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Summary.

As accessible and potentially vulnerable species high up in the food chain, birds are often

used as indicator species to highlight changes in ecosystems. This study focuses on multiple

spatially dependent relationships between a raptor (sparrowhawk), a potential prey species

(house sparrow) and a sympatric species (collared doves) in space and time.

We construct a complex spatio-temporal latent Gaussian model to incorporate both predator-

prey and sympatric relationships, which is novel in two ways. First, different types of species

interactions are represented by a shared spatio-temporal random effect, which extends ex-

isting approaches to multivariate spatial modelling through the use of a joint latent modelling

approach. Second, we use a delta-gamma model to capture the semi-continuous nature of

the data to jointly model the binary and continuous sections of the response.

The results indicate that sparrowhawks have a localised effect on the presence of house

sparrows, which could indicate that house sparrows avoid sites where sparrowhawks are

present.

Keywords: INLA, joint model, multivariate spatio-temporal modelling, SPDE approach.

1. Background–modelling multi-species coexistence

The co-occurrence of different species in the same spatial location at the same time is

referred to as coexistence. Many ecologists are interested in understanding the mechanisms

that facilitate such coexistence. Recent decades have seen an increasing push to conserve

and monitor biodiversity, both in Europe and world-wide (Pereira and Cooper, 2006). Birds

are often often used as an indicator species as they are more accessible for monitoring than

other species, and are particularly vulnerable to changes in ecosystems due to their position
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high up in the food chain (Bibby et al., 2000; Gregory and van Strien, 2010). In order to

investigate long-term trends in bird species a number of monitoring schemes have been set

up (Robinson et al., 2014). Studies that analyse data resulting from these schemes show

a rather mixed picture for many songbirds in a UK context (e.g. Baillie et al., 2014). It

is not well understood as to why some studies show a decline in certain bird species and

others do not. In order to ascertain why this is the case it is vital to gain an improved

understanding of the multivariate mechanisms that govern long-term population dynamics.

This will help in the understanding of the ecological processes taking place and will have

the potential to aid conservation efforts.

Songbirds are a group of species that have attracted particular interest from conser-

vationists as well as from the general public. Specifically, the effect of increases in the

abundance and distribution of some species of raptor on declines in songbirds has been the

focus of much research interest (e.g. Newson et al., 2010; Bell et al., 2010). The interac-

tions between predator and prey species are often much more complicated than generally

perceived, and hence simple explanations (e.g., blaming raptors exclusively for songbird

declines) are not sufficient (Newson et al., 2010). Thus, in order to gain a better under-

standing of the species dynamics of songbirds it is necessary to account for different types

of interactions operating among several species in space and over time.

The majority of multi-species approaches usually explore either singularly, (i) a predator-

prey relationship (Garneau et al., 2007), or (ii) co-occurrence of sympatric species (Schweiger

et al., 2012). However, in nature these different types of relationships rarely occur in iso-

lation, but instead operate simultaneously. Thus, to more realistically account for species

dynamics we propose modelling different types of species interactions within the same

spatio-temporal model. The framework we propose utilises shared spatio-temporal ran-

dom effects that represent the interaction amongst species, which enable the relationships

amongst species to be described.

Multi-type latent Gaussian models

Bird species sharing similar habitats typically compete for similar resources, as do many

other species. Thus, modelling individual species whilst ignoring any effects of this compe-

tition, and other relevant biotic interactions, oversimplifies the underlying dynamics of the

process (Boulangeat et al., 2012). In some cases it may be appropriate to model the dy-

namics of one species whilst treating another as a fixed effect. However, in many instances

this approach fails to propagate the uncertainty relating to each species correctly, making
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parameter estimates and predictions unrealistic (Clark, 2003). In addition, this approach

assumes some specific directionality, which implies that it is possible to identify a focal

species. This may be sensible in some contexts where background knowledge may be used

to justify this simplification, such as in Illian et al. (2009); Högmander and Särkkä (1999).

However, in complex ecosystems the dependence relationships are rarely this simple (Dray

et al., 2012). Hence, a multivariate approach should be employed in order that the relevant

dependence structures may be correctly inferred. As such the framework we propose both

accounts for species dependencies in space and over time, and uses latent structures to

facilitate simultaneous modelling of several species.

Through employing such shared latent structures, we are able to capture the relevant

dependencies inherent in the multi-species data detailed in Section 2.1 below. In particular,

our approach utilises additional random fields that are infinitesimally close to the target

model enabling us to assess the interaction amongst multiple species. This approach is

essentially an extension of the ‘linked model’ proposed by Diggle and Milne (1983), which

sets two latent fields proportional to one another. This corresponds to a class of multivariate

GRFs similar to those termed Linear Models of Coregionalization (LMCs) (Gelfand et al.,

2002). In addition to the assumed shared stochastic structures we consider the observation

locations (sites) directly, thus avoiding the loss of information resulting from transforming

spatially continuous data into lattice data.

Our motivating data are not only spatially but also temporally indexed. As such, the

interest is not only in each species’ spatial distribution, but also in assessing how the

spatial distribution changes over time. This allows for the possibility that the interaction

between the species within and between trophic levels may vary both in space and time.

Understanding these inter- and intra-specific interactions is imperative in understanding

the complex ecological dynamics present that drive the coexistence or otherwise of species.

To incorporate all such dependencies into one modelling framework we construct a

spatio-temporal multivariate Gaussian Random Field (GRF) with a Matérn covariance for

the spatial domain, and an autoregressive process of order 1 (AR(1)) to describe the tem-

poral dependence. We take an integrated nested Laplace approximation (INLA) approach

(Rue et al., 2009) for Bayesian inference, coupled with a stochastic partial differential

equation (SPDE) model (Lindgren et al., 2011) to account for the spatial autocorrelation.

The remainder of this article is structured as follows: Section 2 describes the approach

taken, and its application to GBFS data discussed in 2.1; Section 2.2 defines the model

specifics; Section 3 illustrates the inference to be drawn from such a model, and its ade-
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quacy. Finally, Section 4 outlines other possible applications and extensions of the flexible

spatio-temporal model class proposed in this article.

2. Methods & materials

The modelling framework we propose is motivated by long-term geostatistical garden bird

data. We focus on three species of bird: a species of garden bird that has shown large

declines in population recently, one of its potential predators, and a sympatric species. We

use a complex hierarchical Bayesian model for this purpose, where spatio-temporal struc-

tures are modelled with an SPDE approach and fit the model with INLA. This enables us

to simultaneously model and estimate the spatial correlation between, and amongst, the

species. The INLA approach is designed to fit latent Gaussian models where the values

at each location are conditionally independent, given the covariance structure. The condi-

tional independence of the latent Gaussian field translates into a sparse precision matrix.

The sparsity of this precision matrix leads to a Gaussian Markov Random Field (GMRF);

this aids the computational efficiency of the INLA approach. However, as typically approx-

imations of mechanisms operating on continuous domains are required in this context, it is

beneficial to model the joint behaviour of this process for all locations. We therefore use a

SPDE model for the latent field. The use of a SPDE as an approximation to a GMRF was

introduced by Lindgren et al. (2011), whereby weighted sums of basis functions are used

to approximate the spatial random functions arising from the solution to the considered

SPDE. Thus, the continuous interpretation of space is preserved, whilst benefiting from

the computational advantages arising from the discrete Markovian structures of GMRFs.

Further details relating to the SPDE model and the model fitting procedure are given in

the appendix; the authors also recommend that readers refer to Rue et al. (2009); Lindgren

et al. (2011) for more in-depth details.

2.1. The motivating garden bird feeding survey data

The modelling framework we propose is illustrated through the use of data collected by

the Garden Bird Feeding Survey (GBFS) undertaken by the British Trust for Ornithology

(BTO)†. We consider count data collected at approximately 200 sites per year across the

UK over a 36 year period, 1970–2005. The data collected are the maximum count of each

species seen feeding on provisioned food in the surveyed gardens. These counts are noted

in each of up to 26 weeks every winter spanning the months October–March. We then

†http://www.bto.org/volunteer-surveys/gbfs
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calculate the annual averages across weeks giving a mean of weekly maxima for each site-

year combination. It should be noted therefore that the data relate to what is assumed

to be a continuous variable, with a non-zero probability of obtaining exact zeros. Such

data are sometimes referred to as a semi-continuous variable (Aitchison, 1955). Previous

modelling approaches for such semi-continuous data introduce the use of a delta-gamma

model. This jointly models the binary and continuous sections of the response (Foster and

Bravington, 2013). Due to the nature of our data we propose utilising such a delta-gamma

model in our multi-species modelling framework discussed in the following sections. From

now on we use the term ‘density’ to refer to the assumed continuous variables mentioned

above.

There is severe concern as to the causes of declines observed in many wild bird species

over the past 40 years. Amongst the possible causes is an increase in the abundance

and distribution of the Eurasian sparrowhawk Accipiter wises, an avian predator that

has increased in both abundance and distribution over a similar time period (Newton,

1986). The house sparrow Passer domesticus is of particular concern as it has decreased

by approximately 60% over the past 40 years (Robinson et al., 2005). Previous work by

Götmark and Andersson (2005) suggests that house sparrows may be at particular risk from

sparrowhawk predation due to their decreasing population (Chamberlain et al., 2009), and

hence we concentrate particularly on these species in this paper.

In addition, we include a third species in our analysis, the collared dove Streptopelia

decaocto, to assess the shared effect between their spatial distributions over time and that

of house sparrows. Collared doves have colonised the UK in a similar time frame but in the

reverse direction to sparrowhawks, so act as a natural control species for testing potential

effects of predators (Thomson et al., 1998; Newson et al., 2010; Swallow et al., 2016a).

Adding collared dove to the joint model can ensure that spurious negative correlations are

not occurring, whilst also testing for positive associations between species that have similar

ecological requirements.

We are interested in assessing if there is spatial and temporal interaction between spar-

rowhawk increase and house sparrow decrease, which would be consistent with the idea of

a causal relationship between the two. For example, a negative relationship between the

occurrence of raptors and a prey species may suggest that the occurrence of the former

is causing a reduction in the occurrence of the latter: either directly through predation,

or as a behavioural response of the later to avoid areas where predators are abundant. In

either case it can highlight relationships that may warrant further attention. A positive
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correlation between the latent variables of two sympatric species would similarly suggest

that the species are attracted to the same areas due to some unmeasured factor.

2.2. A multi-species spatio-temporal model

A delta gamma model is used to represent the biomass of each avian species. Let zik be

a binary indicator of the k

th species’ presence (k = 1, 2, 3 = sparrowhawk, collared dove,

house sparrow) at site i. Then zik ⇠ Bernoulli(pik), where pik is the probability of presence

of the k

th species at site i. Letting dik be the density of the k

th species at location i, then

dik is given by,

dik =

8
<

:
Gamma(aik, bik) with probability pik

0, otherwise,
(1)

with shape and scale parameters (aik, bik) respectively, so that E[dk] = ak bk = µk.

The binary components of the response reveal at which site each species is most likely to

appear, whereas the non-zero component reveal the spatial distribution of the abundance

for each species. This facilitates accounting for both the remaining spatial auto-correlation

and dependence among the species. Utilising multiple latent stochastic structures in the

modelling procedure leas to the linear predictors for each species being constructed as,

sparrowhawk

8
<

:
logit(pi1) = x1{si, t}

log(µi1) = �1x1{si, t},

collared dove

8
<

:
logit(pi2) = x2{si, t}

log(µi2) = �2x2{si, t},

house sparrow

8
<

:
logit(pi3) = ↵+ �1x1{si, t}+ �2x2{si, t}+ x3{si, t}

log(µi3) = ↵y + �3x1{si, t}+ �4x2{si, t}+ �3x3{si, t}.

(2)

Here each xj{si, t}(j = 1, 2, 3) is a spatio-temporal random effect modelled by a SPDE

model (Lindgren et al., 2011), which follows an AR(1) process over time with parameter

⇢i (see appendix). Each ↵· is an intercept term for each component of the model referring

to the house sparrows. The parameters �· and �· are scaling parameters to the spatio-

temporal random fields of which they are coefficients. That is, each shared random field

(i.e., a random field that appears in more than one linear predictor) represents the shared

inter- or intra-species spatial auto-correlation over time. Each �· or �· parameter represents

the magnitude and direction of this spatial similarity. For example, Equation (2) assumes

that �1 multiplied by logit(pi1) is equal to log(µi1) etc..

Following the construction of the joint spatio-temporal model mentioned above below
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we summarise the interpretation of each stochastic structure. Each field may be thought

of as follows:

• x1{si, t}, the spatially varying process referring to the probability of presence of spar-

rowhawk, which is also assumed to be a contributory factor to the spatially varying

density of sparrowhawk over the time period. As such one would expect �1 to be

positive;

• x2{si, t}, the spatially varying process referring to the probability of presence of

collared dove, which is also assumed to be a contributory factor to the spatially

varying density of collared dove over the time period. As such one would expect �2

to be positive;

• x3{si, t}, the spatially varying process referring to the probability of presence of house

sparrow—conditional on the spatial distribution of both sparrowhawk and collared

dove—which is also assumed to be a contributory factor to the spatially varying

density of house sparrow over the time period. One would expect �3 to be positive.

The field x3{si, t} accounts for any remaining structure in the spatial distribution

of house sparrows once it has been ascertained whether either the prey species—

sparrowhawk—or sympatric species—collared dove—are considered to have an effect

on the spatial distribution of house sparrow. Thus, if the spatial distribution of house

sparrow were independent of either that of sparrowhawk or collared dove x3{si, t}

would account for the variation specific to the spatial distribution of house sparrow.

3. Results and inference

A wrapper function to fit the model given in Equation (2), along with the variants dis-

cussed below, can be found at https://github/cmjt/lgcp. Further details regarding the

modelling procedure are given in the appendix along with the prior specifications for the

parameters of the spatio-temporal fields.

Table 1 gives the posterior means, standard errors, and 95% credible intervals, for the

parameters of the joint spatio-temporal model given by Equation 2. Each AR(1) parameter,

⇢i (i = 1, 2, 3), is close to one indicating a strong short-term dependence between the

latent fields across years. Recall that each �i parameter represents, on the link scale, the

relationship between the probability of presence and density of the sparrowhawks, collared

doves, and house sparrows respectively. In the case of each species this scaling parameter

is estimated to be positive, and the corresponding 95% credible intervals do not contain
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zero. This indicates a positive relationship between species presence and density. This

parameter is essentially the ratio between the log density and logit probability of presence,

which indicates that where there is a high probability of observing a species there are

also more birds of that species. That is, the occurrence and density of birds of the same

species share the same spatial patterning across the UK. In the case of sparrowhawks

�̂1 = 0.5396, which indicates that the log density of sparrowhawks at any spatial location

is approximately equal to twice the logit of the probability of observing them. Thus, if

the probability of observing a sparrow hawk were 0.5 at any particular location, then the

estimated density (at that location) of sparrow hawks would be exp(0.5396) ⇠ 1.7 birds.

With respect to the collared dove �̂2 = 0.1697 indicating that if at a particular location

one was equally likely to observe or not a collared dove, the density of collared doves would

be exp(0.1697) ⇠ 1.18. In the case of the house sparrows this parameter has the same

interpretation as above given the relationship to the other two species.

The intercept parameters ↵ and ↵y relate to the density and probability of presence of

the house sparrow respectively. In each case if there were no spatio-temporal variation these

parameters represent the fixed average value, on the link scale, of density and probability

of presence.

Of most interest in our modelling framework are the interaction parameters represented

by each �i (i = 1, 2, 3, 4). We term these parameters ’interaction’ parameters rather than

scaling parameters (see above and Blangiardo et al. (2013 Chapter 8)) to differentiate

between species and amongst species interactions. These parameters represent the inter-

species relationships. Both �2 and �4 are estimated to be positive, with 95% credible

intervals that do not contain zero. This leads us to infer that the presence of collared doves

is positively related to both the presence and density of house sparrows (i.e., areas of high

collared dove occurrence relate to areas of high housesparrow occurrence and abundance).

This is not surprising as they are known to be sympatric species. In particular, if at any

particular location the probability of observing a collared dove is 0.5 then the density of

house sparrows would be exp(1.1227) ⇠ 3, ignoring the other effects in the model. Along

the same vein at locations where collared doves are as equally likely to be observed as not

then the probability of observing a house sparrow would be logit�1(0.6047) ⇠ 0.65—given

the other components of the linear predictor.

Both the interaction parameters �1 and �3 are estimated to be negative, with 95% cred-

ible intervals that don’t contain zero. This, in contrast to the relationship between house

sparrows and collared doves, indicates a negative relationship between the presence of spar-
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rowhawks and house sparrows. This indicates that the occurrence of sparrow hawks do

not share the same spatial patterning as either the occurrence or density of housesparrows.

This is not unsurprising as these species are predators and prey respectively. These param-

eter values indicate that if at any particular location the probability of observing a sparrow

hawk is 0.5 then the density of house sparrows would be exp(�0.1451) ⇠ 0.86, ignoring

the other effects in the model. Along the same vein at locations where sparrow hawks are

as equally likely to be observed as not then the probability of observing a house sparrow

would be less than chance (i.e., logit�1(�0.8781) ⇠ 0.29)—given the other components of

the linear predictor.

Figures 1 and 2 show the estimated response of each component of the proposed spatio-

temporal delta-gamma model along with the inter-species interaction over the time period.

Figure 1 shows the estimated probability maps for each species in 1970 (top row) and 2005

(bottom row). The maps, from left to right in each case, show the estimated probability

of observing sparrowhawks, collared doves, and house sparrows respectively. In each case,

areas of high probability of observing house sparrows correspond to areas of low probability

of observing sparrowhawks, and high probability of observing collared doves. These spatial

differences correspond to the predator prey and sympatric species relationships respectively.

The central plot shows the mean probability of house sparrow presence from 1970–2005

in relation to each species effect. We can see that on average the probability of observing

house sparrows declines over the time period (see solid line in Figure 1). In addition,

given the other model components, the probability of house sparrow presence declines with

respect to the presence of sparrowhawks (dot-dash line Figure 1) and remains pretty much

constant with respect to collared dove presence (dotted line Figure 1). The remainder of

the spatial and temporally varying effect of house sparrows (i.e., the species specific effect)

is shown by the dashed line. This seemingly remains constant over the time period. It

should be noted that the values plotted are average values of the random effects on the

response scale in each year, the fixed effect has been omitted so that these effects can be

seen in isolation.

In a similar vein to Figure 1 this Figure 2 shows the density component of the model

for each of the species considered. The density maps relate again to 1970 (top row) and

2005 (bottom row), and show on the response scale the estimated density of sparrowhawks,

collared dove, and house sparrows—from left to right respectively. The central plot shows

the average values of the random effects in each year thought to contribute to the spatial

distribution of house sparrows—note the fixed effect has been omitted. The solid line
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illustrates the combination of the other three (i.e., it is the overall estimated house sparrow

mean density in each year). This shows a decline over the period and mirrors most closely

the decline in the number of collared doves (dotted line). Despite the positive value of �̂4,

the contribution of the collared dove effect to the density of house sparrows is seemingly

negative. This is due to the estimated decline in the numbers of collared doves over that

time suggesting there may be similar drivers of population change in the two species;

it should noted that the positive �̂4 indicated concordance between these two sympatric

species. The decline in house sparrow numbers is illustrated by the downward slope of the

dot-dash line; however, perhaps this is best illustrated by the maps where areas of high

house sparrow density correspond to areas of low sparrowhawk density. Further details

regarding model construction are given in the appendix.

The results presented from the modelling approach applied here detected a negative

relationship between the probability of sparrowhawk presence and the probability of house

sparrow presence, as well as between the probability of sparrowhawk presence and the

density of house sparrows. This is consistent with the idea of a causal relationship, either

directly on the populations of house sparrows due to predation, or a behavioural response

of house sparrows avoiding sites that are frequented by sparrowhawks.

3.1. Model checking

It is imperative that the model variables be assessed as to whether they provide reasonable

posterior inference. However, assessing the validity of the assumptions of our proposed

model is not a simple task. This field of work is still in its infancy (Martins et al., 2014;

Simpson et al., 2014; Yuan et al., 2016). One inbuilt method offered by inla is an approach

based on leave one out cross-validation, see Blangiardo and Cameletti (2015, Chapter

5) and Rue et al. (2009); Held et al. (2010). In summary this approach aims to check

the plausibility of the model assumptions through splitting the data into two groups; the

assumed model is then fitted to one group of data, and the second group is used to calculate

goodness of fit indices. The index used, in part, in this article is the probability integral

transform (PIT) (Dawid, 1984; Czado et al., 2009). This is an informal way to asses model

fit, and can only be used as an indication of model fit.

The focus of our model is on the relationship between three species. In particular, we

focus on the relationship between (i) sparrowhawks and house sparrows (a predator-prey

scenario), and (ii) collared doves and house sparrows (two sympatric species). To asses

the suitability of this joint model we compute PIT values for the density component of the
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model, these are seen in histogram in Figure 3. This histogram should roughly follow a

uniform distribution if the predictive distribution is in line with the data (Gneiting et al.,

2007). The histogram in Figure 3 indicates a reasonable fit for the density component of

the model. To asses the fit of the Bernoulli component of the model we may compare

the estimated values of the joint model to those of a single model where no inter-species

relationships are assumed. The percentage difference between the estimated values of the

joint model and the ’null’ model and the 95% quantiles for each year are shown in the

right hand plot of Figure 3. One may consider this to indicate a reasonable fit, however

it is evident that towards the latter end of the time period the difference between models

increases. This may suggest that the effect of sparrowhawks was initially high but then

reached an equilibrium.

4. Discussion

The estimated negative relationship between the probability of sparrowhawk presence and

both the density and probability of observing house sparrows detected in this article may

equate to sparrowhawks having a localised effect on the presence of house sparrows, or

causing house sparrows to avoid sites where sparrowhawks are present. However, the

recolonisation of sparrowhawks across the UK has failed to cause extinction of their prey.

Perrins and Geer (1980) and Newton (1986) studied the effects of sparrowhawks on

breeding densities of blue tits Cyanistes caeruleus and great tits Parus major and found

no difference between years when sparrowhawks were present and those where they were

absent. Their results suggested that sparrowhawks merely reduced the magnitude of the

peak in post-breeding numbers, the seasonal pattern of mortality and the means by which

the prey species were removed from the population (Newton, 1998). The results from this

analysis are consistent with the idea that sparrowhawks are reducing post-breeding peaks

in prey numbers as the data come from a survey that monitors these peaks. However,

they also suggest that there is no evidence of a discernible effect on overall site occupation.

Most previous analyses of sparrowhawks on breeding density of songbirds have failed to

find any significant widespread effect (Newson et al., 2010) but Bell et al. (2010) and

Swallow et al. (2016a) both found negative effects of sparrowhawks on house sparrows

when using the same GBFS data. The sparrowhawk effects detected and outlined above,

are not necessarily indicative of a causal effect of sparrowhawks on house sparrow presence.

We do note that it is possible that the negative correlation between the two species could

be driven by independent and concurrent factors that have not been explicitly modelled
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here. Yet, an additional random effect is included relating to house sparrows to allow

the associated variables to vary on their own (not tied to processes governing the other

species). Our results do suggest, however, that the spatial structure of house sparrows has

evolved over the last 36 years inversely to that of sparrowhawks, although it is impossible

to confirm a causal relationship with observational data such as these. In contrast, positive

correlation was found between house sparrow and collared dove. These two species have

similar ecological requirements and the positive relationship reflects that the two species

might respond similarly to the same environmental stimuli. We would therefore expect the

spatial distribution of the two species through time to reflect this. From an ecological point

of view our work exhibits the ability to effectively capture the complexity often inherent

in multi-species data, and infer about the relationships and processes fundamental to the

data structure.

The model discussed here has enabled us to simultaneously assess the spatio-temporal

structure inherent in zero-inflated data relating to counts of house sparrows obtained from

the GBFS over a 36 year period. Both the relationship between sympatric and predator-

prey species are accounted for in a joint model of several species. It is now widely accepted

that multi-species interactions are highly relevant in ecology, in particular in the context

of changes in the spatial distribution of species over time. Previous analyses have tended

to concentrate on single species independently (e.g. Newson et al., 2010) and small spatial

regions (e.g. Lahoz-Monfort et al., 2011). The method outlined here accounts for spatial

correlation across the whole of the UK, with uncertainty directly accounted for depending

on the density of monitored sites locally. Our methodology allows us to infer different types

of inter-specific interactions and processes inherent in such data. The results presented

here may suggest positive future directions for further research into these multi-species

dynamics. The use of shared random effects for understanding synchrony in multi-species

data sets has been explored previously by Lahoz-Monfort et al. (2011) and Swallow et al.

(2016b). The method outlined here further extends this synchrony across both space

and time, allowing much greater understanding of the the complex correlation structures

underpinning both intra- and inter-specific dynamics.

From a broader perspective, we combine spatio-temporal work done by Cameletti et al.

(2013) and joint modelling work carried out by Illian et al. (2012) in the context of point

process modelling. This enables us to infer the spatio-temporal effect, as well as estimate

multiple response variables and assess the relationships among the response variables. We

used the computationally efficient method INLA for model fitting, suitable for latent Gaus-
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sian models (Rue et al., 2009), exploiting its computational efficiency to avoid prohibitive

running times in the context of realistically complex spatio-temporal models (Cameletti

et al., 2013; Blangiardo and Cameletti, 2015). The computational advantages of both

INLA (Simpson et al., 2011) and the SPDE approach facilitate the incorporation of the

complexity intrinsic in many practically relevant data sets. Using the methodology dis-

cussed here allows one to infer about processes which operate over both space and time as

well as the dependency among processes operating simultaneously in one combined model.

The flexibility and generality of model fitting with the INLA-SPDE approach and the as-

sociated software R-INLA allows us to view the model discussed here as just one example

of a whole host of similar spatio-temporal joint models. For instance, different types of

response variables may be considered, such as spatio-temporal log-Gaussian Cox processes

as considered in Yuan et al. (2016). Similarly, models for data on a larger spatial scale

such a global data may be fitted directly on the surface of the earth without the need for

a projection into two-dimensional space as applied in Python et al. (2016) to model global

terrorism in space and time. Using the joint modelling approach these models may be

extended to a multi-species or to a multi-event situation.

In addition to being applicable elsewhere, the approach taken here can also be extended

to provide more flexible models. For instance, in the current paper we assume that a

stationary latent Gaussian model is appropriate for our data. Future extensions of our

methodology may generalise our approach to non-stationary SPDE models which allow the

covariance structure to vary spatially. (Bolin and Lindgren, 2011; Ingebrigtsen et al., 2014;

Fuglstad et al., 2013). This might be particularly relevant in strongly patchy environments,

and in the presence of physical barriers in space.

In summary we have successfully demonstrated that the type of model we propose and

the methodology we use to fit such a model enabled us to simultaneously account for the

latent spatio-temporal process inherent in many real-world data-sets. We concentrate here

on fitting such models to complex multi-species data illustrating an extremely flexible class

of spatio-temporal models, which can easily be extended to offer insight into processes oper-

ating in a broad range of fields. Not only can our methodology be applied to geostatistical

data (i.e., where we fit a spatially continuous model to measurements taken at a finite

number of locations), but where the interest may be to analyse the spatial pattern formed

by individuals or events in space (i.e., point pattern data). In conclusion, such methodol-

ogy is applicable to many complicated spatial/spatio-temporal data structures and due to

the generality of the INLA and SPDE framework can be flexibly extended.
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Tables & Figures

Table 1: Posterior means, standard errors, and 95% credible intervals, for the parameters

of the joint spatio-temporal model in Equation 2.

Quantile of Order

Parameter Mean SE 2.5% 97.5%

sparrowhawk

⇢1 0.9800 0.0001 0.9798 0.9801

�1 0.5396 0.0019 0.5363 0.5438

collared dove

⇢2 0.9612 0.0004 0.9604 0.9620

�2 0.1697 0.0018 0.1670 0.1738

house sparrow

↵ 1.2629 0.0574 1.1503 1.3755

↵y 1.2657 0.0289 1.2090 1.3224

⇢3 0.9683 0.0002 0.9680 0.9687

�1 -0.8781 0.0059 -0.8872 -0.8647

�2 0.6047 0.0036 0.5974 0.6114

�3 -0.1451 0.0049 -0.1531 -0.1342

�4 1.1227 0.0028 1.1170 1.1281

�3 0.5006 0.0036 0.4942 0.5082
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Fig. 1: Top row from left to right shows the estimated probability of presence of sparrowhawks,

collared doves, and house sparrows in 1970; the bottom row shows these probabilities for 2005. The

central panel shows the mean contribution of each species specific random effect to the probability

of observing house sparrows over the time period. The solid line is the average value in each year

of the probability of observing a house sparrow. The dotted line indicates the average contribution

of the process governing the probability of presence of collared doves to the probability of presence

of house sparrows. The dot-dash line indicates the average contribution of the process governing

the probability of presence of sparrowhawks to the probability of presence of house sparrows. The

dashed line indicates the average of the house sparrow specific random effect in each year.
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Fig. 2: Top row from left to right shows the estimated density of sparrowhawks, collared doves,

and house sparrows in 1970; the bottom row shows these densities for 2005. The central panel

shows the mean contribution of each species specific random effect to the density of house sparrows

over the time period. The solid line is the average value in each year of house sparrow density. The

dotted line indicates the average contribution of the process governing the probability of presence

of collared doves to the spatial distribution of house sparrows. The dot-dash line indicates the

average contribution of the process governing the probability of presence of sparrowhawks to the

density of house sparrows. The dashed line indicates the average of the house sparrow specific

random effect in each year.



A spatio-temporal multi-species model 17

Fr
eq

ue
nc

y

0
20

0
40

0
60

0
80

0

0 PIT 1

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
%

 d
iff

er
en

ce

−2
00

0
50

1970 Year 2005

Fig. 3: Left: histogram of the cross-validated PIT values for the non-zero density house

sparrow component of the joint model. Right: plot showing the percentage difference

between the joint model component relating to the binary presence of house sparrows

to the single likelihood model fitted. Lines indicate the 95% quantiles of the percentage

difference.
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Appendix

Details of the SPDE model

This paper uses methodology introduced by Lindgren et al. (2011) which links GMRFs

and SPDEs. In particular, such methodology uses weighted sums of basis functions to

approximate the spatial random functions arising from the solution to the SPDE. Thus, the

continuous interpretation of space is preserved, whilst benefiting from the computational

advantages arising from the discrete Markovian structures of GMRFs.

Lindgren et al. (2011) show that—under certain conditions—the stationary solution to

the SPDE in 2-dimensions given by,

(2 ��)x(s) = W(s), s 2 R2
,  > 0,

is a GRF. In this SPDE, � =
P2

i=1
d2

ds2i
is the Laplacian,  is the spatial scale parameter.

Here, W(s), is a Gaussian spatial white noise process. The stationary solution to the SPDE

on R2 is a random field with a Matérn covariance function,

C(x(0),x(s)) = �

2 ( k s k)K⌫( k s k),

where,  is as defined above, �2 = 1
4⇡ 2 > 0 is the marginal variance and K⌫ is the modified

Bessel function of second order. A measure of the spatial range is given by � =
p
8
 . This

gives the distance at which the spatial correlation is approximately zero (in fact ⇠ 0.13,

see Lindgren et al. (2011)).

As employed in the modelling framework detailed in this article, one such way of con-

structing a spatio-temporal model is to use an auto-regressive structure in discrete time.

Such a formulation would result in a spatio-temporal version of x(s) given by,

x(s, t) = ⇢x(s, t� 1) + !(s, t)

where |⇢| < 1 controls the temporal auto-correlation, and !(s, t) is spatio-temporal white

noise, independent for each t.

Prior choice

INLA is a tool which facilitates Bayesian inference. As such prior choice is an integral

component in the model fitting procedure. Due to the intricacies of the SPDE model

guidance on prior choice within INLA is still undergoing development (Sørbye and Rue,

2014; Martins et al., 2014; Fuglstad et al., 2015). This section summarises the priors used

for the model discussed in the article.
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Due to the hierarchical nature of the model here we refer to parameters of the random

field as hyperparameters (e.g., the marginal variance �

2,  etc.) and parameters of the

model as simply “parameters” (e.g., the scaling parameters in Equation (2) each �· and �·

etc.).

Each scaling parameter in Equation (2) can be given an independent prior (see section

below for model fitting procedure). The model discussed in this article was specified such

that each scaling parameter was given a N(0,10) prior. That is, a Gaussian distribution of

mean zero and variance 10 was defined as the prior distribution for these parameters.

Penalised complexity (PC) priors introduced by Martins et al. (2014) are implemented

in INLA, and were used in defining priors for the AR(1) temporal parameter and the

hyperparameters of the latent fields. That is, the temporal auto-correlation parameter ⇢,

the marginal standard deviation �, and the spatial range ⌫ were each given PC priors. The

idea of a PC prior is to penalise the complexity resulting from deviating from a simple base

model. A PC prior is defined such that given some (hyper)parameter p, P(p > p0) = �.

This represents the probability that p exceeds p0 being given by �. Here p0 is some upper

limit beyond which p exceeds this value with probability �.

We specified the following PC priors for each of the above mentioned (hyper)parameters:

• ⇢: P (⇢ > 0) = 0.9,

• �: P (� > 1) = 0.5,

• ⌫: P (⌫ > 4.5) = 0.5.

It should be noted that the magnitude of ⌫0 (the upper limit used for the PC prior on the

spatial range hyperparameter ⌫) needs to reflect the spatial resolution of the data. For

the model discussed above the units used for the site locations given as Longitude and

Latitude. Thus, the choice of ⌫0 = 4.5 is reflective of the spatial resolution. Due to the

probabilities having been set to 0.5 in both the latter priors one can think of the values of �0
and ⌫0 reflecting the typical standard deviation and spatial range respectively. Therefore

to “decrease” the spatial effect in the field one could reduce �0 (this corresponds to a lower

marginal variance). Moreover, to “make” the spatial effect smoother one would increase

the values of ⌫0 (this corresponds to a larger distance at which the spatial correlation drops

to zero).
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Model fitting

Functionality to fit the model given by Equation (2) is available to the reader from https:

//github.com/cmjt/lgcpSPDE. The function fit.multi() uses the INLA-SPDE approach

to fit the spatio-temporal model as detailed in the article returning an object of class inla.

Given the GBFS data one need only call this function to fit the model detailed above.

The main arguments of fit.multi() are: locs, the site locations; mesh, the Delauney

triangulation of the area; temp, a vector of temporal indices relating to each multi-species

observation; z.response and y.response are each a list of length three with each element

containing either the binary or density response for each species respectively.

Additional arguments can be given to fit.multi() to change the prior specifications

on any hyperparameters of the model. For example, the argument hyper may be supplied

as a named lists of lists specifying the inter- and intra-species interaction parameter priors

(by default each parameter is given a N(0, 10) prior). The argument control.time can

be supplied to specify the model and prior on the temporal model (by default this is a

AR(1) model with a PC prior P (⇢ > 0) = 0.9)). In line with the PC priors discussed above

for the parameters of the spatial field values for �0 and ⌫0 etc. can be supplied. Other

arguments may be supplied inline with the arguments a generic call to inla to control the

fitting procedure etc.

In addition, the functions geo.joint.fit() and geo.fit() available alongside fit.multi()

facilitate the fitting of a single delta-gamma (or indeed any two likelihood combination)

and a single geostatistical model respectively. In fact the null model mentioned in the

article above was fitted using the geo.fit() function. Details of the required form of

arguments are given in the github repository.

Model construction and the copy parameter

Latent fields of the multi-species model

This section briefly discusses the model construction in terms of the assumed latent fields.

Figure 4 shows both the Bernoulli (top row) and gamma (bottom row) components of

the joint model that relate to house sparrows. From left to right the maps decompose

from the estimated response, on the link scale, to what is essentially spatial white noise.

Each intervening plot shows the linear predictor minus the species specific effect, and then

minus both the species specific effect and he sparrowhawk effect. Finally, the plots on the

rightmost side are the estimated auto-correlation remaining once each species contribution

has been removed (i.e., white noise). Considering these plots from right to left we initially
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see spatial noise, the next plot shows the collared dove effect on house sparrows, the

following shows the combination of the collared dove and sparrowhawk effect on house

sparrows, the final plot (i.e., left had plot) then shows the full house sparrow effect for each

model component.
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Fig. 4: Sequential construction of each model component in 1970: Bernoulli, top row;

gamma, bottom row. From left to right the plots show on the link scale the estimated

spatial dependence: house sparrow model; house sparrow without its species specific effect;

house sparrow without sparrowhawk effect or its species specific effect; and house sparrow

without either sparrowhawk, collared dove, or species specific effect.

Performance of joint-likelihood models

The proposed multi-species model we present in this article can be thought of in terms

of the Bayesian coregionalization model proposed by Schmidt and Gelfand (2003), which

Cameletti et al. (2013) consider a particular version of. The fitting of these models in inla

is discussed in Blangiardo et al. (2013 Chapter 8). Section 3.1 of this article discusses



22 Charlotte M. Jones-Todd*, Ben Swallow*, Janine B. Illian*, and Mike Toms**

some model checking techniques for the multi-species model we propose. This section

demonstrates by simulation the adequacy of fit of a similar type of model. As it would be

too computationally intensive to carry out a full simulation study based on the structure

of the multi-species spatio-temporal BTO data we consider only a spatial joint-likelihood

model and focus on the adequacy of the estimation of the interaction parameter. For a total

of 500 simulations we simulated a bivariate joint-likelihood model, where we had a gamma

and Bernoulli response as if for the housesparrow Equation in Section 2.2, not including

the other species effects. Each response was simulated to had an intercept term, and the

Bernoulli component a ‘copy’ of the random field associated with the gamma component

of the model. Following the notation of Section 2.2 by letting logit(pi) and log(µi) be the

linear predictors for the Bernoulli and gamma components respectively, then formulation

used for the simulation is as follows,

log(µi) = ↵1 + x1(si)

logit(pi) = ↵2 + x2(si) + � x1(si).
(3)

This is akin to the formulation for the housesparrow component of our multi-species

model without any other species effects. We simulated data from this joint-likelihood

model with parameter values ↵1 = 1,↵2 = 1 and � = �0.5. Figure 5 shows the per-

centage differece between the true and estimated values of these parameters based on 500

simulations.
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Fig. 5: Boxplots showing the percentage difference between the true and estimated values

of the parameters ↵1, ↵2, and � from Equation 3 based on 500 simulations.
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