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ABSTRACT 

Acute hyperglycaemia and chronic hypertension worsen stroke outcome but their 

impact on collateral perfusion, a determinant of penumbral life span, is poorly 

understood.   Laser-speckle contrast imaging (LSCI) was used to determine the 

influence of these stroke  comorbidities on cortical perfusion after permanent middle 

cerebral artery occlusion (pMCAO) in Spontaneously Hypertensive Stroke Prone rats 

(SHRSP) and normotensive Wistar rats.  Four independent studies were conducted. In 

animals without pMCAO, cortical perfusion remained stable over 180 minutes.  

Following pMCAO, cortical perfusion was markedly reduced at 30 minutes then 

gradually increased, via cortical collaterals, over the subsequent 3.5 hours. In the 

contralateral non-ischaemic hemisphere perfusion did not change over time.  Acute 

hyperglycaemia (in normotensive Wistar) and chronic hypertension (SHRSP) attenuated 

the restoration of cortical perfusion after pMCAO. Inhaled nitric oxide did not influence 

cortical perfusion in SHRSP following pMCAO.   Thus, hyperglycaemia at the time of 

arterial occlusion or pre-existing hypertension impaired the dynamic recruitment of 

cortical collaterals after pMCAO.  The impairment of collateral recruitment may 

contribute to the detrimental effects these comorbidities have on stroke outcome. 

Keywords: Acute hyperglycaemia, cortical collateral perfusion, hypertension, 

ischaemic stroke, laser speckle contrast imaging. 
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INTRODUCTION 

Stroke is a leading cause of permanent disability and accounts for approximately 12% 

of all deaths in the world each year.1  Ischaemic stroke, caused by an occlusion of a 

cerebral blood vessel, represents 85% of all cases.2  The established treatments for 

ischaemic stroke are recanalisation of the occluded artery in order to allow reperfusion 

of the downstream territory:  thrombolysis with recombinant tissue plasminogen 

activator (r-tPA) or endovascular thrombectomy.3,4,5,6,7  However, only  a small 

proportion of stroke patients are eligible for these therapies due to a narrow therapeutic 

time window (<4.5 h for rt-PA & <6 h for thrombectomy) and risk of bleeding.8   

Following ischaemic stroke, the cerebral collateral circulation, a network of 

anastomoses between cerebral arteries, helps to maintain cerebral blood flow (CBF).9,10 

Leptomeningeal anastomoses (LMAs) are a network of pial arterioles that make 

connections between the middle, anterior and posterior cerebral arteries.  They provide a 

means of blood flow recruitment to the cortical layers of an occluded arterial territory.11 

These blood vessels dilate in response to a variety of direct neural, metabolic and 

haemodynamic factors.12 However, the primary factor that determines the direction of 

flow is the fall in hydrodynamic pressure at the distal ends of the affected major arteries.  

Effective collateral blood flow recruitment is known to extend the survival time of the 

injured, hypoperfused and potentially salvageable ischaemic penumbra as well as 

improve outcome following recanalisation therapies.12,13,14  Likewise, preclinical 
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evidence suggests that the quantity and dimension of LMAs is inversely related to 

neuronal death following stroke.15  The extent of collateral flow may explain the 

considerable number of patients that maintain a small ischaemic core and a significant 

penumbra beyond six hours and for up to several days following symptom onset16,17 

while other patients have aggravated brain tissue death and enlarged ischaemic 

core.17,18,19,20  

Established stroke co-morbidities (i.e. hypertension & acute hyperglycaemia) are 

associated with worse outcome following stroke.21,22,23 There is a paucity of information 

on the impact of stroke co-morbidities on the dynamics of cortical collateral recruitment 

during the first hours post-stroke.  Understanding the dynamics of collateral recruitment 

to support the ischaemic penumbra until CBF through the occluded artery is restored, 

may drive the development of new adjunct therapies.  Hence, to study the evolution of 

collateral perfusion after ischaemic stroke we used a rat permanent middle cerebral 

artery occlusion (pMCAO) model, and Laser speckle contrast imaging (LSCI), which 

combines high temporal and spatial resolution, to quantify relative CBF24.       

The principal aims were to characterise the dynamic changes in cortical collateral 

perfusion during the first critical hours following pMCAO, the influence of known 

stroke risk factors (acute hyperglycaemia and hypertension) and the impact of a 

potential therapeutic, inhaled nitric oxide (iNO) to enhance the recruitment of collateral 

perfusion.   
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METHODS 

Animals and study groups 

A. A total of sixty-five male rats (Wistar, n=38 and spontaneously hypertensive 

stroke-prone rat (SHRSP), n=27; 300-365 g) were randomly allocated to study and 

treatment groups according to specific aims, using random.org in four separate 

studies: A. To determine the dynamic changes in cortical perfusion following 

stroke (Wistar rats): Control (n=6) and pMCAO (n=10). 

B. To determine the influence of acute hyperglycaemia on cortical perfusion: 

pMCAO+vehicle (Wistar, n=11) and pMCAO+glucose (Wistar, n=11). 

C. To characterise the impact of chronic hypertension on the dynamic recruitment of 

collateral perfusion in SHRSP (pMCAO, n=9). 

D. To determine if iNO enhances the recruitment of cortical collateral perfusion in the 

presence of chronic hypertension: pMCAO+Air (SHRSP, n=9) and pMCAO+iNO 

(SHRSP, n=9). 

 

Wistar rats were purchased from Charles River and the SHRSPs were bred in a colony 

maintained at the Institute of Cardiovascular and Medical Sciences, University of 

Glasgow.  All rats were maintained in identical housing conditions: strain and age-

matched groups of four rats per cage, standard 12 h light-dark cycle along with 

unlimited access to water and chow.  A minimum of one week from date of delivery 
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was allowed for acclimatisation.  For study B (hyperglycaemia), rats were restricted to 

two chow pellets overnight for 15-17 h prior to experimentation.  This was to ensure 

baseline normoglycaemia (blood glucose concentration of 2.6-5.3 mmol/L in rats.25) 

under general anaesthesia.  All animal procedures were approved by the University of 

Glasgow Ethical Review Panel and performed under the UK Home Office Project 

Licences, 60/4449 and P643E89D8 for Preclinical Stroke and Experimental MRI and 

subject to the Animals (Scientific Procedures) Act of 1986 incorporating European 

Directive 2010/63/EU.  Experiments were carried out according to ARRIVE guidelines 

(http://www.nc3rs.org.uk/arrive-guidelines) during planning, experimentation, analysis 

and documentation of all procedures.   

 

Anaesthesia  

Using aseptic surgical technique, anaesthesia was induced (5% isoflurane) and, 

following oral intubation, maintained (2-3% isoflurane) during surgical preparation 

with artificial ventilation in a mixture of air:oxygen (1 L/min air, 0.2 L/min O2).  To 

reduce tracheal secretions and pain, atropine sulphate (0.05 mg/kg, s.c.) and 

ropivacaine hydrochloride (Norapin®; 0.2 ml s.c.) were administered over the abdomen 

and calvaria (site of cranial incision), respectively.  Following completion of surgical 

procedures, isoflurane was reduced to 1% and then gradually turned off during a bolus 

(80 mg/kg i.v.) and then continuous infusion (30 mg/kg/hr i.v.) of alpha-chloralose 

http://www.nc3rs.org.uk/arrive-guidelines
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(AC) for imaging and to maintain cerebral autoregulation and neurovascular coupling.  

Body temperature was maintained at 37±0.5 ºC and blood pressure, arterial blood gases 

(PaO2, PaCO2), blood pH and glucose were monitored throughout the experimental 

protocol.    

 

Middle cerebral artery occlusion & imaging window 

Rats were placed in a stereotaxic frame for skull thinning prior to induction of MCAO.  

The entire cortical surface was thinned using a dental drill, ensuring that the dura was 

left intact.  Rats were removed from the stereotaxic frame for induction of pMCAO 

which employed a minor modification of the intraluminal filament model of Koizumi 

et al.26  Briefly, permanent ligatures (4-0 sutures) were placed at the proximal portion 

of the CCA, external carotid, occipital and pterygopalatine arteries. A 4-0 nylon 

silicone coated tip monofilament (404134PK10 and 50-3033PKRe for Wistar and 

SHRSP rats; Doccol Corporation, MA, USA) was inserted into the CCA and gently 

advanced until resistance was felt, indicating occlusion at the origin of the middle 

cerebral artery (MCA).  The non-stroke control group received similar anaesthetic 

treatments for equivalent duration as well as calvaria thinning.  
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Induction of acute hyperglycaemia  

Rats were randomly allocated to receive either vehicle (saline) or glucose (15%; 10 

ml/kg) administered i.p. 10min prior to pMCAO, as previously described.23  Blood 

glucose levels were measured at baseline and at multiple time points following 

pMCAO using a glucometer (Accu-Check).  

 

Laser speckle contrast imaging (LSCI) and analysis 

Following the induction of pMCAO, rats were returned to the stereotaxic frame with 

their heads secured by tooth and ear bars to avoid movement artefact while imaging.  

Paraffin oil (JOHNSON’S® baby oil, USA) was applied to the surface of the thinned 

skull to ensure a stable signal during imaging.  Real time changes in cortical blood flow 

were recorded by means of a Laser speckle contrast imager (PeriCam PSI HD system, 

Perimed, Stockholm, Sweden), acquired from the estimation of intravascular red blood 

cell movement from a stack of images following 6 ms exposure time and programmed 

to produce 9 pixels (3x3) for contrast calculation. 

Perfusion values are calculated as ((1/C) -1)), where C is the contrast.  The penetration 

depth of the laser (785 nm) is approximately 500 µm below the thinned skull ensuring 

imaging of the cortical vessels on the brain surface. Temporal resolution was set at an 

effective frame rate of 0.2 images/second (averaging 5 images) with a spatial resolution 

of 20 µm.  A minimum stabilisation period of 10min was allowed under the laser 



9 
 

speckle contrast imager, before baseline recording commenced at 30 min from the onset 

of stroke, and continued until 4h post-MCAO.   

Cortical blood flow data for each rat were processed and extracted using PIMSoft 

(Perimed, Stockholm, Sweden).  Regions of interest (ROIs) were established at 30min 

post-MCAO (baseline) based on the following blood flow thresholds:27,28,29 ischaemic 

core (<43% of mean contralateral hemisphere); hypoperfused tissue (CBF between 43-

75% of mean contralateral hemisphere) along with contralateral equivalent ROIs as 

shown in Figure 1C.  For the control group, the entire ipsilateral and contralateral 

hemispheres were taken as the ROIs.  Blood flow data from each ROI were normalised 

to the respective mean blood flow during the first 10min at baseline (30 min post-

MCAO).   

 

Delivery of inhaled nitric oxide   

To determine if iNO can increase collateral flow in SHRSP, rats were randomised to 

receive either Air or iNO (60 ppm) starting at 30 min post-MCAO.  Nitric oxide (NO) 

gas was delivered in the ventilatory gas mixture and the concentrations of NO2 and O2 

were monitored and controlled using the INOMAX monitoring system (USA).  NO2 

concentration was maintained below 1.2 ppm, a level assumed to be toxic to the 

lungs,30 for the duration of the experiments. 

 



10 
 

Blinding and statistical analysis 

The experimenter was blind to group identity during data analysis for studies A, B and 

D as well as group identity during surgery & induction of hyperglycaemia for study B.  

All data were analysed using Graphpad Prism 6 (GraphPad Software, USA) and are 

presented as mean±SD. Mean normalised blood flow and mean arterial blood pressure 

(MABP) data were collected every 10min for statistical analysis.  To determine 

differences in blood flow within tissue compartments, area under curve for each ROI 

was calculated.  Unpaired Student’s t-test, multiple comparison 1-way ANOVA 

followed by Dunett’s test or repeated measures 2-way ANOVA followed by Sidak’s 

test were used to test the statistical significance of differences between groups, set at 

p<0.05.   
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RESULTS  

Dynamic recruitment of cortical perfusion following pMCAO 

Real time changes in cortical perfusion during the first hours following pMCAO were 

assessed in normotensive Wistar rats and compared with control non-stroke Wistar 

rats.  Physiological variables were stable throughout the experimental protocol with no 

significant differences between groups (F(2,28)=0.1049, p=0.9008 for pH, F=0.08536, 

p=0.9184 for PaO2, F=2.123, p=0.1385 for PaCO2 and F=1.881, p=0.1712 for body 

temperature. Supplemental Table 1). 

 

Cortical perfusion within the ischaemic core in the pMCAO group increased by 

215±131% by 2.5h post-MCAO when compared to baseline (30 min pMCAO, Figure 

2B).  Cortical perfusion within the hypoperfused ROI also increased over the time 

course (170±97%).  This increase in perfusion within the ischaemic core and 

hypoperfused regions was significantly different compared to perfusion data for the 

equivalent contralateral ROIs (F(2,23)=5.763, p=0.0094;  Figure 2C).  No significant 

increase in cortical perfusion was observed within these ROIs (19±5% for ischaemic 

core and 19±7% for hypoperfused ROIs, respectively, F(2,23)=1.439, p=0.2578, 

Figure 2D and 2E) indicating that this increase in blood flow is specific to the 

ischaemic hemisphere.  Importantly, no significant change (F(13,182)=0.8987, 

p=0.5556) in mean arterial blood pressure (MABP) was observed over the duration of 
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the experimental protocol indicating that the increase in blood flow was not driven by 

changes in systemic blood pressure (Figure 2F).  The increase in ipsilateral cortical 

blood flow originated from the midline, at the boundary of the initial blood flow 

deficit, moving towards the ischaemic core.  This suggests the recruitment of cortical 

collateral vessels (leptomeningeal anastomoses) rather than an increase in flow through 

the occluded MCA (see 2nd row of Figure 2A).  In control non-stroke rats, there was no 

change in blood flow over the same time course (1st row of Figure 2A).   

 

Impact of acute post-stroke hyperglycaemia on cortical perfusion  

Real time changes in cortical perfusion were assessed in a model of acute 

hyperglycaemia following pMCAO in normotensive rats and vehicle-treated control 

rats.  Physiological variables were within reference ranges throughout the experimental 

protocol with no significant differences between groups (F(4,80)=1.642, p=0.1279 for 

pH, F=0.5482, p=0.7009 for PaO2, F=1.077, p=0.3887 for PaCO2 and F=1.054, 

p=0.346 for body temperature, Supplemental Table 2).  Blood glucose concentration 

was significantly higher (F(5,120)=20.28, p=0.0001) at all time points with peak 

values at 30min post-MCAO for pMCAO+glucose rats when compared to 

pMCAO+vehicle group (Figure 3K).  This confirmed successful induction and 

maintenance of a clinically relevant level of acute hyperglycaemia.   

 



13 
 

Cortical perfusion within the ischaemic core increased by 212±80% and 78±11% in the 

pMCAO+vehicle and pMCAO+glucose groups, respectively, by 4h post-MCAO when 

compared to baseline (Figure 3B).  The increase in cortical perfusion within the 

ischaemic core of normoglycaemic rats was significantly attenuated in the presence of 

hyperglycaemia (t, df=2.530,11, p=0.0280, Figure 3C).  A similar increase in cortical 

perfusion was observed over the time course in the hypoperfused ROI in the 

pMCAO+vehicle group (156±71%) and this increase was attenuated in the 

pMCAO+glucose treated rats (82±10%, Figure 3D).  The difference between groups 

did not achieve statistical significance (t,df=1.468, 18, p=0.1593, Figure 3E).  In the 

contralateral hemisphere there was a small change in cortical perfusion within the 

homotopic contralateral ischaemic core ROI over the time course in both groups 

(change in perfusion: contralateral to ischaemic core, 35±43% vs 3±7% for vehicle and 

glucose groups, respectively, Figure 3F).  A similar change in cortical perfusion was 

observed within the homotopic contralateral hypoperfused ROI (change in perfusion: 

30±58% vs 5±6% for vehicle and glucose groups, respectively, Figure 3H).  Within the 

contralateral hemisphere the small increase in perfusion in both ROIs in the 

normoglycaemic group was significantly attenuated in the hyperglycaemic group (t,df= 

2.975, 11, p=0.0126 and t,df=2.324, 18, p=0.0320, respectively. Figure 3G and 3I).  No 

significant change (F(17,360)=0.9064, p=0.5667) in MABP was observed over the 

duration of the experimental protocol (Figure 3J), indicating that blood pressure did not 
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influence the impaired recruitment of cortical collateral blood vessels in the 

pMCAO+glucose group when compared to pMCAO+vehicle (Figure 3A). 

 

Impact of chronic hypertension on cortical perfusion following pMCAO 

Physiological variables in SHRSP were within reference ranges throughout the 

experimental protocol (Supplemental Table 3).  There was no significant change in 

cortical perfusion within the ipsilateral hemisphere of SHRSPs throughout the time 

course (change in perfusion from baseline to 4h:  5±23% & 5±19% for the ischaemic 

core and hypoperfused ROIs, respectively; Figure 4B and 4D).  Similarly, there was no 

change in cortical perfusion throughout the time course in the contralateral ROIs 

(change in perfusion from baseline to 4h:  10±10% and 10±9% for the contralateral 

ischaemic core and hypoperfused ROIs, respectively; Figure 4B and 4D).  The 

recruitment of cortical collateral blood vessels was impaired (Figure 4A) despite stable 

MABP observed throughout the experimental protocol (Figure 4F). 

 

Investigation of the potential of intervention to enhance blood flow following 

pMCAO 

The effect of iNO (at 60ppm) on cortical perfusion was measured following pMCAO 

in SHRSP and compared to control SHRSP that received air only.  Figure 5A shows an 

example perfusion map from the median animal from each group over time.  
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Physiological variables were within reference ranges throughout the experimental 

protocol with no significant differences between groups (F(3,48)=0.8152, p=0.4978 for 

pH, F=0.4128, p=0.7410 for PaO2, F=0.2249, p=0.8786 for PaCO2 and F=1.127, 

p=0.3474 for body temperature. Supplemental Table 4).  For both groups, arterial 

blood glucose concentration was slightly raised (>6mmol/L) 10min prior to the 

induction of pMCAO but returned to the normal range (3.5≥6mmol/L) from 1h post-

MCAO until the end of experimental protocol (see Figure 5K).  No significant 

differences were observed between groups throughout the protocol.   

 

There was no significant difference in cortical perfusion between iNO and vehicle-

treated rats in the ischaemic core (change in perfusion from baseline to 4hr pMCAO:  

16±14% vs 8±1% for air & iNO groups, respectively) and hypoperfused ROIs 

(10±20% vs 4±2% for air & iNO groups, respectively. Figure 5B & D).  Area under 

the curve analysis confirmed that there were no differences in cortical perfusion over 

time and between treatment groups (Figure 5C & E).  Within the contralateral 

equivalent ROIs there was no change in cortical perfusion over time and between 

treatment groups (Figures 5G& I).   

Stable MABP was observed over the duration of the experimental protocol with no 

significant difference between groups (F (20, 320)=0.5966, p=0.9146, Figure 5J), 

indicating that iNO did not alter MABP.   
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DISCUSSION  

The present study demonstrates, for the first time, the dynamic recruitment of cortical 

collateral perfusion during the first critical hours following experimental stroke in rat 

models with and without known stroke risk factors.  LSCI revealed stable, cortical flow 

over the duration of imaging (4h) in non-stroke control Wistar rats.  Following cortical 

ischaemia induced by pMCAO, cortical collateral perfusion gradually increases within 

the ischaemic hemisphere.  In contrast, the presence of clinically relevant levels of 

acute post-stroke hyperglycaemia results in a significant attenuation in the recruitment 

of cortical collateral perfusion.  Similarly, rats with chronic hypertension (SHRSP) 

demonstrate a failure of cortical collateral perfusion recruitment after pMCAO.  

Finally, we found that iNO did not ameliorate the failed recruitment of cortical 

collateral perfusion demonstrated in SHRSP following pMCAO. 

 

LSCI acquires perfusion data from the estimation of intravascular red blood cell 

movement from a stack of images24.  LSCI therefore provides real time full-field 

imaging with robust temporal and spatial resolution suitable for the dynamic 

quantification of blood flow in the vasculature of the cortex.  The benefits of LSCI 

include a relatively faster signal processing time and near real-time blood flow 

estimates for the semi-invasive investigation of blood flow dynamics with excellent 
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reproducibility when compared to other optical and non-optical imaging 

systems.31,32,33,24 However, LSCI also presents some limitations which include: 

distortion of the overall estimates by static artefacts76 as well as shallow penetration of 

the laser rays which requires the surgical removal or thinining of the cavaria for rat 

cerebral studies.24  Also, LSCI data cannot be used to directly compare between 

animals or timepoints without data normalisation.  This is because LSCI does not 

provide absolute perfusion values owing to the undefined mathematical relationship 

between speckle contrast and blood flow velocity.71,72  

 

Regarding collateral perfusion following stroke, increased cortical perfusion was 

detected in the ipsilateral ischaemic core and hypoperfused ROIs during the first 3-4 

hours following pMCAO in two separate groups of rats (normotensive and 

normoglycaemic animals in studies A & B) and importantly, was specific to the 

ischaemic hemisphere since no significant changes in perfusion were observed within 

the contralateral hemisphere of these animals or in non-stroke control rats.  The 

increased perfusion in the ischaemic territory is likely to reflect the recruitment of 

collateral vessels lying close to the midline, and adjacent to the cerebral region known 

to be supplied by the anterior cerebral artery (ACA) in rats.  The increase in collateral 

perfusion following pMCAO is a compensatory mechanism to redirect blood supply to 

the ischaemic region in order to maintain blood flow and potentially salvage the 
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ischaemic penumbra.33 These observations support and extend earlier studies of 

collateral flow.  Ten minutes following pMCAO, Strong et al.34 reported an 

approximate 50-70% increase in CBF in the core and hypoperfused regions of the 

gyrencephalic cortex in cats.  The blood flow recovery was near pre-occlusion values 

by 90min post-MCAO.  Similarly, a variable recruitment of collateral perfusion has 

been reported in normotensive and normoglycaemic rats where anastomotic 

connections between ACA and MCA were observed following the induction of 

MCAO.  In an embolic MCAO model in Sprague-Dawley rats, Armitage et al.35 

reported an immediate anastomotic connection established between the branches of 

ACA and MCA which persisted for up to 24h.  In a different study, these anastomotic 

connections following pMCAO in Sprague-Dawley rats were classified into three 

categories, viz: transient, impermanent and persistent, based on their dynamic 

evolution 3h following recruitment.36 Also, cortical vessel recruitment following 

ischaemic stroke has been reported in humans.37,38   

 

Changes in vascular physiology (MABP, blood pH, PaO2 and PaCO2) due to 

anaesthesia may potentially impact on cerebral blood flow.  Hence, all rats were 

mechanically ventilated to prevent respiratory depression and AC anaesthesia chosen 

for the LSCI session to limit anaesthesia effects on vascular physiology and cerebral 

blood flow.39,40  PaCO2 in particular  is known to dilate cerebral vessels and increase 
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CBF.41,42  Therefore, for all study groups and treatments, blood physiological 

parameters (PaCO2, PaO2, and pH) and body temperature were monitored and 

maintained within the normal range.  Small differences in MABP between groups were 

not statistically significant.  Therefore, differences in physiological parameters were 

not responsible for the observed changes in the recruitment of collateral perfusion 

following pMCAO.   

 

The physiological recruitment of collaterals following pMCAO was impaired in our rat 

model of acute hyperglycaemia.  This may explain, in part at least, our previous report 

of more rapid growth of ischaemic brain lesions, as determined by diffusion-weighted 

MRI, following pMCAO in acute hyperglycaemic rats compared to normoglycaemic 

controls.23  It is also consistent with patient studies linking acute hyperglycaemia 

(defined as sustained blood glucose concentration above 6.0 mmol/L), with poorer 

functional outcome and higher mortality following stroke.47,48,49,50,51,52,53,54   Further, a 

recent study55 showed that hyperglycaemia in stroke patients with good collaterals 

decreases clinical prognosis and had no effect on patients with poor collateral 

recruitment.  This suggests that high blood glucose around the time of stroke is 

detrimental to neurological recovery in stroke patients with otherwise functional 

collateral capacity.   
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In a recent rat study, our group assessed the influence of acute hyperglycaemia on 

cerebral blood flow after pMCAO using alternative CBF methods.  Using in vivo 

autoradiography and perfusion-weighted MRI there was no detectable  effect of this 

level of hyperglycaemia on CBF, although ischaemic brain damage was increased.56  

These seemingly contradictory findings may reflect the different sensitivities of 

autoradiography and MRI versus LSCI with the latter providing a more sensitive 

method of assessing changes in cerebral perfusion.  The pathophysiological mechanism 

for the impaired recruitment of collateral flow in acute post-stroke hyperglycaemia is 

not yet clear.  However, raised blood glucose concentration is known to inhibit NO-

mediated vasodilatation, partly due to an induced decrease in NO bioavailability.57,58  

Another important factor that has been suggested is hyperglycaemia-induced blood 

coagulation and fibrinolysis dysfunction leading to increased blood viscosity and 

impaired erythrocyte functions.59  

 

Hypertension is an important risk factor for stroke which also worsens functional 

outcome in humans.60,61  Owing to the spontaneous development of essential 

hypertension (~220mmHg systolic) and stroke, SHRSPs represent one of the most 

clinically relevant rat models of chronic hypertension in pre-clinical research.62,63  The 

genetically related spontaneously hypertensive rat (SHR, ~180mmHg systolic), which 

rarely shows signs of spontaneous stroke, is also widely used64,65.   
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Our observation of the impaired recruitment of collateral flow in the SHRSP is 

consistent with a previous report.66  Coyle and Heistad66 quantified the anastomoses 

between the ACA and MCA in the normotensive control Wistar Kyoto strain (WKY) 

and SHRSP.  They showed no reduction in the number of anastomoses but a 

considerable narrowing of the collateral anastomoses in SHRSP compared to WKY and 

following MCAO.  When compared to WKY, we and others have also reported an 

increased sensitivity of SHRSP to stroke67,68,69 as well as the rapid infarction of the 

penumbral tissue apparent within 1h following pMCAO.21,22  Hypertension is associated 

with  vasoconstriction in cerebral vessels and decreased vasorelaxation.  The ex vivo 

study of Chan et al.70 showed luminal constriction of LMAs isolated from young (18 

weeks old) and aged (48 weeks old) SHR when compared to normotensive WKYs.  

Also, the study reported that small intraluminal pressure stimulation of 20 mmHg 

resulted in more constriction of LMAs from young SHR when compared with aged 

SHRs.  Recently, using multisite laser doppler flowmetry, further studies from the same 

group64,65 reported poor collateral perfusion during 2 h transient MCAO in aged and 

young SHRs. These findings of collateral failure in SHR are in agreement with the 

results of the present studies in SHRSP and provide evidence for beneficial effects of 

oxygen-based therapy     and PAI-1 inhibition on collateral function.71  
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 Increased glutamate concetnration,72 and the increased levels of the  powerful 

vasoconstrictor, 20-HETE, in the brain of SHRSPs following ischaemic stroke73 may 

also contribute to the impairment of cortical collateral flow.  Dunn et al. 73 showed that 

the suppression of 20-HETE with intracerebral injection of HET-0016, a potent 

inhibitor of 20-HETE, reduced infarct volume following stroke.  However, iNO at 

60ppm, a potent vasodilator shown to selectively dilate cerebral blood vessels in the 

ischaemic territory of normotensive mice,74  did not ameliorate the impaired recruitment 

of collateral perfusion in the SHRSP, in our hands, following pMCAO. 

 

Taken together the data reported here demonstrate that hypertension or acute post-

stroke hyperglycaemia impair the recruitment of collateral perfusion following 

ischaemic stroke in rats.  These findings provide insight into the rapid evolution of 

brain damage and decreased volume of salvageable brain tissue, as well as the 

aggravated outcome following stroke in the presence of these comorbidities, and 

provide an experimental platform to test therapies designed to support penumbra until 

reperfusion is induced.  In addition to age, hyperuricaemia and metabolic syndrome 

have also been associated with poor collateral status in human stroke patients.54  

Hence, in the continuous quest for effective collateral flow enhancers, these stroke 

comorbidities should also  be considered. This study is subject to some limitations.  

Firstly, we did not carry out statistical power calculation a priori to determine group 
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size.  Secondly, we did not include a normotensive strain for our SHRSP group in 

study C, and lastly, we did not assess infarct or lesion volume.  The paper presents an 

exploratory insight to the potential of LSCI to study collateral recruitment and how the 

contributors of worsened stroke outcome (chronic hypertension and acute 

hyperglycaemia) influence the recruitment of collateral perfusion following stroke.  

UK animal regulation does not permit recovery of animals under prolonged AC 

anaesthesia. 

 

In conclusion, we present novel longitudinal in vivo data demonstrating significantly 

attenuated cortical collateral perfusion in the presence of known risk factors such as 

acute post-stroke hyperglycaemia and chronic hypertension.  This impaired recruitment 

of collateral perfusion may in part explain the worse outcome and accelerated growth 

of brain damage in the presence of these risk factors.  In addition, we have shown that 

inhaled NO does not enhance collateral perfusion following stroke in a rat model with 

pre-existing hypertension.  In agreement with previous reports75,76,77 we show that 

LSCI is an effective tool to investigate cortical blood flow changes following pre-

clinical treatments or experimental manipulations in vivo.  In combination with animal 

models of stroke comorbidities LSCI promises to be a robust tool in the development 

of vasodilators or cerebral blood flow enhancers and the evaluation of their real time 
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cerebrovascular effects in the setting of preclinical stroke and other neurovascular 

applications.  
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FIGURE LEGENDS 

Figure 1.  Laser speckle contrast imaging set up and analysis. (A) A representative 

laser speckle image showing normally perfused rat brain with superior cortical vessels 

before pMCAO was induced.  (B) A representative laser speckle image of the cortical 

surface following pMCAO, showing normal blood flow in the contralateral hemisphere 

(red-yellow) and cortical blood flow deficit in the ipsilateral hemisphere (blue-black).  

(C) Regions of interest (ROIs) on the LSCI defined with applied CBF thresholds: 

ischaemic core (cortical blood flow <43% of mean contralateral hemisphere), 

hypoperfused tissue (cortical blood flow between 43-75% of mean contralateral 

hemisphere) along with contralateral equivalent ROIs. 

 

Figure 2.  Recruitment of cortical collateral blood flow post-MCAO. (A) Cortical 

blood flow map of a representative rat per group.  (B) Increase in cortical blood flow in 

the ROIs of the ipsilateral hemisphere following pMCAO while blood flow remained 

relatively unchanged in the non-stroke control group over time.  Cortical blood flow 

values for each ROI were normalised to their respective 10min average at baseline and 

the entire ipsilateral hemisphere was the ROI for non-stroke controls.  (C) Area under 

curve of cortical perfusion in the ipsilateral hemisphere ROIs  used to test the statistical 

difference between groups over the time course of ischaemia (0.5-4h) and  analysed 

using Student’s unpaired t-test, p>0.05*.  (D) Cortical blood flow was unchanged from 
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baseline in all equivalent ROIs in the contralateral hemisphere.  (E) Area under curve 

for cortical perfusion in the contralateral hemisphere ROIs, over the time course of 

ischaemia.  (F) No significant change in MABP over the time course of the 

experiment.  Area under curve data for cortical perfusion presented as mean ± SD, 

other data presented as mean + SD.  

 

Figure 3.  Impact of acute hyperglycaemia on cortical collateral blood flow. (A) 

Cortical blood flow map of a representative rat per group.  (B) Cortical blood flow in 

the ipsilateral ischaemic core ROI. (C) Area under curve for cortical perfusion (0.5-4h) 

in the ipsilateral ischaemic core ROI of vehicle and glucose groups, p>0.05*.  (D) 

Cortical blood flow in the ipsilateral hypoperfused ROI.  (E). Area under curve of 

cortical perfusion (0.5-4h) in the ipsilateral hypoperfused ROI.  (F) Cortical perfusion 

in the ROI contralateral to ischaemic core.  (G) Area under curve of cortical perfusion 

in the ROI contralateral to ischaemic core, p>0.05*.  (H) Cortical perfusion in the ROI 

contralateral to the hypoperfused ROI.  (I) Area under curve of cortical perfusion in the 

ROI contralateral to the  hypoperfused ROI, p>0.05*.  (J) MABP, stable over the time 

course of ischaemia, in vehicle and glucose groups.  (K) Blood glucose concentration 

10min prior to and during the time course of ischaemia.  Analysed using repeated 

measures 2way ANOVA, p=0.0001*.  Area under curve data for cortical perfusion 

presented as mean ± SD, other data presented as mean + SD. 
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Figure 4.  Impact of chronic hypertension on cortical collateral blood flow.  (A) 

Cortical blood flow map of a representative SHRSP rat following pMCAO.  (B) 

Cortical blood flow normalised to the respective 10min average at baseline in the 

ipsilateral ischaemic core and equivalent contralateral ROI.  (C) Area under curve of 

cortical perfusion in the ipsilateral ischaemic core and equivalent contralateral ROI, 

over the time course of ischaemia (0.5-4h), analysed using Student’s unpaired t-test, 

p>0.05*.  (D) Cortical blood flow, normalised to the respective 10min average at 

baseline, in hypoperfused ROI and equivalent contralateral ROI.  (E) Area under curve 

of cortical perfusion for hypoperfused ROI and equivalent contralateral ROI.  (F) 

MABP data over the time course of ischaemia.  Area under curve data for cortical 

perfusion presented as mean ± SD, other data presented as mean + SD.  

 

Figure 5. Influence of iNO on cortical collateral recruitment post-MCAO.  (A) 

Cortical blood flow map for representative rat per group over the time course of 

ischaemia.  (B) Cortical blood flow, normalised to the respective 10min average at 

baseline,in the ipsilateral ischaemic core ROI.  (C) Area under curve of cortical 

perfusion in the ipsilateral ischaemic core ROI over the time course of ischaemia (0.5-

4h).  (D) Cortical blood flow, normalised to the respective 10min average at baseline, 

in the ipsilateral hypoperfused ROI.  (E) Area under curve for cortical perfusion in the 

ipsilateral hypoperfused ROI.  (F) Cortical perfusion, normalised to the respective 
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10min average at baseline, in the ROI contralateral to ischaemic core.  (G) Area under 

curve of cortical perfusion for ROI contralateral to ischaemic core.  (H) Cortical 

perfusion, normalised to the respective 10min average at baseline, in the ROI 

contralateral to hypoperfused ROI.  (I) Area under curve of cortical perfusion for ROI 

contralateral to hypoperfused ROI.  (J) MABP over the time course of ischaemiain Air 

and iNO groups.  (K) Blood glucose concentration 10min prior to and during the time 

course of ischaemia.  Area under curve data for cortical perfusion presented as mean ± 

SD, other data presented as mean + SD. 
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FIGURES AND FIGURE LEGENDS 
 
 
 

 
 
Figure 1.  Laser speckle contrast imaging set up and analysis. (A) A representative laser speckle 
image showing normally perfused rat brain with superior cortical vessels before pMCAO was 
induced.  (B) A representative laser speckle image of the cortical surface following pMCAO, 
showing normal blood flow in the contralateral hemisphere (red-yellow) and cortical blood flow 
deficit in the ipsilateral hemisphere (blue-black).  (C) Regions of interest (ROIs) on the LSCI defined 
with applied CBF thresholds: ischaemic core (cortical blood flow <43% of mean contralateral 
hemisphere), hypoperfused tissue (cortical blood flow between 43-75% of mean contralateral 
hemisphere) along with contralateral equivalent ROIs. 
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Figure 2.  Recruitment of cortical collateral blood flow post-MCAO. (A) Cortical blood flow 
map of a representative rat per group.  (B) Increase in cortical blood flow in the ROIs of the 
ipsilateral hemisphere following pMCAO while blood flow remained relatively unchanged in the 
non-stroke control group over time.  Cortical blood flow values for each ROI were normalised to 
their respective 10min average at baseline and the entire ipsilateral hemisphere was the ROI for non-
stroke controls.  (C) Area under curve of cortical perfusion in the ipsilateral hemisphere ROIs  used 
to test the statistical difference between groups over the time course of ischaemia (0.5-4h) and  
analysed using Student’s unpaired t-test, p>0.05*.  (D) Cortical blood flow was unchanged from 
baseline in all equivalent ROIs in the contralateral hemisphere.  (E) Area under curve for cortical 
perfusion in the contralateral hemisphere ROIs, over the time course of ischaemia.  (F) No 
significant change in MABP over the time course of the experiment.  Area under curve data for 
cortical perfusion presented as mean ± SD, other data presented as mean + SD.  
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Figure 3.  Impact of acute hyperglycaemia on cortical collateral blood flow. (A) Cortical blood 
flow map of a representative rat per group.  (B) Cortical blood flow in the ipsilateral ischaemic core 
ROI. (C) Area under curve for cortical perfusion (0.5-4h) in the ipsilateral ischaemic core ROI of 
vehicle and glucose groups, p>0.05*.  (D) Cortical blood flow in the ipsilateral hypoperfused ROI.  
(E). Area under curve of cortical perfusion (0.5-4h) in the ipsilateral hypoperfused ROI.  (F) Cortical 
perfusion in the ROI contralateral to ischaemic core.  (G) Area under curve of cortical perfusion in 
the ROI contralateral to ischaemic core, p>0.05*.  (H) Cortical perfusion in the ROI contralateral to 
the hypoperfused ROI.  (I) Area under curve of cortical perfusion in the ROI contralateral to the  
hypoperfused ROI, p>0.05*.  (J) MABP, stable over the time course of ischaemia, in vehicle and 
glucose groups.  (K) Blood glucose concentration 10min prior to and during the time course of 
ischaemia.  Analysed using repeated measures 2way ANOVA, p=0.0001*.  Area under curve data 
for cortical perfusion presented as mean ± SD, other data presented as mean + SD. 
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Figure 4.  Impact of chronic hypertension on cortical collateral blood flow.  (A) Cortical blood 
flow map of a representative SHRSP rat following pMCAO.  (B) Cortical blood flow normalised to 
the respective 10min average at baseline in the ipsilateral ischaemic core and equivalent contralateral 
ROI.  (C) Area under curve of cortical perfusion in the ipsilateral ischaemic core and equivalent 
contralateral ROI, over the time course of ischaemia (0.5-4h), analysed using Student’s unpaired t-
test, p>0.05*.  (D) Cortical blood flow, normalised to the respective 10min average at baseline, in 
hypoperfused ROI and equivalent contralateral ROI.  (E) Area under curve of cortical perfusion for 
hypoperfused ROI and equivalent contralateral ROI.  (F) MABP data over the time course of 
ischaemia.  Area under curve data for cortical perfusion presented as mean ± SD, other data 
presented as mean + SD.  
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Figure 5. Influence of iNO on cortical collateral recruitment post-MCAO.  (A) Cortical blood 
flow map for representative rat per group over the time course of ischaemia.  (B) Cortical blood 
flow, normalised to the respective 10min average at baseline,in the ipsilateral ischaemic core ROI.  
(C) Area under curve of cortical perfusion in the ipsilateral ischaemic core ROI over the time course 
of ischaemia (0.5-4h).  (D) Cortical blood flow, normalised to the respective 10min average at 
baseline, in the ipsilateral hypoperfused ROI.  (E) Area under curve for cortical perfusion in the 
ipsilateral hypoperfused ROI.  (F) Cortical perfusion, normalised to the respective 10min average at 
baseline, in the ROI contralateral to ischaemic core.  (G) Area under curve of cortical perfusion for 
ROI contralateral to ischaemic core.  (H) Cortical perfusion, normalised to the respective 10min 
average at baseline, in the ROI contralateral to hypoperfused ROI.  (I) Area under curve of cortical 
perfusion for ROI contralateral to hypoperfused ROI.  (J) MABP over the time course of ischaemiain 
Air and iNO groups.  (K) Blood glucose concentration 10min prior to and during the time course of 
ischaemia.  Area under curve data for cortical perfusion presented as mean ± SD, other data 
presented as mean + SD. 
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