.9 56.9 46.2 35.8 37.2 15.8 33.3 18.8 55.2
Zr 187 321 309 211 241 251 262 333 212 190 264 201 182 170 150 202 173 356
Hf          3.03 4.96 4.62 4.08 2.95 1.99 4.02 4.19 6.11
U          0.52 1.16 1.18 0.86 0.85 0.38 0.91 0.56 0.98
Th          2.13 4.83 5.26 4.29 2.55 1.71 3.10 4.09 4.96
Y 22.0 31.6 25.0 24.0 23.0 26.0 33.3 27.0 30.3 19.9 39.8 26.0 31.4 21.5 19.4 22.8 28.5 31.9
Ta          1.74 3.53 1.88 2.32 1.80 0.69 0.80 0.68 2.30
La 45.0 71.5 38.0 11.0 27.0 61.0 55.9 37.0 48.4 20.4 47.7 30.9 34.0 23.8 12.3 27.2 20.8 35.4
Ce 79.0 121 125 64.0 42.0 109 93.8 86.0 49.5 54.8 105 57.2 76.2 55.9 31.1 55.6 45.1 67.5
Pr          7.17 12.8 7.21 9.27 6.61 3.96 6.53 5.65 7.51
Nd          23.4 37.8 28.7 28.1 20.0 13.0 27.2 24.3 31.0
Sm          4.62 6.86 5.32 5.58 3.98 2.88 5.19 5.13 5.37
Eu          1.58 2.50 1.64 2.08 1.48 1.11 1.65 1.65 1.77
Gd          5.10 8.08 5.01 6.29 4.54 3.39 4.92 5.05 5.45
Tb          0.72 1.20 0.81 0.98 0.69 0.56 0.76 0.86 0.84
Dy          3.76 6.53 3.96 5.39 3.81 3.16 3.99 4.53 4.34
Ho          0.82 1.52 0.83 1.26 0.89 0.78 0.84 0.98 0.91
Er          1.88 3.59 2.20 2.97 2.07 1.80 2.31 2.61 2.55
Tm          0.28 0.55 0.37 0.45 0.31 0.26 0.36 0.45 0.43
Yb          1.52 3.10 2.09 2.54 1.71 1.48 2.02 2.52 2.64
Lu          0.25 0.51 0.33 0.41 0.28 0.24 0.32 0.41 0.41
87Sr/86Sr            0.706376    0.704373  0.705787
87Rb/86Sr            0.7733    0.1129  0.8098
87Sr/86Sr(i)            0.703996    0.704025  0.703295
2σ            0.000031    0.000020  0.000030
143Nd/144Nd            0.512795    0.512765  0.512796
147Sm/144Nd            0.1118    0.1152  0.1047
143Nd/144Nd(i)            0.512634    0.512599  0.512645
2σ            0.000006    0.000006  0.000007
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Table 2: Major element core to rim analyses and a.p.f.u. calculation of representative amphibole types from Predazzo lamprophyres. A.p.f.u. were calculated using the Lockock (2014) computation; the classification follows the recommendations of the IMA-CNMNC subcommittee on amphiboles (Hawthorne et al., 2012; Oberti et al., 2012). Mg# = Mg/[Mg+Fe] mol%, assuming 
all Fe as Fe2+

Sample FC80 - Camptonite FC80 – Camptonite

Amphibole type Type 1         Type 2                

Name Am1_c Am1_tr1 Am1_tr2 Am1_tr3 Am1_tr4 Am1_tr5 Am1_tr6 Am1_tr7 Am1_r Am4_c Am4_tr1 Am4_tr2 Am4_tr3 Am4_tr4 Am4_tr5 Am4_tr6 Am4_tr7 Am4_tr8 Am4_tr9 Am4_tr10 Am4_tr11 Am4_tr12 Am4_tr13 Am4_tr14 Am4_r

Oxyde (wt%)                          

SiO2 39.456 39.460 39.315 39.213 39.224 39.412 39.345 38.865 39.353 39.687 39.567 39.625 39.816 39.634 39.599 39.801 39.721 39.715 39.835 39.503 39.735 39.958 40.207 39.575 40.113

TiO2 4.475 4.548 4.522 4.426 4.487 4.553 4.696 4.450 5.407 3.208 3.285 3.254 3.343 3.300 3.269 3.248 3.195 3.249 3.362 3.320 4.475 4.431 4.384 5.920 4.671

Al2O3 15.137 15.130 15.154 15.117 15.197 15.145 15.034 15.553 12.907 14.502 14.608 14.513 14.422 14.436 14.522 14.435 14.547 14.532 14.488 14.456 15.007 14.708 14.618 13.098 12.745

Cr2O3 0.097 0.081 0.087 0.076 0.073 0.068 0.080 0.121 0.007 0.000 0.009 0.001 0.000 0.000 0.002 0.001 0.000 0.002 0.000 0.000 0.129 0.120 0.016 0.012 0.000

FeOTOT 9.284 9.253 9.265 9.664 9.351 9.382 9.334 8.918 12.204 13.256 12.909 12.811 12.658 12.748 12.854 13.007 12.910 12.864 12.407 12.899 8.558 8.650 9.197 11.280 13.322

MnO 0.097 0.081 0.136 0.101 0.096 0.084 0.096 0.125 0.196 0.159 0.169 0.136 0.126 0.137 0.154 0.109 0.178 0.164 0.156 0.159 0.096 0.091 0.116 0.148 0.241

MgO 13.584 13.675 13.509 13.571 13.512 13.570 13.542 13.502 11.614 11.909 12.036 12.258 12.291 12.007 12.016 12.078 11.991 12.153 12.317 12.191 13.842 13.973 13.753 12.134 11.133

CaO 11.901 11.897 11.745 11.572 11.933 11.770 11.927 11.963 11.900 11.360 11.429 11.461 11.459 11.448 11.441 11.544 11.481 11.347 11.473 11.542 12.205 12.128 12.027 12.359 11.833

Na2O 2.456 2.482 2.452 2.437 2.502 2.516 2.514 2.448 2.577 2.549 2.612 2.591 2.548 2.637 2.605 2.551 2.583 2.607 2.609 2.544 2.430 2.434 2.529 2.433 2.570

K2O 1.164 1.142 1.162 1.115 1.147 1.119 1.135 1.182 1.053 1.180 1.192 1.206 1.165 1.189 1.185 1.246 1.208 1.249 1.231 1.199 1.148 1.157 1.026 1.045 1.105

NiO 0.003 0.011 0.004 0.000 0.015 0.000 0.046 0.034 0.000 0.004 0.000 0.037 0.015 0.004 0.000 0.004 0.000 0.008 0.031 0.000 0.014 0.020 0.057 0.000 0.000

F 0.339 0.265 0.178 0.360 0.290 0.270 0.379 0.327 0.585 0.110 0.281 0.263 0.221 0.275 0.238 0.237 0.083 0.209 0.185 0.226 0.263 0.337 0.295 0.476 0.579

Cl 0.000 0.028 0.000 0.041 0.000 0.030 0.066 0.020 0.036 0.047 0.000 0.000 0.074 0.031 0.000 0.013 0.026 0.000 0.053 0.000 0.000 0.036 0.000 0.049 0.000

Tot. 97.993 98.054 97.529 97.694 97.826 97.919 98.194 97.508 97.837 97.970 98.097 98.155 98.137 97.846 97.885 98.274 97.923 98.098 98.149 98.039 97.905 98.042 98.225 98.528 98.310

Mg# 72.3 72.5 72.2 71.4 72.0 72.0 72.1 73.0 62.9 61.6 62.4 63.0 63.4 62.7 62.5 62.3 62.3 62.7 63.9 62.7 74.2 74.2 72.7 65.7 59.8

Fe3+/ΣFe used 0.904 0.91 0.903 0.904 0.909 0.898 0.912 0.926 0.618 0.574 0.58 0.605 0.605 0.549 0.567 0.562 0.554 0.581 0.584 0.615 0.916 0.913 0.814 0.713 0.478

Group OH,F,Cl oxo oxo OH,F,Cl OH,F,Cl oxo oxo OH,F,Cl oxo OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl oxo oxo
Subgroup of 
(OH,F,Cl) Ca B = Ca B = Ca Ca Ca B = Ca B = Ca Ca B = Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca B = Ca B = Ca

Species magnesio-
hastingsite

ferri-
kaersutite

ferri-
kaersutite

magnesio-
hastingsite

magnesio-
hastingsite

ferri-
kaersutite

ferri-
kaersutite

magnesio-
hastingsite

ferri-
kaersutite

Ti-rich 
magnesio-
hastingsite

Ti-rich 
magnesio-
hastingsite

Ti-rich 
magnesio-
hastingsite

Ti-rich 
magnesio-
hastingsite

Ti-rich 
magnesio-
hastingsite

Ti-rich 
magnesio-
hastingsite

Ti-rich 
magnesio-
hastingsite

Ti-rich 
magnesio-
hastingsite

Ti-rich 
magnesio-
hastingsite

Ti-rich 
magnesio-
hastingsite

Ti-rich 
magnesio-
hastingsite

magnesio-
hastingsite

magnesio-
hastingsite

magnesio-
hastingsite

ferri-
kaersutite

ferri-
kaersutite

Formula Assignments                          

(T) Si 5.794 5.789 5.792 5.778 5.771 5.791 5.782 5.736 5.941 5.89 5.872 5.869 5.894 5.902 5.887 5.897 5.896 5.886 5.898 5.859 5.827 5.856 5.889 5.909 6.04

(T) Al 2.206 2.211 2.208 2.222 2.229 2.209 2.218 2.264 2.059 2.11 2.128 2.131 2.106 2.098 2.113 2.103 2.104 2.114 2.102 2.141 2.173 2.144 2.111 2.091 1.96

(T) Ti 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(C) Ti 0.494 0.502 0.501 0.491 0.497 0.503 0.519 0.494 0.614 0.358 0.367 0.363 0.372 0.37 0.366 0.362 0.357 0.362 0.375 0.371 0.494 0.488 0.483 0.665 0.529

(C) Al 0.413 0.405 0.423 0.403 0.406 0.414 0.386 0.442 0.237 0.427 0.427 0.402 0.411 0.435 0.431 0.418 0.441 0.424 0.426 0.386 0.42 0.396 0.412 0.213 0.302

(C) Cr 0.011 0.009 0.01 0.009 0.008 0.008 0.009 0.014 0.001 0 0.001 0 0 0 0 0 0 0 0 0 0.015 0.014 0.002 0.001 0

(C) Fe3+ 1.03 1.033 1.031 1.076 1.046 1.035 1.047 1.019 0.952 0.944 0.929 0.961 0.949 0.871 0.906 0.906 0.888 0.926 0.897 0.984 0.961 0.968 0.917 1.005 0.802

(C) Ni 0 0.001 0.001 0 0.002 0 0.005 0.004 0 0 0 0.004 0.002 0.001 0 0 0 0.001 0.004 0 0.002 0.002 0.007 0 0

(C) Mn2+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.011 0

(C) Fe2+ 0.077 0.06 0.068 0.04 0.078 0.068 0.067 0.056 0.583 0.636 0.614 0.563 0.554 0.658 0.634 0.646 0.661 0.601 0.58 0.564 0.082 0.078 0.176 0.404 0.868

(C) Mg 2.974 2.991 2.967 2.981 2.964 2.972 2.967 2.971 2.614 2.635 2.663 2.707 2.713 2.666 2.663 2.668 2.653 2.685 2.719 2.696 3.026 3.053 3.003 2.701 2.499

(B) Mn2+ 0.012 0.01 0.017 0.013 0.012 0.01 0.012 0.016 0.025 0.02 0.021 0.017 0.016 0.017 0.019 0.014 0.022 0.021 0.02 0.02 0.012 0.011 0.014 0.007 0.031

(B) Fe2+ 0.033 0.043 0.043 0.075 0.027 0.05 0.034 0.026 0.007 0.065 0.059 0.063 0.064 0.059 0.059 0.06 0.054 0.067 0.059 0.052 0.006 0.014 0.033 0 0.008

(B) Ca 1.872 1.87 1.854 1.827 1.881 1.853 1.878 1.892 1.925 1.806 1.817 1.819 1.818 1.827 1.822 1.833 1.826 1.802 1.82 1.834 1.918 1.904 1.887 1.977 1.909

(B) Na 0.083 0.077 0.087 0.086 0.08 0.087 0.076 0.067 0.043 0.108 0.102 0.102 0.102 0.097 0.1 0.094 0.098 0.111 0.101 0.093 0.064 0.071 0.065 0.015 0.053

(A) Ca 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(A) Na 0.617 0.629 0.614 0.611 0.634 0.63 0.64 0.634 0.711 0.625 0.649 0.643 0.629 0.664 0.651 0.639 0.645 0.639 0.648 0.638 0.627 0.621 0.653 0.689 0.698

(A) K 0.218 0.214 0.218 0.21 0.215 0.21 0.213 0.223 0.203 0.223 0.226 0.228 0.22 0.226 0.225 0.235 0.229 0.236 0.232 0.227 0.215 0.216 0.192 0.199 0.212

O (non-W) 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22

(W) OH 0.853 0.865 0.914 0.84 0.871 0.86 0.768 0.853 0.483 1.219 1.134 1.151 1.133 1.123 1.156 1.161 1.24 1.177 1.151 1.152 0.89 0.858 0.897 0.433 0.666

(W) F 0.157 0.123 0.083 0.168 0.135 0.125 0.176 0.153 0.279 0.052 0.132 0.123 0.103 0.13 0.112 0.111 0.039 0.098 0.086 0.106 0.122 0.156 0.137 0.225 0.275

(W) Cl 0 0.007 0 0.01 0 0.008 0.016 0.005 0.009 0.012 0 0 0.019 0.008 0 0.003 0.006 0 0.013 0 0 0.009 0 0.012 0

(W) O 0.99 1.005 1.003 0.982 0.994 1.007 1.039 0.989 1.229 0.717 0.734 0.726 0.745 0.74 0.732 0.725 0.714 0.725 0.75 0.742 0.988 0.978 0.967 1.33 1.059

Sum (T,C,B,A) 15.834 15.844 15.834 15.822 15.85 15.84 15.853 15.858 15.915 15.847 15.875 15.872 15.85 15.891 15.876 15.875 15.874 15.875 15.881 15.865 15.842 15.836 15.844 15.887 15.911
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Table 2: (continued)                   

Sample MA1 - Camptonite FC80 - Camptonite MA1 – Camptonite

Amphibole type Type 3    Type 4   Type 5           

Name Am2_c Am2_tr1 Am2_tr2 Am2_r Am3_c Am3_tr1 Am3_r Am5_c Am5_tr1 Am5_tr2 Am5_tr3 Am5_tr4 Am5_tr5 Am5_tr6 Am5_tr7 Am5_tr8 Am5_tr9 Am5_r

Oxyde (wt%)                   

SiO2 39.088 38.649 39.990 39.134 37.475 37.671 38.310 37.416 37.227 38.800 37.863 36.037 36.968 36.020 40.965 41.475 40.666 40.164

TiO2 2.405 2.533 3.694 3.908 3.312 3.837 4.336 2.757 2.765 2.787 2.771 2.798 2.782 2.775 3.727 3.681 3.561 3.706

Al2O3 13.833 14.093 14.308 13.688 15.537 15.957 15.546 15.375 16.316 16.200 16.158 14.846 15.421 14.974 13.539 13.258 13.611 13.514

Cr2O3 0.004 0.000 0.029 0.024 0.000 0.021 0.000 0.009 0.011 0.001 0.000 0.000 0.010 0.003 0.093 0.055 0.059 0.008

FeOTOT 15.794 15.274 10.384 12.324 15.449 12.154 10.548 22.091 22.060 21.710 22.044 22.038 21.979 21.989 9.648 10.186 9.729 10.834

MnO 0.399 0.351 0.134 0.174 0.193 0.139 0.115 0.420 0.426 0.415 0.423 0.442 0.400 0.425 0.168 0.156 0.125 0.153

MgO 10.018 10.383 13.287 11.999 9.137 11.240 12.446 5.341 5.217 5.696 5.397 5.033 5.324 4.949 14.000 13.977 13.894 13.101

CaO 11.721 11.951 11.602 11.791 11.771 12.079 11.779 10.377 10.230 10.279 10.283 10.387 10.395 10.341 11.427 11.238 11.426 11.877

Na2O 2.660 2.466 2.610 2.735 2.730 2.417 2.513 2.682 3.145 2.994 2.950 2.548 2.732 2.720 2.703 2.647 2.687 2.762

K2O 1.132 1.073 1.297 0.994 1.182 1.130 1.024 1.396 1.320 1.351 1.364 1.372 1.357 1.316 1.189 1.127 1.153 1.071

NiO 0.000 0.016 0.000 0.026    0.007 0.000 0.017 0.018 0.012 0.000 0.000 0.046 0.038 0.009 0.014

F 0.243 0.304 0.203 0.254 0.111 0.138 0.180 0.199 0.028 0.093 0.064 0.085 0.112 0.112 0.267 0.270 0.178 0.384

Cl 0.034 0.077 0.000 0.010 0.037 0.010 0.014 0.103 0.077 0.084 0.059 0.078 0.099 0.104 0.016 0.029 0.011 0.026

Tot. 97.330 97.167 97.538 97.061 96.933 96.793 96.799 98.172 98.821 100.426 99.391 95.674 97.578 95.727 97.787 98.136 97.107 97.614

Mg# 53.1 54.8 69.5 63.4 51.3 62.2 67.8 30.1 29.6 31.9 30.4 28.9 30.2 28.6 72.1 71.0 71.8 68.3

Fe3+/ΣFe used 0.366 0.449 0.589 0.584 0.41 0.626 0.783 0.314 0.346 0.303 0.325 0.331 0.328 0.328 0.592 0.677 0.58 0.548

Group OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl OH,F,Cl

Subgroup of (OH,F,Cl) Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca

Species magnesio-
hastingsite

magnesio-
hastingsite

Ti-rich 
magnesio-
hastingsite

Ti-rich 
magnesio-
hastingsite

Ti-rich 
magnesio-
hastingsite

Ti-rich 
magnesio-
hastingsite

magnesio-
hastingsite

Ti-rich ferro-
ferri-sadanagaite

Ti-rich ferro-
ferri-sadanagaite

Ti-rich ferro-
ferri-sadanagaite

Ti-rich ferro-
ferri-sadanagaite

Ti-rich ferro-
ferri-sadanagaite

Ti-rich ferro-
ferri-sadanagaite

Ti-rich ferro-
ferri-sadanagaite

Ti-rich 
magnesio-
hastingsite

Ti-rich 
magnesio-
hastingsite

Ti-rich 
magnesio-
hastingsite

Ti-rich 
magnesio-
hastingsite

Formula Assignments                   

(T) Si 5.946 5.871 5.933 5.894 5.736 5.675 5.722 5.799 5.707 5.838 5.768 5.746 5.76 5.741 6.043 6.078 6.033 5.986

(T) Al 2.054 2.129 2.067 2.106 2.264 2.325 2.278 2.201 2.293 2.162 2.232 2.254 2.24 2.259 1.957 1.922 1.967 2.014

(T) Ti 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(C) Ti 0.275 0.289 0.412 0.443 0.381 0.435 0.487 0.321 0.319 0.315 0.318 0.336 0.326 0.333 0.414 0.406 0.397 0.416

(C) Al 0.426 0.393 0.434 0.323 0.539 0.508 0.458 0.607 0.655 0.71 0.67 0.535 0.591 0.554 0.397 0.368 0.412 0.36

(C) Cr 0.001 0 0.003 0.003 0 0.003 0 0.001 0.001 0 0 0 0.001 0 0.011 0.006 0.007 0.001

(C) Fe3+ 0.736 0.87 0.759 0.906 0.81 0.958 1.032 0.899 0.979 0.826 0.913 0.972 0.94 0.962 0.705 0.845 0.7 0.74

(C) Ni 0 0.002 0 0.003 0 0 0 0.001 0 0.002 0.002 0.001 0 0 0.005 0.004 0.001 0.002

(C) Mn2+ 0.018 0.024 0 0 0.018 0 0 0 0.004 0 0 0 0 0.006 0 0 0 0

(C) Fe2+ 1.273 1.07 0.453 0.628 1.168 0.573 0.252 1.936 1.849 1.868 1.872 1.96 1.905 1.969 0.389 0.317 0.41 0.571

(C) Mg 2.272 2.351 2.938 2.694 2.085 2.524 2.771 1.234 1.192 1.278 1.226 1.196 1.237 1.176 3.079 3.053 3.073 2.911

(B) Mn2+ 0.034 0.021 0.017 0.022 0.007 0.018 0.015 0.055 0.052 0.053 0.055 0.06 0.053 0.052 0.021 0.019 0.016 0.019

(B) Fe2+ 0 0 0.077 0.018 0 0 0.034 0.028 0 0.037 0.024 0.007 0.019 0 0.097 0.086 0.097 0.04

(B) Ca 1.91 1.945 1.844 1.903 1.93 1.95 1.885 1.723 1.68 1.657 1.678 1.774 1.735 1.766 1.806 1.765 1.816 1.897

(B) Na 0.056 0.034 0.062 0.057 0.062 0.032 0.067 0.194 0.268 0.253 0.243 0.159 0.193 0.182 0.076 0.13 0.071 0.044

(A) Ca 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(A) Na 0.729 0.692 0.688 0.741 0.748 0.673 0.661 0.612 0.667 0.62 0.628 0.628 0.632 0.658 0.697 0.622 0.702 0.754

(A) K 0.22 0.208 0.246 0.191 0.231 0.217 0.195 0.276 0.258 0.259 0.265 0.279 0.27 0.268 0.224 0.211 0.218 0.204

O (non-W) 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22

(W) OH 1.323 1.255 1.08 0.99 1.173 1.061 0.936 1.232 1.328 1.302 1.318 1.264 1.266 1.25 1.043 1.056 1.119 0.981

(W) F 0.117 0.146 0.095 0.121 0.054 0.066 0.085 0.098 0.014 0.044 0.031 0.043 0.055 0.056 0.124 0.125 0.083 0.181

(W) Cl 0.009 0.02 0 0.002 0.01 0.003 0.004 0.027 0.02 0.021 0.015 0.021 0.026 0.028 0.004 0.007 0.003 0.007

(W) O 0.551 0.579 0.825 0.886 0.764 0.87 0.975 0.644 0.639 0.632 0.636 0.672 0.653 0.666 0.828 0.812 0.795 0.832

Sum (T,C,B,A) 15.95 15.899 15.933 15.932 15.979 15.891 15.857 15.887 15.924 15.878 15.894 15.907 15.902 15.926 15.921 15.832 15.92 15.959
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Table 3: LA-ICP-MS trace element composition of representative amphibole (Amp) and clinopyroxene (Cpx) crystals from Predazzo camptonites.

Sample FC80 FC80 FC80 FC80 FC80 FC80 FC80 FC80

Mineral Amp Amp Amp Amp Amp Amp Cpx Cpx

Type Type 1_core Type 1_rim Type 1_groundmass Type 2_rim Type 4_core Type 4_rim Large phenoXX Small phenoXX

Trace element (ppm)         

Sc 53.670 89.030 54.330 65.190 32.225 77.530 124.850 148.210

V 398.665 519.700 379.830 343.440 333.475 519.990 409.270 453.925

Cr 9.830 131.000 22.485 195.080 21.245 62.270 542.315 941.050

Co 58.415 55.180 57.550 55.115 52.450 54.550 30.240 31.635

Ni 55.205 95.635 55.720 80.480 23.930 94.380 65.720 71.360

Zn n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

Pb 0.441 0.550 0.372 0.569 0.744 0.474 0.234 0.196

Cs 0.050 0.260 n.d. 0.179 n.d. 0.169 n.d. n.d.

Rb 5.340 6.195 6.055 6.705 6.990 6.510 0.049 n.d.

Ba 291.855 365.970 349.270 303.505 429.855 356.940 0.521 0.328

Th 0.095 0.078 0.101 0.040 0.151 0.131 0.080 0.106

U 0.043 0.022 0.018 0.050 0.029 <0.0118 0.011 0.016

Nb 16.310 22.335 20.005 17.685 27.125 16.080 0.511 0.854

Ta 0.681 1.054 0.973 0.826 0.981 0.862 0.095 0.096

La 7.960 7.080 10.195 7.095 12.860 7.590 5.390 4.985

Ce 25.540 23.345 33.460 23.420 38.760 22.910 18.490 18.585

Pr 4.355 4.130 5.590 4.170 6.320 4.130 3.510 3.410

Sr 767.490 763.915 786.870 728.255 796.760 735.690 100.915 103.345

Nd 24.160 22.885 30.780 23.530 33.730 22.780 20.475 20.580

Zr 83.480 120.945 112.995 96.095 134.655 97.380 98.605 113.245

Hf 2.760 4.085 3.500 3.475 4.425 3.710 3.915 5.030

Sm 6.815 5.905 8.160 6.520 8.315 6.540 6.865 6.465

Eu 2.290 2.295 2.530 2.550 2.925 2.033 2.205 2.310

Gd 6.470 6.760 7.150 6.450 7.750 6.290 6.200 6.065

Tb 1.047 1.069 1.274 1.130 1.214 1.042 1.155 1.095

Dy 6.090 5.895 6.755 6.130 7.600 5.690 6.820 6.835

Y 30.115 30.060 34.325 32.300 38.270 29.120 31.030 33.470

Ho 1.185 1.163 1.319 1.341 1.408 1.180 1.325 1.414

Er 2.955 3.105 3.200 3.220 3.910 3.040 3.030 3.185

Tm 0.375 0.433 0.454 0.403 0.531 0.390 0.501 0.529

Yb 2.525 2.430 3.105 2.730 3.370 2.520 2.720 3.170

Lu 0.373 0.298 0.440 0.358 0.507 0.405 0.391 0.455
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Table 4: Major element composition and a.p.f.u. calculation of representative clinopyroxene (Cpx) crystals from Predazzo lamprophyres. Mg# = Mg/[Mg+Fe] mol%, assuming all Fe as Fe2+

Sample FC80 - Camptonite           MA5 - Camptonite     FF14 - Camptonite    

Name Cpx1_c Cpx1_r Cpx3_c Cpx4_c Cpx6_c Cpx6_tr1 Cpx8_c Cpx11_c Cpx11_r Cpx14_c Cpx14_r Cpx19_c Cpx1_c Cpx1_tr1 Cpx1_r Cpx2_c Cpx3_c Cpx4_c Cpx1_c Cpx2_c Cpx5_c Cpx8_c Cpx12_c

Oxide (wt%)                        

SiO2 49.604 42.278 48.742 47.089 44.324 45.773 43.078 45.583 48.050 45.548 45.762 46.792 47.658 47.176 43.272 43.518 47.591 42.472 44.043 44.549 42.305 47.141 48.427

TiO2 1.108 4.031 1.206 2.126 2.065 2.136 3.164 2.266 2.012 2.151 1.974 1.744 1.461 1.491 3.773 3.844 2.089 4.049 3.343 2.614 3.633 1.947 1.536

Al2O3 5.005 9.933 5.847 5.462 10.878 9.710 10.085 9.836 5.581 9.582 9.247 9.208 8.612 9.028 10.068 9.320 5.270 9.178 9.003 8.648 10.510 5.790 4.823

FeOTOT 5.751 8.483 6.028 8.099 8.532 6.142 7.942 6.680 7.971 6.469 6.756 6.383 5.394 5.476 7.874 8.073 8.106 9.655 6.928 6.474 7.052 8.213 6.620

MnO 0.138 0.139 0.130 0.180 0.176 0.118 0.143 0.125 0.200 0.126 0.126 0.116 0.110 0.119 0.110 0.133 0.146 0.139 0.112 0.130 0.096 0.168 0.170

MgO 14.534 10.291 14.344 12.714 10.378 12.376 11.069 12.295 12.714 12.290 12.161 12.765 13.600 13.384 11.329 11.037 13.487 10.405 11.393 12.179 11.164 12.814 14.086

CaO 22.176 22.555 21.673 22.676 21.990 22.073 22.669 22.133 22.611 22.259 22.334 21.958 22.045 21.903 22.618 22.829 21.650 22.464 22.758 22.967 22.873 22.475 22.767

Na2O 0.502 0.594 0.505 0.410 0.754 0.641 0.471 0.621 0.448 0.624 0.597 0.650 0.555 0.558 0.414 0.533 0.322 0.524 0.408 0.406 0.416 0.332 0.283

K2O 0.000 0.017 0.000 0.022 0.004 0.005 0.005 0.008 0.008 0.000 0.002 0.014 0.000 0.015 0.004 0.005 0.000 0.006 0.059 0.012 0.023 0.014 0.007

Cr2O3 0.133 0.000 0.155 0.010 0.041 0.142 0.025 0.194 0.000 0.258 0.047 0.205 0.462 0.510 0.249 0.202 0.121 0.002 0.442 0.830 0.463 0.025 0.159

NiO 0.000 0.019 0.020 0.013 0.009 0.022  0.012 0.007 0.000 0.010 0.015 0.036 0.034 0.017 0.000 0.006 0.000 0.020 0.000 0.000  0.000 0.000 

Tot. 98.933 98.336 98.643 98.799 99.150 99.138 98.782 99.754 99.601 99.306 99.015 99.849 99.932 99.695 99.727 99.494 98.788 98.893 98.510 98.804 98.557 98.983 98.933

Mg# 81.8 68.4 80.9 73.7 68.4 78.2 71.3 76.6 74.0 77.2 76.2 78.1 81.8 81.3 71.9 70.9 74.8 65.8 74.6 77.0 73.8 73.5 79.1

A.p.f.u.                        

(T) Si4+ 1.841 1.612 1.815 1.775 1.664 1.703 1.628 1.688 1.796 1.694 1.708 1.727 1.751 1.738 1.621 1.636 1.791 1.616 1.667 1.674 1.600 1.774 1.810

(T) Al3+ 0.159 0.388 0.185 0.225 0.336 0.297 0.372 0.312 0.204 0.306 0.292 0.273 0.249 0.262 0.379 0.364 0.209 0.384 0.333 0.326 0.400 0.226 0.190

(T) Fe3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(M1) Al3+ 0.060 0.058 0.072 0.017 0.146 0.128 0.077 0.118 0.041 0.114 0.115 0.127 0.124 0.130 0.065 0.050 0.025 0.028 0.069 0.057 0.069 0.031 0.022

(M1) Fe3+ 0.069 0.144 0.078 0.119 0.127 0.092 0.149 0.107 0.083 0.109 0.108 0.091 0.071 0.075 0.124 0.130 0.086 0.164 0.093 0.127 0.142 0.110 0.097

(M1) Ti4+ 0.031 0.116 0.034 0.060 0.058 0.060 0.090 0.063 0.057 0.060 0.055 0.048 0.040 0.041 0.106 0.109 0.059 0.116 0.095 0.074 0.103 0.055 0.043

(M1) Cr3+ 0.004 0.000 0.005 0.000 0.001 0.004 0.001 0.006 0.000 0.008 0.001 0.006 0.013 0.015 0.007 0.006 0.004 0.000 0.013 0.025 0.014 0.001 0.005

(M1) Ni2+ 0.000 0.001 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000

(M1) Mg2+ 0.804 0.585 0.796 0.714 0.581 0.686 0.624 0.679 0.708 0.681 0.677 0.702 0.745 0.735 0.633 0.619 0.757 0.590 0.643 0.682 0.630 0.719 0.785

(M1) Fe2+ 0.032 0.097 0.015 0.089 0.086 0.029 0.060 0.027 0.111 0.028 0.043 0.025 0.006 0.003 0.064 0.087 0.070 0.103 0.086 0.035 0.042 0.085 0.047

(M2) Fe2+ 0.078 0.030 0.095 0.048 0.055 0.070 0.043 0.073 0.056 0.064 0.060 0.081 0.089 0.091 0.059 0.037 0.099 0.041 0.041 0.041 0.038 0.064 0.062

(M2) Mn2+ 0.004 0.004 0.004 0.006 0.006 0.004 0.005 0.004 0.006 0.004 0.004 0.004 0.003 0.004 0.003 0.004 0.005 0.004 0.004 0.004 0.003 0.005 0.005

(M2) Ca2+ 0.882 0.921 0.865 0.916 0.885 0.880 0.918 0.878 0.905 0.887 0.893 0.868 0.868 0.865 0.908 0.920 0.873 0.916 0.923 0.925 0.927 0.906 0.912

(M2) Na+ 0.036 0.044 0.036 0.030 0.055 0.046 0.035 0.045 0.032 0.045 0.043 0.046 0.040 0.040 0.030 0.039 0.023 0.039 0.030 0.030 0.031 0.024 0.021

(M2) K+ 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.003 0.001 0.001 0.001 0.000

Wo 47.18 51.72 46.67 48.42 50.87 49.96 51.07 49.68 48.44 50.01 50.04 49.02 48.70 48.79 50.70 51.19 46.20 50.38 51.60 50.96 52.00 47.97 47.76

En 43.03 32.84 42.98 37.78 33.41 38.98 34.70 38.40 37.90 38.42 37.92 39.65 41.81 41.48 35.33 34.44 40.05 32.47 35.94 37.60 35.32 38.06 41.12

Fs 9.78 15.44 10.35 13.80 15.73 11.06 14.22 11.92 13.67 11.57 12.04 11.33 9.49 9.73 13.97 14.37 13.75 17.15 12.46 11.44 12.69 13.97 11.12

Tot. 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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Table 5: Major element composition and a.p.f.u. calculation of representative plagioclase (Pl) and K-feldspar (Kfs) crystals from Predazzo lamprophyres

Sample FC80 - Camptonite FF14 - Camptonite MA5 - Camptonite MA1 - Camptonite

Mineral Pl Pl Pl Pl Pl Pl Pl Pl Pl Pl Pl Pl Pl Pl Pl Pl Pl Pl Pl Pl Kfs Kfs Kfs

Name Plag1_c Plag1_tr1 Plag1_tr2 Plag1_tr3 Plag1_r Plag4_c Plag5_c Plag5_r PLag7_c Plag7_r Plag3_c Plag4_c Plag8_c Plag10_c Plag11_c Plag14_c Plag3_c Plag5_c Plag1_c Plag3_c Kf1_c Kf2_c Kf4_c

Oxide (wt%)                        

SiO2 56.994 55.766 56.303 56.115 49.614 51.747 55.204 49.116 52.291 50.105 53.309 51.735 49.748 55.984 49.369 50.193 49.209 49.275 61.624 56.077 64.624 65.065 65.340

TiO2 0.013 0.000 0.002 0.012 0.107 0.087 0.013 0.086 0.015 0.102 0.148 0.127 0.091 0.126 0.067 0.121 0.081 0.071 0.024 0.041 0.012 0.000 0.014

Al2O3 26.996 27.050 27.099 27.365 30.781 30.266 28.417 31.571 30.506 31.151 29.209 29.855 30.713 27.734 31.030 30.352 31.688 32.093 23.858 26.491 19.408 19.523 19.125

FeOTOT 0.147 0.450 0.151 0.143 0.587 0.639 0.203 0.596 0.043 0.520 0.595 0.614 0.631 0.560 0.770 0.676 0.619 0.554 0.309 0.418 0.271 0.195 0.207

MnO 0.000 0.006 0.000 0.000 0.000 0.020 0.004 0.003 0.002 0.008 0.013 0.000 0.007 0.006 0.014 0.000 0.009 0.000 0.009 0.009 0.010 0.000 0.005

MgO 0.002 0.379 0.000 0.000 0.082 0.071 0.006 0.101 0.000 0.079 0.050 0.067 0.112 0.029 0.131 0.125 0.111 0.104 0.008 0.032 0.012 0.000 0.010

CaO 8.566 9.274 8.988 9.313 13.734 12.879 10.469 14.586 12.605 13.943 11.550 12.615 13.904 9.586 14.186 13.688 15.000 15.240 4.748 8.586 0.294 0.350 0.244

BaO 0.000 0.013 0.000 0.027 0.066 0.036 0.007 0.037 0.000 0.009 0.049 0.071 0.000 0.143 0.000 0.029 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Na2O 6.687 5.987 6.230 6.216 3.380 3.857 5.559 3.047 4.439 3.471 4.736 4.084 3.131 5.529 3.186 3.453 3.025 2.841 7.941 6.184 4.700 5.019 5.021

K2O 0.240 0.189 0.220 0.174 0.265 0.289 0.247 0.211 0.190 0.246 0.453 0.378 0.496 0.643 0.240 0.301 0.135 0.146 1.177 0.579 9.925 9.465 9.555

Tot. 99.610 99.113 98.986 99.347 98.609 99.890 100.130 99.353 100.064 99.632 100.110 99.537 98.825 100.341 98.980 98.938 99.875 100.323 99.696 98.417 99.255 99.618 99.561

A.p.f.u.                        

Si 2.558 2.526 2.551 2.533 2.292 2.356 2.482 2.256 2.363 2.289 2.410 2.361 2.296 2.518 2.275 2.312 2.249 2.244 2.751 2.557 2.942 2.946 2.963

Ti 0.000 0.000 0.000 0.000 0.004 0.003 0.000 0.003 0.001 0.004 0.005 0.004 0.003 0.004 0.002 0.004 0.003 0.002 0.001 0.001 0.000 0.000 0.000

Al 1.428 1.444 1.447 1.456 1.676 1.624 1.506 1.709 1.625 1.677 1.557 1.606 1.671 1.470 1.685 1.648 1.707 1.722 1.255 1.424 1.041 1.042 1.022

Cr 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fe3+ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fe2+ 0.006 0.017 0.006 0.005 0.023 0.024 0.008 0.023 0.002 0.020 0.022 0.023 0.024 0.021 0.030 0.026 0.024 0.021 0.012 0.016 0.010 0.007 0.008

Mn 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mg 0.000 0.026 0.000 0.000 0.006 0.005 0.000 0.007 0.000 0.005 0.003 0.005 0.008 0.002 0.009 0.009 0.008 0.007 0.001 0.002 0.001 0.000 0.001

Ca 0.412 0.450 0.436 0.450 0.680 0.628 0.504 0.718 0.610 0.683 0.560 0.617 0.688 0.462 0.700 0.675 0.734 0.744 0.227 0.419 0.014 0.017 0.012

Ba 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.003 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Na 0.582 0.526 0.547 0.544 0.303 0.341 0.485 0.271 0.389 0.307 0.415 0.361 0.280 0.482 0.285 0.308 0.268 0.251 0.687 0.547 0.415 0.441 0.441

K 0.014 0.011 0.013 0.010 0.016 0.017 0.014 0.012 0.011 0.014 0.026 0.022 0.029 0.037 0.014 0.018 0.008 0.008 0.067 0.034 0.576 0.547 0.553

Tot. cat. 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000

Tot. oxy. 7.975 7.980 7.994 7.985 7.975 7.993 7.986 7.972 7.976 7.970 7.973 7.976 7.980 7.998 7.970 7.977 7.967 7.978 8.002 7.980 7.967 7.974 7.977

An 40.88 45.61 43.79 44.84 68.10 63.75 50.28 71.67 60.41 67.96 55.91 61.67 68.97 47.09 70.10 67.45 72.69 74.14 23.14 41.95 1.43 1.69 1.18

Ab 57.75 53.28 54.93 54.16 30.33 34.55 48.31 27.09 38.50 30.61 41.48 36.13 28.10 49.15 28.49 30.79 26.53 25.01 70.03 54.68 41.25 43.87 43.88

Or 1.36 1.11 1.28 1.00 1.56 1.70 1.41 1.23 1.08 1.43 2.61 2.20 2.93 3.76 1.41 1.77 0.78 0.84 6.83 3.37 57.32 54.44 54.94

Tot. 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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Table 6: Major element composition and a.p.f.u. calculation of representative Fe-Ti oxides from Predazzo lamprophyres

Sample FC80 - Camptonite   MA1 - Camptonite

Name Ox1 Ox2 Ox5 Ox7 Ox3

Oxides (wt%)      

SiO2 0.524 0.097 0.788 0.514 2.106

TiO2 17.615 12.139 18.982 18.339 12.260

Al2O3 7.851 2.330 5.533 7.381 4.283

FeO 61.332 77.084 63.173 62.735 69.367

MnO 0.783 0.976 0.907 0.756 1.451

MgO 2.331 0.219 0.950 2.418 0.196

CaO 0.166 0.119 0.562 0.198 0.219

Cr2O3 0.146 0.000 0.044 0.036 0.043

V2O3 0.455 0.086 0.363 0.469 0.097

NiO 0.000 0.000 0.000 0.000 0.030

ZnO 0.166 0.238 0.322 0.110 0.237

Tot. 91.364 93.269 91.615 92.956 90.288

A.p.f.u.      

Si 0.020 0.004 0.031 0.019 0.083

Ti 0.503 0.352 0.553 0.515 0.363

Al 0.351 0.106 0.253 0.325 0.199

Fe3+ 0.000 0.000 0.000 0.000 0.000

Fe2+ 1.947 2.487 2.046 1.961 2.283

Mn 0.025 0.032 0.030 0.024 0.048

Mg 0.132 0.013 0.055 0.135 0.011

Ca 0.007 0.005 0.023 0.008 0.009

Cr 0.004 0.000 0.001 0.001 0.001

V 0.011 0.002 0.009 0.012 0.003

Tot. Cat. 3.000 3.000 3.000 3.000 3.000

FeO (mol%) 63.04 58.10 63.78 62.76 62.79

Fe2O3 (mol%) 13.63 26.24 12.33 13.60 20.67

TiO2 (mol%) 23.32 15.66 23.90 23.65 16.55
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Table 7: Major element composition of representative carbonates in Predazzo lamprophyres

Sample FC80 - Camptonite

Name C1 C3 C4 C5 C6 C7 C9 C10 C11 C13 C14 C15 C16 C18 C19

Oxides (wt%)

SiO2 0.023 0.017 0.011 0.006 0.012 0.007 0.016 0.025 0.000 0.043 0.000 0.021 0.000 0.000 0.030

FeO 35.147 34.065 32.973 5.434 10.377 5.523 6.483 10.561 38.746 38.623 38.958 14.368 7.794 5.001 6.548

MnO 0.406 0.447 0.483 0.544 0.249 0.467 0.391 0.328 0.647 0.550 0.581 0.423 0.477 0.421 0.450

MgO 18.482 18.521 17.697 18.416 16.137 18.578 18.025 13.629 14.356 15.035 15.342 12.706 16.453 18.538 17.990

CaO 2.209 3.343 5.232 28.475 27.579 29.062 28.604 29.870 3.645 3.137 2.250 27.823 28.638 28.816 27.907

SrO 0.000 0.000 0.000 0.212 0.080 0.166 0.033 0.054 0.000 0.000 0.000 0.066 0.161 0.304 0.098

Tot. 56.266 56.393 56.397 53.087 54.435 53.803 53.552 54.465 57.394 57.388 57.131 55.405 53.522 53.080 53.023

CaCO3 (%) 3.966 5.962 9.343 48.352 47.239 48.690 48.411 52.050 6.703 5.737 4.131 48.722 49.310 48.831 47.715

MgCO3 (%) 46.167 45.958 43.971 43.510 38.457 43.306 42.446 33.043 36.728 38.254 39.194 30.957 39.416 43.708 42.798

FeCO3 (%) 49.253 47.421 45.961 7.202 13.873 7.222 8.565 14.364 55.610 55.129 55.833 19.639 10.474 6.615 8.739

SrCO3 (%) 0.000 0.000 0.024 0.197 0.075 0.152 0.031 0.051 0.018 0.012 0.000 0.063 0.152 0.281 0.091

MnCO3 (%) 0.577 0.630 0.682 0.730 0.337 0.619 0.523 0.451 0.941 0.796 0.843 0.585 0.649 0.564 0.608
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Table 8: P, T, fO2 and H2O parameters obtained by mineral-melt and single mineral calculations on Predazzo lamprophyres. For each applied method, the corresponding reference and error on the single parameters are reported. T and P of 
clinopyroxene crystallization were obtained by means of the single mineral equations of Putirka (2008). Oxygen fugacity was calculated by means of the Ishibashi (2013) oxy-barometer. The water content of the melt during amphibole 
crystallization was calculated using the Ridolfi et al. (2010) single-mineral hygrometer. T and P of amphibole crystallization were obtained by means of the Putirka (2016) mineral-melt thermometer and H2O-dependent barometer. This 
latter equation was applied by considering as input the H2O content of the coexisting melt resulted from the hygrometer of Ridolfi et al. (2010). Cpx: clinopyroxene; Amp: amphibole

Sample Type (Amp) Method Reference T (°C) Error (°C) P (MPa) Error (MPa) H2O (wt%) Error (wt%) logfO2

MA5 - Camptonite - Cpx-only Putirka (2008), Eq. 32a/32d 1060-1124 ±58 230-640 ±310 - - -

FC80 - Camptonite Type 1_core Amp-only; Amp-melt Ridolfi et al. (2010); Putirka (2016), Eq. 5/7b 1023-1069 ±30 920-1160 ±170 7.2-8.5 ±0.8-1.2 -

FC80 - Camptonite Type 1_rim Amp-only; Amp-melt Ridolfi et al. (2010); Putirka (2016), Eq. 5/7b 1038-1067 ±30 740-900 ±170 6.8-7.5 ±0.8-1.2 -

FC80 - Camptonite Type 1_intermediate Amp-only; Amp-melt Ridolfi et al. (2010); Putirka (2016), Eq. 5/7b 1071 ±30 1050 ±170 7.7 ±0.8-1.2 -

FC80 - Camptonite Type 1_groundmass Amp-only; Amp-melt Ridolfi et al. (2010); Putirka (2016), Eq. 5/7b 1025-1074 ±30 850-1110 ±170 6.7-8.1 ±0.8-1.2 -

MA1 - Camptonite Type 1_core Amp-only; Amp-melt Ridolfi et al. (2010); Putirka (2016), Eq. 5/7b 948-1042 ±30 620-980 ±170 6.5-7.7 ±0.8-1.2 -

MA1 - Camptonite Type 1_rim Amp-only; Amp-melt Ridolfi et al. (2010); Putirka (2016), Eq. 5/7b 1031-1032 ±30 600-640 ±170 6.2-6.6 ±0.8-1.2 -

MA1 - Camptonite Type 1_groundmass Amp-only; Amp-melt Ridolfi et al. (2010); Putirka (2016), Eq. 5/7b 1001-1029 ±30 470-800 ±170 6.5-7.6 ±0.8-1.2 -

FC80 - Camptonite Type 2_core Amp-only; Amp-melt Ridolfi et al. (2010); Putirka (2016), Eq. 5/7b 997-1009 ±30 890-920 ±170 6.8-7.1 ±0.8-1.2 -

FC80 - Camptonite Type 2_rim Amp-only; Amp-melt Ridolfi et al. (2010); Putirka (2016), Eq. 5/7b 1005-1053 ±30 730-770 ±170 6.8-7.0 ±0.8-1.2 -

FC80 - Camptonite Type 2_intermediate Amp-only; Amp-melt Ridolfi et al. (2010); Putirka (2016), Eq. 5/7b 1051-1063 ±30 920-970 ±170 7.2-7.4 ±0.8-1.2 -

FC80 - Camptonite Type 3_rim Amp-only; Amp-melt Ridolfi et al. (2010); Putirka (2016), Eq. 5/7b 1057-1063 ±30 870-980 ±170 7.2-7.3 ±0.8-1.2 -

MA1 - Camptonite Type 3_rim Amp-only; Amp-melt Ridolfi et al. (2010); Putirka (2016), Eq. 5/7b 961-1030 ±30 630-750 ±170 6.4-7.8 ±0.8-1.2 -

FC80 - Camptonite Type 4_core Amp-only; Amp-melt Ridolfi et al. (2010); Putirka (2016), Eq. 5/7b 1008 ±30 1220 ±170 8.9 ±0.8-1.2 -

FC80 - Camptonite Type 4_rim Amp-only; Amp-melt Ridolfi et al. (2010); Putirka (2016), Eq. 5/7b 1042-1060 ±30 1120-1230 ±170 8.3 ±0.8-1.2 -

MA1 - Camptonite Type 5_core Amp-only; Amp-melt Ridolfi et al. (2010); Putirka (2016), Eq. 5/7b 927-983 ±30 960-1130 ±170 8.8-9.8 ±0.8-1.2 -

MA1 - Camptonite Type 5_rim Amp-only; Amp-melt Ridolfi et al. (2010); Putirka (2016), Eq. 5/7b 977-1048 ±30 490-690 ±170 5.8-6.9 ±0.8-1.2 -

FC80 - Camptonite - Ti-magnetite-melt Ishibashi (2013) 1100 (input) - 500 (input) - - - -8.4/-10.0

MA1 - Camptonite - Ti-magnetite-melt Ishibashi (2013) 1050 (input) - 500 (input) - - - -9.4/-11.0
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Table 9:  Modal composition, melting proportions and REE composition of the mantle sources used in the partial melting models. Ol: olivine; Opx: orthopyroxene; Cpx: clinopyroxene; Spl: spinel; Grt: garnet: Amp: amphibole; Phl: phlogopite. I = Spl-lherzolite with 
DMM composition (Workman & Hart 2005); II = Spl-lherzolite; III = Grt-lherzolite; IV = Spl-Grt-Amp-lherzolite; V = Grt-Amp-lherzolite; VI = Grt-Phl-lherzolite. Starting REE composition of II, III, IV, V and VI sources is fertile PM of Sun & McDonough (1989). REE 
partition coefficients used in the models are also reported. Olivine, Opx, Cpx, Spl, Grt and Amp partition coefficients are from McKenzie & O'Nions (1991) and Schmidt et al. (1999), except for Tm in Cpx (Zack & Brumm, 1998). Phlogopite partition coefficients: La, Ce, 
Nd and Sm from Schmidt et al. (1999); Eu, Gd, Dy, Er, Yb and Lu from Fujimaki et al. (1984); Pr, Tb, Ho and Tm were extrapolated from the partition coefficients of the adjacent elements according to Barry et al. (2003)

Source modal composition I II III IV V VI  Source melting proportions I II III IV V VI  

Ol 0.57 0.55 0.55 0.55 0.55 0.56  Ol 0.01 0.01 0.01 0.05 0.03 0.03  

Opx 0.28 0.25 0.25 0.19 0.2 0.19  Opx 0.09 0.09 0.07 0.05 0.05 0.05  

Cpx 0.13 0.15 0.15 0.15 0.15 0.15  Cpx 0.6 0.6 0.6 0.1 0.22 0.1  

Spl 0.02 0.05 - 0.02 - -  Spl 0.3 0.3 - 0.1 0 -  

Grt - - 0.05 0.04 0.04 0.02  Grt - - 0.32 0.2 0.2 0.15  

Amp - - - 0.05 0.06 0.02  Amp - - - 0.5 0.5 0.37  

Phl - - - - - 0.06  Phl - - - - - 0.3  

                

Source REE composition I II III IV V VI  Partition coefficients Ol Opx Cpx Spl Grt Amp Phl

La 0.192 0.687 0.687 0.687 0.687 0.687  La 0.0004 0.002 0.054 0.01 0.01 0.17 0.00002

Ce 0.55 1.775 1.775 1.775 1.775 1.775  Ce 0.0005 0.003 0.098 0.01 0.021 0.26 0.0002

Pr 0.107 0.276 0.276 0.276 0.276 0.276  Pr 0.0008 0.0048 0.15 0.01 0.054 0.35 0.0002

Nd 0.581 1.354 1.354 1.354 1.354 1.354  Nd 0.001 0.0068 0.21 0.01 0.087 0.44 0.0002

Sm 0.239 0.444 0.444 0.444 0.444 0.444  Sm 0.0013 0.01 0.26 0.01 0.217 0.76 0.0002

Eu 0.0096 0.168 0.168 0.168 0.168 0.168  Eu 0.0016 0.013 0.31 0.01 0.32 0.88 0.0218

Gd 0.358 0.596 0.596 0.596 0.596 0.596  Gd 0.0015 0.016 0.3 0.01 0.498 0.86 0.0205

Tb 0.07 0.108 0.108 0.108 0.108 0.108  Tb 0.0015 0.019 0.31 0.01 0.75 0.83 0.025

Dy 0.505 0.737 0.737 0.737 0.737 0.737  Dy 0.0017 0.022 0.33 0.01 1.06 0.78 0.0281

Ho 0.115 0.164 0.164 0.164 0.164 0.164  Ho 0.0016 0.026 0.31 0.01 1.53 0.73 0.028

Er 0.348 0.48 0.48 0.48 0.48 0.48  Er 0.0015 0.03 0.29 0.01 2 0.68 0.0303

Tm - 0.074 0.074 0.074 0.074 0.074  Tm 0.0015 0.04 0.449 0.01 3 0.64 0.035

Yb 0.365 0.493 0.493 0.493 0.493 0.493  Yb 0.0015 0.049 0.28 0.01 4.03 0.59 0.0484

Lu 0.058 0.074 0.074 0.074 0.074 0.074  Lu 0.0015 0.06 0.28 0.01 5.5 0.51 0.0471
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