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Introduction 

We welcome the comments of Bourgois et al. (2019) and the opportunity to debate geomorphology, 

geochronology and palaeoclimate during the Late Glacial Interglacial Transition (LGIT, ~18.0-8.0 ka) 

in the region of the Río Baker, central Patagonia. Bourgois et al. (2019) conclude that we have 

propagated inconsistencies in our proposed reconstruction of palaeolake evolution due to 

geomorphic analytical bias. However, in our view the empirical geomorphological data we have 

compiled over many field seasons has resulted in a data-rich (though still incomplete) relative 

chronology that enables us to evaluate inconsistencies in landscape interpretations from previously 

published geochronological datasets. We would argue that a geochronological bias, over any 

geomorphological bias, has represented the main reason for multiple landscape interpretations in 

this region. Indeed, the conflicting palaeolake evolution models published for the Río Baker basin 

(Turner et al. 2005; Bell, 2008; Hein et al., 2010; Bourgois et al., 2016; Glasser et al., 2016; Martinod 

et al., 2016) was a major impetus for our paper. These contrasting models were in part a result of 

the coincident publication of two separate geochronological datasets in 2016, one focused on 

optically stimulated luminescence (OSL) dating of palaeolake landforms (Glasser et al., 2016), the 

other cosmogenic nuclide exposure ages (Bourgois et al., 2016). Both datasets provided updates on 

what we termed the Turner/Hein model in Thorndycraft et al. (2019), but as they did not have 

access to each other’s datasets they ended up with different landscape interpretations.  

Missing from both of these papers was detailed geomorphological mapping of the Río Baker valley, a 

fundamental zone in the overall story of landscape evolution because: firstly, it is in this area where 

glacier dynamics control the blocking and opening of Pacific drainage pathways from the Lago 

General Carrera/Buenos Aires (LGC/BA) basin; and secondly, the palaeohydrological record provides 

insights into lake drainage processes and the relative chronology of regional glacier and ice-dammed 

lake evolution. Herein, we first consider the specific issues raised by Bourgois et al. (2019) point by 

point, before outlining what we consider to be the key questions and approaches required to 

improve our understanding of the complex relationships between the atmosphere, cryosphere, 

hydrosphere and geosphere in Patagonia. 

Geochronology dataset 

Bourgois et al. (2019) have argued that we should not have eliminated any dates in our Bayesian age 

model of regional glacier and lake evolution. However, as clearly illustrated in Figure 1 of their 

comment, it is challenging to arrive at a consensus using that approach. Thorndycraft et al. (2019) 

presented a series of geomorphological datasets, including local-scale and regional mapping from 

field excursions and remotely sensed imagery, a GIS-based palaeoshoreline analysis, and a 

subsequent altitudinal-based review of available geochronology. These datasets necessitated a re-

evaluation of the geomorphic contexts of some dated samples. As an illustrative example, we 



showed that some morainic boulders sampled for cosmogenic nuclide exposure dating of former ice 

limits were likely shielded by lake water (Fig. 12 in Thorndycraft et al., 2019). There may be analytical 

subjectivity in our approach, but the Bayesian age model was developed based on analysis of our 

empirical geomorphological datasets, that we believe comprise the most comprehensive landform 

mapping in the region (Bendle et al., 2017a; Bendle et al., 2017b; Davies et al., 2018; Thorndycraft et 

al., 2019; Martin et al., 2019). The geomorphology therefore provides the relative chronology, and 

thus prior information within the Bayesian age model (Bronk-Ramsey, 2008). We concur it would 

have been helpful to explain more fully in the Supplementary Materials why some dates were 

omitted from our model, so we take this opportunity to explain here: 

• The Río Fenix date of 15.2 ± 0.5 cal ka (Kaplan et al., 2004; Douglass et al., 2006) is a single 

radiocarbon date derived from carbonate-cemented concretions sampled from varved 

sediments that have subsequently been dated to 17–18 ka ago based on the in situ 

preservation of the Ho tephra of Hudson volcano (17,378 ± 118 cal yr BP) within the lake 

sediments (Bendle et al., 2017b). Therefore, the data was not appropriate to constrain the 

early phase of our Bayesian model; i.e. the onset of glacial lake formation. The provenance 

of the carbonate-cemented concretion is uncertain, as presumably concretions were formed 

post-depositionally. We note, however, that the 15.2 ± 0.5 cal ka age does fit with Stages 3 

and 4 of our palaoelake evolution model where the Deseado lake level was in existence and 

therefore inundating the Fenix Chico valley. 

• The single OSL date of 9.7 ± 0.7 ka from the Bayo valley (Glasser et al., 2006) did not fit our 

empirical geomorphological evidence for the relative chronology of lake level and drainage 

events, therefore was not included in the age model. We referred to this age in the 

discussion section of Thorndycraft et al. (2019; p.121). Based on the currently available 

evidence, this age neither fits the timing of Bayo level lake drainage, based on basal 

radiocarbon dates from small peat infilled basins (Turner et al., 2005), nor our interpretation 

of cosmogenic nuclide exposure ages from lake shielded boulders (Fig. 12 in Thorndycraft et 

al., 2019).  

• The Fachinal moraine dates were not relevant for our age model because the readvances, 

dated to ca. 8.5 and 6.2 ka (Douglass et al., 2005), or the re-calculated ages of 10.9 ± 1.3 ka 

and 7.9 ± 1.1 ka (Bourgois et al., 2016a), bear no influence on ice-damming in LGC/BA. This 

palaeoglacier would have only dammed the lake when confluent with the main ice-lobe 

sourced from the North Pataognian Icefield further west, but once the two ice masses had 

separated the dynamics of the Fachinal glacier had no bearing on the water level or drainage 

of LGC/BA. Furthermore, the Douglass et al. (2005) interpretation of these readvances post-

dating the Bayo lake level further supports the exclusion of these dates from our age model.  

• The ages from Bourgois et al. (2016a) were excluded from the age model because they were 

not considered sufficiently robust in terms of either provenance or dating uncertainty. The 

samples listed by Bourgois et al. (2019) were interpreted as dropstones. There are two 

problems with this: first, there is no evidence to suggest these samples could not have 

originated from other sources (e.g. valley side, glacier surface lowering); and second, a 

dropstone does not provide unequivocal provenance. For example, how deep was the lake 

when the dropstones were deposited? In addition, some landform interpretations were not 

consistent with our geomorphological mapping. We found no evidence, for example, for a 

regional LGC/BA lake level from 451-528 m asl. As noted in Thorndycraft et al. (2019), the 



detailed mapping and sedimentology from Fenix Chico (Bendle et al., 2017a) demonstrates 

the lake formed at the Deseado level and that there was no subsequent lake transgression, 

as argued by Bourgois et al. (2016). We concur with Martinod et al.’s (2016) interpretation in 

their comment on the Bourgois et al. (2016) paper; i.e. that these levels were older, higher 

elevation ice-marginal lakes dammed by the LGC/BA ice lobe as it thinned while remaining in 

the main trunk valley. This point also bears out in regional shoreline dataset, as these levels 

are all local features that lay well above regionally expressed shoreline traces (Thorndycraft 

et al., 2019). In fact, four of the Bourgois et al. (2019) cosmogenic ages would fit our 

interpretation (e.g. 18.5 ± 3.7, 18.8 ± 4.0, 15.2 ± 3.7, 16.5 ± 4.1 ka). However, the high dating 

uncertainties highlight another issue with this chronological dataset, in that these four 

examples date boulder exposure to within a time window of 7.4-8.2 ka, which is too great to 

make meaningful inferences on palaeolake evolution. This is because we date the onset of 

Deseado drainage to ~18.0 ka and the drainage of the Bayo lake level to >12.0 ka (also see 

Turner et al., 2005). In other words, the age uncertainties on some of the Bourgois samples 

are longer in duration than the existence of the Deseado and Bayo lake levels combined. We 

do note that the single age of 15.0 ± 1.8 ka (sample 59 in Bourgois et al., 2016), albeit from a 

dropstone (at 443-452 m asl), given the caveats outlined above, does likely fit with an extant 

Deseado lake level in our palaeolake evolution model. 

To conclude this section on geochronology, we note that the youngest age in our Bayesian age 

model uses a single OSL date. However, this age is consistent with our geomorphological evidence. 

The sample, dated to 7.8 ± 0.5 ka was taken from a loess deposit post-dating outburst flood 

sediments. The geomorphology, however, suggests the flood likely occurred prior to stabilisation of 

the Lago Plomo moraines, dated by Glasser et al. (2012) to ca. 10.5 ka, as there is no evidence of 

flood erosion on the moraine; i.e. the Soler glacier was positioned at the Lago Bertrand outflow, the 

source of the Río Baker. We are therefore confident the age of 7.8 ± 0.5 ka can be a considered a 

minimum age for the event.  

Ho tephra age 

Bourgois et al. (2019) state that there is no absolute age for the Ho tephra that anchors the Fenix 

Chico Master Varve Chronology (FCMC17) record (Bendle et al., 2017b). However, this tephra layer 

has been independently dated at other sites (Weller et al., 2014) and has now been used as a 

chronological marker for several palaeoenvironmental sequences (Van Daele et al., 2016; Bendle et 

al., 2017b). We applied standard tephrochronological techniques for the identification of a source 

eruption, as have been widely applied in Patagonia (Wastegard et al., 2013), and by our research 

team investigating LGIT palaeoclimate in the British Isles (Matthews, et al. 2011). Bourgois et al. 

(2019), however, do not comment on the large major- and trace-element chemical dataset 

presented in Bendle et al. (2017b), which strongly suggests that the Ho eruption of Hudson volcano 

is the source of the tephra layer found in the FCMC17 varves. Bendle et al. (2017b) used a simple age 

modelling technique, and eight radiocarbon ages from other sites (Miranda et al., 2013; Weller et al., 

2014), to constrain the Ho tephra age and anchor the FCMC17 chronology to the calendar-year 

timescale. It is also worth noting that the detection of the Ho tephra (17,378 ± 118 cal yr BP) in Fenix 

Chico is consistent with the 10Be ages of moraine boulders from the Menucos and Fenix moraine 

complexes to the east. We acknowledge that should the age of the Ho eruption be refined through 



new dating, the absolute age range covered by the FCMC17 record would also change, as would the 

timing of lake formation.  

Stating that the tephra distribution presented in Weller et al. (2014) did not extend to Fenix Chico 

(Bourgois et al., 2019) misses the point that the site was previously unstudied in relation to tephra 

presence. One implication of identifying the Ho tephra at Fenix Chico is that the geographic 

distribution of visible eruptive products from this event has now been extended, increasing its 

potential as a chronological marker layer in other palaeoenvironmental archives.  

Deseado and Bayo palaeolake levels 

Bourgois et al. (2019) are correct to point out that different methods applied to quantifying the 

palaeoshoreline elevations will produce different results. The approach taken by Bourgois et al. 

(2019), using differential GPS, will be more accurate than using ASTER gDEM elevation data. 

However, the key aim of our methodological approach was to evaluate whether palaeoshoreline 

elevation data could be used to test the timing of lake unification between the LGC/BA and Lago 

Cochrane/Puerreydon (LC/P) basins (Fig. 1a). To achieve this, we applied the methodology adopted 

by Breckenridge (2015, 2016) in reconstructing the history of palaeolake Aggasiz of the Laurentide 

Ice Sheet, with the caveat we did not have access to high-resolution LiDAR terrain data (Thorndycraft 

et al., 2019). Using the Breckenridge (2015, 2016) approach enabled us to objectively investigate 

shoreline elevations, in a systematic way, across large spatial areas in both the LGC/BA and LC/P 

basins. We do not claim that the peaks in the histograms (Fig. 10a in Thorndycraft et al., 2019) 

provide a more accurate elevation for the lake levels than dGPS. However, the data do show that the 

peaks between lake basins neatly coincide at the Bayo level, whereas the data is more equivocal at 

the Deseado level, suggesting that the lakes may not have been unified at that point. However, this 

needs to be tested further using higher resolution DEMs, such as LiDAR.  

Bourgois et al. (2019) note that the different preservation of lake shoreline evidence along the 

LGC/BA basin is due to morphotectonic landscape control. We concur with this and, like Bourgois et 

al. (2016), we are interested in the role of tectonics on Quaternary glacial landscape evolution. We 

have considered morphotectonic structure, and take this opportunity to present some of our 

regional digital terrain analysis (Fig. 1b), which shows the morphotectonic structure referred to by 

Bourgois et al. (2019), and also the presence of regional reverse topography. We hypothesise that 

these retrograde slopes in the southern basin (LC/P) could have led to more rapid glacier recession, 

accounting for the earlier (15.5 ka) abandonment of Atlantic drainage at the Caracoles outflow (Fig. 

1a) than at the Deseado in LGC/BA. Guillaume et al. (2013) model greater rates of dynamic uplift 

associated with slab window formation associated with the Chile Triple Junction centred around the 

Monte San Lorenzo massif. Therefore, the interplay between post-Miocene neotectonics (Guillaume 

et al., 2013) and glaciations (Rebassa et al., 2011) is an important one to consider in the 

interpretation of Late Quaternary deglaciation in central Patagonia.  



 

Figure 1. a) Map of the study area showing the Lago General Carrera/Buenos Aires (LGC/BA) and 

Lago Cochrane/Puerreydon (LC/P) basins and locations named in the text. Inset: southernmost South 

America. b) Selected digital terrain profiles (extracted from the SRTM DEM) showing the maximum, 

mean and minimum elevations for 0.2 x 0.2 digital degree cells – 46.1°S, 46.5°S, 47.1°S and 47.3°S 

(mid-point latitudes). Note, by comparing the 46.1°S data to 46.5°S, the influence of glacial erosion 

(LGC/BA basin) and moraine deposition of the LGC/BA ice lobe can be seen. To the South, the 

steepest reverse bed gradient occurs in the Chacabuco valley (47.1°S), which has the smallest outlet 

ice lobe, in comparison to the LGC-BA and LC-P basins, and therefore lower rates of Quaternary 

glacial erosion. In our palaeolake evolution model (Fig. 15, Thorndycraft et al., 2019) we hypothesise 

rapid ice recession from the Chacabuco valley allowing meltwater drainage into the lower Baker. 

 



Bayo spillway 

The timing of the opening of the Bayo spillway is one of the uncertainties discussed in our model 

and, indeed, we leave open alternative hypotheses for the opening of the Bayo valley (Fig. 15e and 

15f in Thorndycraft et al. et al., 2019). Both our scenarios, however, predate the Early Holocene date 

of Glasser et al. (2016) and Bourgois et al. (2019). Bourgois et al. (2019) argue that the Bayo valley 

was blocked by ice from 9.0-13.0 ka. This argument, however, does not take into consideration the 

geomorphology and analysis presented in Thorndycraft et al. (2019). We demonstrated that the two 

cosmogenic nuclide exposure ages cited by Bourgois et al. (2016), samples LTE1 and LTE2 at Lago 

Tranquilo (Glasser et al., 2006), were likely shielded by lake water as they are located on the lake-

proximal side of the drainage col (Fig. 12 in Thorndycraft et al., 2019), so they cannot be used to 

robustly date ice blocking the valley. This, therefore, leaves the one OSL sample (9.7 ± 0.7 ka) dated 

by Glasser et al. (2006), and discussed above, as the sole chronological constraint on the timing of 

ice extent at the Bayo col into the Early Holocene. Given evidence elsewhere for drainage of the 

Bayo lake level prior to the Holocene, for example, the radiocarbon dates of Turner et al. (2005) and 

our own reinterpretation of lake shielded boulder ages (Thorndycraft et al., 2019), we consider this 

age unreliable for underpinning the lake evolution model, which is why the date was not included in 

our age model. 

Fachinal Cold Events  

The timing of Fachinal glacier readvances, as current data allows, are irrelevant to the LGC/BA lake 

evolution story. This is because first, the readvances were not sufficient to dam the lake so have no 

bearing on drainage through the Río Baker valley. Secondly, according to Douglass et al. (2005), in 

their morphostratigraphic interpretation the readvances post-date the Bayo lake level. Both their 

interpretations for readvances at ca. 8.5 and 6.2 ka (Douglass et al., 2005) or the re-calculated ages 

of 10.9 ± 1.3 ka and 7.9 ± 1.1 ka (Bourgois et al., 2016a) post-date our interpretation of drainage 

from the Bayo lake level. 

Bourgois et al. (2019) state that the Fachinal dates counter our statement that there is no significant 

(Northern Hemisphere) Younger Dryas readvance in the region. However, the evidence from other 

glaciers in the Río Baker basin demonstrate that the most significant post-LGM readvance occurred 

during the Antarctic Cold Reversal (14.5-12.8 ka), for example, at Monte San Lorenzo (Davies et al., 

2018; Sagredo et al., 2018) and the Colonia valley (Nimick et al., 2016). For the Monte San Lorenzo 

ice cap, which is most analogous to the Fachinal palaeoglacier being a separate ice cap located to the 

east of the Andean Cordillera and North Patagonian Icefield, both Sagredo et al. (2018) and Davies et 

al. (2018) demonstrate large ACR moraine systems, with recessional moraine ages coinciding with 

the Northern Hemisphere (Younger Dryas). To infer, from the Fachinal data alone, that cold periods 

in the Early Holocene were sufficient to block drainage through the Baker valley to dam Lago 

General Carrera/Buenos Aires will likely lead to misinterpretation of landscape evolution in the 

basin. As stated earlier, in our detailed morphostratigraphic work from Fenix Chico (Bendle et al., 

2017b) there is no geomorphological evidence for a lake level in LGC/BA that is higher than the 

Deseado level, which is the inference Bourgois et al. (2016a) arrive at. 



 

Fig. 2 a)-d) Photos of high magnitude outburst flood landforms of the Rio Simpson downstream of 

Coyhaique. a) Two elevations of boulder bars inset within an incised fluviglacial terrace. b) and c) 

Flow-aligned and Imbricated boulders on the higher boulder bar level. d) Large conical depression, 

which features boulders at its base, likely formed by eddy scour in a zone of flow separation. e)-f) 

Sampling of annually laminated lake sediments from the southern side of contemporary LGC/BA. e) 

Palmer counting macroscale varves. f) Sampling microscale laminations for micromorphology and 

varve counting under the microscope. 

  



Key research questions and future approaches 

The interactions between atmosphere, cryosphere, hydrosphere and geosphere during the LGIT in 

Patagonia are interesting to elucidate for the following reasons: 

1) The cryosphere is sensitive to Southern Hemisphere climate reorganisation and, in 

particular, the latitudinal position and/or intensity of flow within the Southern Westerly 

Wind Belt, which controls spatial variations in precipitation (Boex et al., 2013; Moreno et al., 

2015; Van Daele et al., 2016) and temperature through radiative forcing (Bendle et al., in 

press). Indeed, as Bendle et al. (in press) demonstrate, using the high-resolution FCMC17 

varve record, at ~46°S the Patagonian Ice Sheet may have responded to an initial 

atmospheric control (westerly wind shift) at ca. 18.0 ka before sustained faster recession 

began at ca. 17.8 ka, following a lagged oceanic warming and associated ambient 

temperature increase across the South Pacific. 

2) The LGIT includes a major cooling episode at 14.5-12.8 ka, broadly equivalent in timing with 

the Antarctic Cold Reversal as identified in isotopic data from Antarctic ice cores (WAIS 

Divide Project Members, 2013), the influence of which likely extended northwards to 40°S 

(Pedro et al., 2016). This period featured a major glacier readvance in Patagonia (Moreno et 

al., 2009; Garcia et al., 2014; Nimick et al., 2016; Sagredo et al., 2018; Davies et al., 2018) 

preceding a phase of rapid warming into the Early Holocene. This warming could provide a 

valuable analogue for valley glacier response to contemporary climate warming (Martin et 

al., in press) because the main outlet glaciers of the waning Patagonian Ice Sheet and 

satellite mountain ice caps had separated by this point (Davies et al., 2018).  

3) Large palaeolake systems formed as ice receded during the LGIT (Turner et al., 2005; Stern et 

al., 2011; Solari et al., 2012; Garcia et al., 2014; Glasser et al., 2016; Van Daele et al., 2016; 

Garcia et al., 2018), the drainage of which may have forced regional climate changes (Glasser 

et al., 2016). As Thorndycraft et al. (2019) demonstrate, lake drainage in central Patagonia 

involved multiple high-magnitude glacial lake outburst floods. The Baker valley geomorphic 

setting is unlikely to be unique in Patagonia, and indeed we have mapped evidence of 

outburst flood processes in other formerly glaciated valleys, for example, in the Simpson 

valley (Fig. 1c).  

4) We hypothesise that topography, such as the retrograde slopes illustrated in Fig. 1, may 

have played a role in spatially variable glacier recession through the LGIT. This may be one 

reason for the earlier (ca. 15.5 ka) lake drainage in the LC/P (Thorndycraft et al., 2019). 

5) Evidence of early human occupation in Patagonia dates to before the Antarctic Cold Reversal 

in northern Patagonia (Dillehay et al., 2015), with timing post-dating the Antarctic Cold 

Reversal in central Patagonia (e.g. Mendez et al., 2018). Thus, there are interesting research 

questions concerning the glacier response to climate warming and associated glacial lake 

drainage events for opening valley landscapes for human occupation (Borrero et al., 2019). 

To address these issues, integrated multidisciplinary approaches, without so-called 

geomorphological (Bourgois et al., 2019), or geochronological, bias are required to overcome the 

current uncertainties in relative and absolute chronologies. It is challenging to undertake 

geomorphological mapping in the field in Patagonia yet, as our research has shown, it is essential to 

provide a more robust framework for evaluating geochronology. In terms of geochronological 

methods, the radiocarbon dating of infilled basins to date lake level falls has shown promise (Turner 



et al., 2005; Villa Martinez et al., 2014; Garcia et al., 2018) and should be used to test glacial lake 

transgression hypotheses, such as proposed by Bourgois et al. (2016). However, this approach needs 

to be more widely applied. The FCMC17 varve record has demonstrated the great potential offered 

by varve chronologies to reconstruct ice sheet dynamics through the LGIT, test palaeoclimate 

hypotheses (Bendle et al., in press), and better constrain moraine ages through Bayesian age 

modelling applied in tandem with cosmogenic nuclide exposure ages (Bendle et al., 2017b). Work 

led by Palmer and Pike (Fig. 1d) is currently extending the Lago Buenos Aires varve chronology to 

elucidate, at centennial to decadal resolution, glacier dynamics and palaeoclimate, and indeed test 

our own palaeolake evolution model. We look forward to seeing our model refuted in the future 

with high quality geomorphological and geochronological datasets. 
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