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Abstract  

1. North Atlantic right whales spend their summer months foraging primarily in American and 

Canadian Atlantic waters on high-energy-density prey. Here they rapidly accumulate and 

store energy obtained within a few months to support future migrations and reproduction 

while fasting. High drag from their ram-filter foraging strategy places a limit on what prey 

densities will be energetically efficient to target. 

2. Our understanding of the volume of prey-laden water filtered by right whales during a dive 

or foraging bout, and what information they use to decide to forage or not, has been limited 
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by the difficulties of measuring when they feed at depth, how fast they swim during 

continuous ram filtration, and how often they might swallow accumulated prey. 

3. We used 10 DTAG deployments from right whales in the Bay of Fundy, Canada, to quantify 

swimming speeds and estimate the volume of prey-laden water filtered per dive. We used 

the tag’s inertial sensors to evaluate the timing of frequent biomechanical changes that 

indicate the truncation of continuous filtration, and whether the number or timing of these 

fluking bouts relate to longer feeding dives or other foraging decisions.  

4. During foraging dives, right whales descended at 1.4 (±0.2) m/s and slowed to swim at 1.1 

(±0.3) m/s while filtering. We found consistent pauses in the fluking behaviour of foraging 

right whales, every 56 (±22 SD) seconds. Whales filtered on average 78 (±30) m3 of water per 

fluking bout, and on average filtered 673 (±201) m3 per dive.  

5. Right whales filter large volumes of water at low speeds with a high duty cycle, but require 

sufficiently high prey energy densities to compensate for a high-drag foraging strategy. 

Closely related bowhead whales have a larger gape but swim more slowly, filtering greater 

volumes with lower drag. Our findings highlight that these endangered balaenids acquire 

their energy in a relatively short period of intense foraging; even moderate changes in their 

feeding behaviour or their prey energy density are likely to negatively impact their yearly 

energy budgets and therefore reduce fitness substantially.    

 

Second-Language Abstract 

1. Les baleines noires de l'Atlantique du Nord passent les mois d’été à se nourrir 

principalement de proies à haute densité énergétique dans les eaux américaines et 

canadiennes de l'Atlantique. Dans ces régions, elles accumulent et emmagasinent 

rapidement l'énergie obtenue en quelques mois afin de supporter les migrations futures et 

la reproduction alors qu’elles jeûnent. La forte traînée découlant de leur stratégie de 

recherche de nourriture utilisant une filtration continue impose une limite aux densités de 

proies qu’il leur sera énergétiquement efficace de cibler.  

2. Notre compréhension du volume d'eau chargée de proies filtrées par les baleines noires lors 

d'une plongée ou d’un épisode de recherche de nourriture, et des informations qu'ils 

utilisent pour décider de se nourrir ou non, a été limitée par les difficultés de mesurer le 

moment où elles se nourrissent en profondeur, la vitesse à laquelle elles nagent lors de la 

filtration en continu, et la fréquence à laquelle elles peuvent avaler les proies accumulées.  

3. Nous avons utilisé 10 déploiements de DTAG sur des baleines noires dans la baie de Fundy, 

au Canada, pour quantifier la vitesse de nage et estimer le volume d'eau rempli de proies qui 

est filtré par plongée. Nous avons utilisé les senseurs inertiels des balises pour évaluer le 

moment des fréquents changements biomécaniques indiquant une interruption de la 

filtration en continu, et pour déterminer si le nombre ou le moment de ces efforts de 

propulsion sont liés à des plongées plus longues ou à d’autres décisions alimentaires. 

4. Pendant les plongées de quête alimentaire, les baleines noires sont descendues à 1.4 (±0.2) 

m/s et ont ralenti pour nager à 1.1 (±0.3) m/s en filtrant. Nous avons trouvé des pauses 

régulières à chaque 56 secondes (±22 SD) dans le comportement de propulsion des baleines 
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en quête de nourriture. Les baleines filtraient en moyenne 78 (±30) m3 d’eau par séance de 

propulsion, et en moyenne 673 (±201) m3 par plongée. 

5. Les baleines noires filtrent de grands volumes d'eau à basse vitesse de façon hautement 

récurrente, mais requièrent des proies dont la densité énergétique est suffisamment élevée 

pour compenser une stratégie d'alimentation à forte traînée. De proches voisines comme les 

baleines boréales ont une gueule plus grande mais nagent plus lentement, ce qui leur 

permet de filtrer de plus grands volumes avec moins de trainée. Nos résultats soulignent que 

ces balaenidés en voie de disparition acquièrent leur énergie sur une période relativement 

courte et intense de recherche de nourriture; même des changements modérés dans leur 

comportement alimentaire ou la densité énergétique de leurs proies sont susceptibles 

d'avoir un impact négatif sur leur budget énergétique annuel et donc de réduire 

considérablement leur aptitude à survivre et se reproduire. 

 

Keywords: biomechanics, drag, filter-feeding, foraging, ram filtration, right whale  

 

Introduction 

Endangered North Atlantic right whales (Eubalaena glacialis, hereafter right whales) are 

capital breeders that spend their summer months foraging on planktonic prey, primarily lipid-rich 

copepods (including Calanus spp.) in American and Canadian Atlantic waters. Here, they obtain food 

with high energy density (Michaud & Taggart 2007; Davies et al. 2015), which allows rapid 

accumulation of energy over a short period of time. The energy acquired during a foraging season 

facilitates the growth of dependent calves, the energetic recovery of lactating females (Miller et al. 

2011; Miller et al. 2012; Christiansen et al. 2018), and the storage of energy for future demands. 

Accumulated lipid stores are required to sustain individuals during prolonged fasting migrations, are 

critical for successful calving and nurture (Christiansen et al. 2018), and can buffer against effects 

from human stressors, including unanticipated energetically costly life-history events such as 

entanglement (van der Hoop, Corkeron & Moore 2016).  

The abundance and distribution of prey in right whale foraging habitats is known to vary 

year-to-year and in multi-year regime shifts (Patrician & Kenney 2010; Greene et al. 2013). Prey 

availability has been linked to changes in population health (Rolland et al. 2016), reproduction 

(Hlista et al. 2009; Miller et al. 2011; Meyer-Gutbrod & Greene 2014), and distribution (Davies et al. 

2015), and recent observations suggest that declines in the occurrence of whales in the Bay of Fundy 

since 2010 have coincided with changes in food supply (Davies et al. In Review). Quantification of the 

rates and dynamics of food acquisition in this endangered, capital breeding species is therefore 
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critical to evaluate the energetic consequences of changing habitats and human stressors (Harcourt 

et al. 2019) 

Right whales target prey patches above 103 copepods/m3 (Murison & Gaskin 1989) and up to 

105 copepods/m3 (Mayo & Marx 1990; Baumgartner & Mate 2003; Baumgartner et al. 2017). In the 

Grand Manan Basin in the Bay of Fundy, a right whale Critical Habitat and summer foraging area 

(Brown et al. 2009), individual diving behaviour is strongly correlated with the depth of maximum 

Calanus abundance between 100 and 150 m (Baumgartner & Mate 2003; Baumgartner et al. 2017). 

There, 4 - 8 km patches of copepods with energy densities above 15 J/m3 develop; within the large 

patch, concentration and energy density can vary on scales of 500 m (Michaud & Taggart 2011). To 

target these high densities of small prey, right whales ram filter feed as they propel themselves 

forward with their mouths agape (Watkins & Schevill 1976; Werth 2001; Lambertsen et al. 2005; 

Goldbogen et al. 2016; Potvin & Werth 2017). Through cross-flow filtration, water moves parallel 

along the inner surface of the baleen plates, rather than perpendicular; this concentrates small (1-3 

mm) copepods while slowing the overall flow of prey-laden water through the mouth, to then be 

swallowed (Potvin & Werth 2017).  

Right whales show morphological adaptations to their high-drag foraging mode, with fused 

vertebrae to maintain rigidity when swimming with an open mouth (Sanderson & Wassersug 1993). 

Similarly, one would expect biomechanical adaptations, such as the low-speed, continuous 

swimming adopted by other ram-filter feeders (Sims 2000b; Simon et al. 2009). Simon et al. (2009) 

noted consistent, brief pauses in the swimming behaviour of bowhead whales (Balaena mysticetus), 

and proposed these pauses likely indicate the truncation of a continuous filtration event and the 

processing (swallowing) of accumulated prey. It would therefore be expected that with their shared 

foraging strategy, right whales would show similar biomechanical patterns that may relate to the 

rate of prey acquisition.  

However, we still know very little about how a gigantic filter feeder with one of the highest 

predator-prey size ratios survives on a very specific resource that is constrained in both space and 

time. This lack of understanding primarily stems from the difficulties of measuring when right whales 

feed at depth, how fast they move during continuous ram filtration and how often they might 

swallow accumulated prey. Subsurface behaviour of right whales is difficult to observe, but the 

analysis of high-resolution acoustic bio-logging tag data has provided insights on the fine-scale 

movement and behaviour (Nowacek et al. 2001; van der Hoop et al. 2017), body condition (Nousek-

McGregor et al. 2013), acoustic ecology (Parks et al. 2011) and foraging of right whales (Parks et al. 

2012).  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Here, we harness the rich potential of multisensor biologging DTAGs to quantify swimming 

speeds and test hypotheses related to the detailed foraging behaviour and biomechanics in right 

whales. Specifically, we use 10 DTAG deployments from right whales feeding in the Bay of Fundy, 

Canada, to address the following questions: 1) How fast do right whales filter? Optimal diving 

behaviour would maximize the time spent foraging on high-energy-density prey, while staying within 

oxygen requirements (Thompson & Fedak 2001). This can be accomplished by minimizing the 

proportion of time spent traveling to and from the resource at depth and also recovering at the 

surface, or by reducing oxygen consumption at depth. To reduce the energetic demands of a high-

drag feeding strategy (and therefore increasing time in the prey layer), we hypothesized that right 

whales would adopt a slow filtering speed, similar to bowhead whales. However, given their 

relatively small mouth apertures compared to bowhead whales, do right whales swim and therefore 

filter water faster than bowheads? We investigate how the factors of gape, speed, and foraging time 

affect the volumes of water filtered across different species and groups of ram filter feeders.  

We expected biomechanical adaptations to a high-drag foraging strategy: 2) Do right whales 

show the same characteristic gait patterns as other ram filter feeders during foraging dives? 3) If so, 

are pauses in fluking consistent in their timing (i.e., a biomechanical pattern; intrinsic) or are they 

variable in duration and filtered volume (i.e., related to prey processing/density/patch structure; 

extrinsic)? If biomechanically driven, we would expect low variation in bout duration. If extrinsically 

driven, we would expect fluking bouts to be variable in duration and filtered volume. Further, 4) are 

these diving behaviours and foraging biomechanics linked? We hypothesized that if fluking bout 

duration is inversely related to prey density, and if right whales maximize their diving behaviour to 

forage within high-quality patches, dives with shorter bouts would be longer (i.e., if pauses are 

linked to prey processing, and if that processing is linked to accumulated prey mass, then shorter 

fluking bouts would reflect more dense prey, and longer or more tortuous dives would maximize 

time spent in a high-quality prey patch).  

 

Methods 

We used archival digital acoustic recording tags (DTAGs) to record the acoustic environment 

and locomotor behaviour of right whales in the Bay of Fundy, Canada, in the late-summer foraging 

season, July and August 2001, 2002, and 2005 (Table 1; Nowacek et al. 2001; Nowacek, Johnson & 

Tyack 2004; Parks et al. 2011). The tags recorded sound at 32 kHz (2001 and 2002) and 96 kHz 

(2005). The DTAG includes a pressure sensor and 3-axis accelerometers and magnetometers; sensor 
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data were recorded at 23.5 Hz (2001, 2002) and 50 Hz (2005) and were decimated to ~5 Hz for 

analysis. We used a combination of existing bio-logging tag analysis tools (animaltags.org) and 

additional software, custom written in MATLAB 2015b (Mathworks, Natick, MA, U.S.A.) for all 

analyses.  

DTAGs were initially deployed on right whales in the Bay of Fundy to test for whales’ 

responses to sounds, including vessels and alerting stimuli, following a playback protocol (Nowacek, 

Johnson & Tyack 2004). We made use of this existing tag library and selected deployments where no 

playbacks occurred (tags 01_214a, 01_221a, 02_233a, 05_219a; Table 1). Additionally, we analyzed 

data from deployments where >2 h of data were available 2h after the end of the final sound 

exposure to the animal (Table 1). For one whale, we used the 2h preceding the playback (02_221d). 

We chose a 2h wait from the end of the last playback to be cautious, though exposed whales were 

reported to return to normal activity within minutes (Nowacek, Johnson & Tyack 2004). For 

transparency, we show the full depth record of all deployments and the temporal extent of the 

playbacks in Fig. 3 and S1, and mark the timeframe of our analysis for each deployment.  

 

Table 1. Information on tag deployments, analysed tag data, and tagged whales. Total duration 

refers to the total duration of recorded data, versus the analyzed data that were selected 2h 

following the end of the last acoustic playback to the animal. Acoustic playbacks were either None, 

or were Alarm (A), high-frequency sounds (H), or silence (S), as described in Nowacek, Johnson and 

Tyack (2004). Additional aspects and portions of the dataset are described in (Table 1; Nowacek et 

al. 2001; Nowacek, Johnson & Tyack 2004; Parks et al. 2011). The number of foraging and non-

foraging dives (to > 50 m) reflect only those in the analyzed time periods. EgNO refers to the 

individual identifiers in the New England Aquarium North Atlantic right whale catalog. Length (±95% 

prediction interval) was estimated from age following Moore et al. (2004) or measured by aerial 

photogrammetry (M; W. Perryman Pers Comm), and gape area estimates (±95% prediction interval) 

are described in the manuscript text.  
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Deploymen

t ID 
EgNO 

Acoustic 

Playbac

k 

Total 

Duration 

(h:m) 

Analyzed 

Duration 

(h:m) 

N 

Foragin

g dives 

N Non-

foragin

g dives 

Sex 
Ag

e 

Length 

(m) 

Estimate

d gape 

area (m2) 

01_214a 2790 None 2:26:00 2:26:00 6 0 F >4 
11.9     

(M) 
1.3±0.1 

01_221a 2830 None 1:43:03 1:43:03 8 0 M >3 
12.1     

(M) 
1.4±0.1 

02_233a 1409 None 1:48:00 1:18:54 5 0 M 18 
12.5     

(M) 
1.5±0.1 

05_219a 3108 None 11:32:46 11:32:46 39 1 F 4 12.0±0.2 1.3±0.1 

02_221d 2350 A 7:54:00 2:14:21 7 1 M >11 13.4±0.2 1.8±0.2 

05_210b 3323 A, H, S 10:48:00 8:31:51 8 4 M 2 11.1±0.3 1.0±0.1 

05_215a 2413 A, H, S 13:57:11 11:34:41 22 2 F 11 
12.5     

(M) 
1.5±0.1 

05_224a 3208 A, H, S 8:37:00 5:35:38 12 0 M 3 11.6±0.3 1.2±0.1 

05_226b 3360 H 9:00:00 7:57:22 18 0 F >3 11.6±0.3 1.2±0.1 

05_230a 3142 A, H, S 6:20:26 4:09:34 7 0 F 4 12.0±0.2 1.3±0.1 

 

Balaenid whales show characteristic U-shaped foraging dives and V-shaped non-foraging 

dives (Nowacek et al. 2001; Baumgartner & Mate 2003; Simon et al. 2009). We distinguished 

between U- and V-shaped dives based on bottom phase duration: the bottom phase of dives began 

the first time the pitch angle became positive after the whale left the surface, and ended when the 

pitch was last negative. U-shaped foraging dives had a clear bottom phase with only slightly variable 

depth, whereas V-shaped dives had bottom phases <5 s (Fig. 1). We defined dives as departures 

from the surface >50 m as has been the convention for characterizing diving behaviour of right 
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whales in deep-water foraging habitats (Nowacek et al. 2001; Baumgartner & Mate 2003). There 

were no instances of shallow feeding excluded from the analysis; shallow feeding was not expected 

or observed as most Calanus were in diapause and concentrated at depth (Baumgartner et al. 2003, 

2017; Michaud & Taggart 2007). We checked the sensitivity of the dive depth threshold based on the 

breakpoint in the cumulative distribution function of all dive depths >5 m. Setting the depth 

threshold at 50 m rather than 10 m did not lead to a difference in the number of estimated foraging 

or non-foraging dives: the shallowest foraging dive was 100 m, no matter the threshold used. 

Incomplete dive cycles due to tag release were not included in the analysis.  

 

Speed estimation 

For applications where animal speed is used to test ecological and physiological hypotheses, 

many biologging tags have introduced external sensors to measure passing flow. Many have 

calibrated measured speed with the rotation rate of external impellers (Burgess et al. 1998; 

Blackwell et al. 1999; Watanabe et al. 2012) and micro-turbines (Gabaldon et al. Submitted), as well 

as the amplitude of vibrations as measured by the tag’s accelerometers (Cade et al. 2018). Absolute 

speed estimates are sensitive to stalling at high and low speeds, tag shape and placement on the 

body, orientation with respect to the flow, and calibration technique, as well as to the estimation 

errors in the analytical techniques (e.g. reviewed in Cade et al. 2018). Another method is to use the 

relationship between the amplitude of low-frequency (50-500 Hz) flow noise recorded on the tag’s 

hydrophones, which is approximately cubic with speed (Finger, Abbagnaro & Bauer 1979). This 

method has proven useful in estimating speed by calibrating measured flow noise in situ to the 

vertical speed of a tagged animal when it is oriented at sufficiently high pitch angles (Sato et al. 

2003; Miller et al. 2004; Goldbogen et al. 2006; Simon et al. 2009; von Benda-Beckmann et al. 2016). 

We estimated the vertical swimming speed as the change in depth divided by the sine of the 

pitch angle, when the absolute pitch angle exceeded 30 degrees to ensure reliable speed estimation 

(sensu Simon, Johnson & Madsen 2012). To estimate swimming speed for times when the pitch 

angle was low (e.g. the bottom phase of foraging dives), we used the low-frequency flow noise as 

recorded on each tag as a proxy for speed (following e.g., Burgess et al. 1998; Goldbogen et al. 2008; 

Simon et al. 2009). We computed flow noise as the noise power centered at 500 Hz, band-pass 

filtered with a 2-pole Butterworth filter, and subsequently decimated a resolution of 25 Hz (Simon et 

al. 2009). For each tag and all dives, we then computed the mean noise power in 5 s bins and the 

mean vertical speed in the same 5 s bins. We ignored the first and last 5 seconds of each dive as air 
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bubbles could often be heard escaping the plastic housing of the tag at these times. We obtained a 

flow-noise calibration by fitting a second-order polynomial to the relationship between the 

log10(noise power) and vertical speed (as in Goldbogen et al. 2006; Goldbogen et al. 2008) for each 

deployment, and applied this relationship to estimate speeds from flow noise when the pitch angle 

was low.  

 

Inertial sensor analysis 

We derived pitch, roll, and heading from the accelerometer and magnetometer signals after 

correcting for the orientation of the tags on the whales by rotating each three-element vector 

(Johnson & Tyack 2003; Johnson 2015). We calculated the pitch deviation as the difference between 

the instantaneous and mean body posture orientation (following e.g., Simon, Johnson & Madsen 

2012; van der Hoop et al. 2017). This cyclic pattern in pitch deviation is reflective of fluking 

behaviour as swimming motion is along the pitch axis (Fig. 1). We detected pauses in fluking 

behaviour by detecting instances where the Hilbert-transformed pitch deviation signal was lower 

than its 10% value for that deployment >2 s. This 10% cutoff is similar to the <0.04 radian Hilbert 

transform threshold previously used for glide detection (Woodward 2006; Nousek-McGregor et al. 

2013; van der Hoop et al. 2017) but allows for differences in tag placement between deployments 

which can lead to different measured pitch values. The 2-s detection threshold was set specifically to 

distinguish between pauses in fluking behaviour and prolonged gliding behaviours previously 

described in right whales (Nowacek et al. 2001; Nousek-McGregor 2010; Nousek-McGregor et al. 

2013). Detected pauses were checked for each dive and manually confirmed. We detected pauses 

only during the bottom phase of U-shaped dives and only when body pitch was <30 degrees, i.e., 

when the whale was not orienting upwards or downwards or changing depth (Fig. 1).  

We computed the duration of each bout of active fluking between consecutive pauses. We 

expected that if short bouts (i.e., frequent pauses) indicated higher prey densities, then longer U-

shaped foraging dives would be associated with shorter fluking bouts, to maximize the time at depth 

in a good prey patch; to test this hypothesis we used a linear model for the effect of foraging bout 

duration on dive duration. We calculated the instantaneous fluke stroke rate (Hz) over the 

deployment as the time between successive peaks in the pitch deviation signal. We calculated the 

mean instantaneous fluke stroke rate over (1) the descent, bottom, and ascent portions of each 

dive; and (2) each fluking bout.  
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We constructed dead-reckoned pseudo-tracks of each whale within each dive from the 

accelerometer, magnetometer and depth sensors, and the estimated speed within each dive. We 

used the derived northings and eastings (m) to calculate the tortuosity of the whales’ paths in the 

horizontal plane at 10-s intervals within each dive. The tortuosity metric here was computed as 1 

minus the estimated distance covered/the stretched-out track length over the time interval; the 

index therefore ranges from 0 for straight-line movement to 1 for extreme circular movement 

(Wilson et al. 2007).  

 

Figure 1. Example V-shaped non-foraging (left) and U-shaped foraging (right) dive profiles of North 

Atlantic right whales. Diving depth is coloured by estimated speed (m/s), overlaid with body pitch 

(degrees; black). Pitch deviation (degrees, orange) is plotted above each dive, with triangles 

indicating the start of pauses between fluking bouts detected in the foraging dive. Dive phases of 

descent, bottom and ascent, as determined from the pitch record, are also noted.  

 

Filtered volume estimation  

We obtained the ID number and age at tagging from the North Atlantic Right Whale 

Consortium Catalog (2006). Length measurements from aerial photogrammetry were available for 4 

individuals (W. Perryman Pers. Comm.; Table 1, Fig. 2) and for all other individuals, we estimated 

body length from the length-at-age curve in Moore et al. (2004). Only minimum age was available 

from the catalog for two individuals that were not measured (02_221d, Eg 2350; 05_226b, Eg 3360), 

so we these available ages to obtain conservative length estimates for these individuals. To estimate 

gape, we fit a linear model to aerial photogrammetry measurements of North Atlantic and Southern 

right whale (E. australis) calves and adults (n = 56) from Miller (2005) and Miller et al. (2012) to 

estimate the mouth width (width at 10% of the body length; m) from total body length (m). We 

estimated the length of the longest baleen plate (m) for each individual from body length (m) based 

on values reported for North Pacific (E. japonica, n = 21) and Southern right whales (n = 14; Fig. S2; 
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Omura et al. 1969; Best & Schell 1996). We were unable to find similar measurements for North 

Atlantic right whales in the literature or in the North Atlantic Right Whale Consortium Necropsy 

Database. Following previous work (Watkins & Schevill 1976; Kenney et al. 1986), we estimated the 

gape area as the (mouth width x longest baleen plate length)/2 (Figs. 2, S2), and propagated errors 

from the age-length, length-width and length-baleen length estimates. The volumetric filtration rate 

was estimated by integrating the estimated swimming speed (m/s) and the estimated gape of each 

tagged whale (m2) over bout durations and dive durations (sensu Simon et al., 2009).  

We used a linear model to assess the effect of estimated swimming speed, gape area, and 

bottom time on the total volume filtered per dive. We used linear models to test whether the 

proportion of time spent foraging per dive differed with dive depth, with the expectation that if dive 

duration was aerobically limited, then deeper dives would have significantly shorter bottom times 

due to transit to and from the foraging depth. We computed these statistics for foraging dives only. 

 

 

 

Figure 2. Estimated gape area (m2, purple), head width (m, blue) and baleen length (m, orange) with 

body length (m) and age of North Atlantic right whales. Dotted lines represent 95% CI. Circles 

represent estimated gape for individuals with measured (open) and estimated (closed) body lengths 

in this study. Baleen lengths are from North Pacific (Omura et al. 1969) and Southern right whales 

(Best & Schell 1996), head width from Miller (2005) and Miller et al. (2012), and length-at-age curve 

for North Atlantic right whales from Moore et al. (2004).  
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Results 

For 10 whales tagged for longer than 74:06 h:m, we analyzed a total of 57:04 h:m of tag data 

(range 1:18-11:34 h:m per whale; Table 1, Fig. 3) during which individuals completed a total of 140 

dives >50 m. Of these, 132 were categorized as U-shaped (foraging) dives and 8 as V-shaped (non-

foraging) dives. The mean depth of U-shaped foraging dives was 138 (±25) m, and the shallowest 

foraging dive was 89 m (tag 02_221d; Table 1). The mean depth of V-shaped dives was 124 (±25) m. 

For the 10 tag records, the R2 for the flow-speed correlations averaged 0.76 (±SD 0.19), with 

an RMSE of 0.13 m/s (±0.05; Fig. 3). For U-shaped foraging dives, right whales descended at mean 

(±SD) pitch angles of -58 (±9) degrees, at speeds of on average 1.4 (±0.2) m/s with fluke stroke rates 

of 0.07 (±0.04) Hz (Fig. 1). Ascents were similar, with mean pitch angles of 54 (±10) degrees and 

speeds of 1.5 (±0.2) m/s, with fluke stroke rates of 0.14 (±0.02) Hz. At the bottom of U-shaped 

foraging dives, right whales on average slowed to 1.1 (±0.3) m/s while actively swimming with fluke 

stroke rates of 0.16 (±0.2) Hz. In contrast, during V-shaped dives, pitch angles on descent and ascent 

were -5 (±5) and 23 (±14) degrees, respectively, at speeds of 1.5 (±0.2) and 1.3 (±0.2) m/s.  

 

  

Figure 3. The relationship between flow noise and vertical speed on ascents (blue) and descents (orange) >±30 

degrees body pitch. Black line is the fitted relationship with dashed lines as prediction intervals.  

 

We detected pauses in consistent fluking behaviour at the bottom of foraging dives, every 

56 (±22 SD) seconds (Fig. 1, 4B). The median duration of these pauses was 3.5 s. These pauses did 

not appear to be a consequence orientation in a different axis: within 20 seconds preceding and 
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following a pause in continuous fluking, rolls were occasional, and heading was often continuously 

changing; the change in depth ranged ±10 m (Fig. S3). We hypothesized that if bout duration was 

inversely related to prey density, and if right whales maximized their diving behaviour to forage 

within high-quality patches, dives with shorter bouts would be longer. We found no relationship 

between dive duration and the duration of fluking bouts within each dive (R2 = 0.001; Fig. 4B). The 

number of fluking bouts increased with dive duration, as expected as both are related to time; 

however, the number of bouts within a dive ranged from 0-14 (mean 8.2±3.1). During these bouts, 

estimated swimming speed was 1.1 (±0.3) m/s.   

 

 

 

 

Figure 4. A: The total volume of water filtered per dive (m3, circles), coloured to match each dive 

profile for a representative North Atlantic right whale (05_215a). The grey line shows the rate at 

which the volume is filtered (i.e., the filtration rate through time for each dive). Small points along 

the grey line note the timing of pauses in fluking. B: The mean (error bar SD) duration of fluking 

bouts (sec) during each dive versus the duration of those dives (sec). The coloured circles match the 

same dives in panel A. Grey points are data for the other tag. C: Estimated filtration rate (m3/h) 

calculated during the bottom phase, per entire dive cycle, and throughout the tag deployment; 
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colours represent different individuals. D: The estimated total volume of water filtered (m3) 

compared to the maximum depth of each foraging (red) and non-foraging dive (black; m).  

 

Whales filtered on average 78 (±30) m3 of water per fluking bout, but fluking bouts did not 

end after a fixed volume of water had been filtered (range 10 – 328 m3). Per dive, whales filtered a 

mean of 673 (±201) m3 of water total (Fig. 4A), and dives were not terminated at a fixed volume of 

water filtered per dive (Figures 4A, 5, 6). At the bottom of foraging dives, the mean filtration rate 

was 1.4 (±0.3) m3/s; however, including transit time, mean filtration rates per complete foraging dive 

were 0.9 (±0.2) m3/s, or 3210 (±870) m3/h. The total volume filtered over the course of a tag 

deployment varied from 342 m3/h (01_214a) to 3315 m3/h (05_219a), primarily driven by activity 

budgets, as whales exhibit other (e.g. non-foraging) behaviours (Fig 4C).  

In foraging dives, whales descended to the foraging depth within the first 17 (±5)% of the 

dive duration (2.0 ±0.4 min) and foraged until 85 (±5)% of the dive duration (10.9 ±1.5 min) before 

ascending (Fig. 5C). We detected a significant relationship between dive depth and the proportional 

time of onset of foraging (F1,129 = 5.71, pslope = 0.0184), but the effect size was 3 (±3)%; this means the 

onset of foraging varied from 14% (SE 13-17%) into the dive cycle for a 82-m dive compared to 19% 

(SE 17-20%) for a 177-m dive. Further, depth of dive explained little to no variance in the 

proportional time to onset of feeding (R2 = 0.035). Similarly, the proportional time of the end of 

foraging decreased significantly with depth (F1,129 = 16.9, pslope < 0.0001), with a similarly small effect 

size of -6 (±3%) and R2 = 0.119 (Fig. 5C). The total proportion of the dive spent foraging decreased 

with depth by a total of 10% (73% to 63%) across the range of dive depths (82-177 m; R2 = 0.088). 

There was no significant relationship between the depth of each dive and the total volume filtered 

(R2 = 0.001, F1,115 = 0.212, p = 0.884; Fig. 4D). Even in the shortest dives with <5 min and <50% of 

bottom time (Figures 4A, 5 B, C), whales performed fluking bouts.   
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Figure 5. Total volume of water filtered per dive (m3) versus dive duration (min; A) and bottom 

foraging duration (min; B) for 10 North Atlantic right whales. The vertical bars in C show the 

proportional time of onset of foraging to the end of foraging, at the foraging depth of each dive; 

circles represent the total proportion of each dive spent foraging. In all panels, colours indicate the 

gape area size (m2) of different whales.   

 

Three variables contribute to the total filtered volume per dive: swimming speed (estimated 

from flow noise), gape (estimated from age and morphometrics) and time per dive spent foraging 

(bottom time, estimated from tag data). We used a linear model to assess the effect of each of these 

variables on the total volume filtered per dive. The three factors explained 89.5% of the variability in 

filtered volume (F3,126 = 357, p < 0.0001). The dive bottom time had the greatest effect size (875±71 

m3), followed by swimming speed (704±53 m3). Gape had the lowest effect size of 349±67 m3 across 

the range of 1-1.8 m2.  
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Figure 6. The estimated bottom speed (m/s; ± prediction error in grey), gape area (m2) and bottom 

time (sec) of the dives of 10 North Atlantic right whales, coloured by the estimated total volume of 

water filtered (m3) per dive. The 2D projections are shown in grey circles; gape is jittered randomly 

up to 0.05 m2 to see overlapping points. 

 

Based on the dead-reckoned tracks of individuals, whales exhibited a variety of subsurface 

foraging behaviours (Fig. 7). The tortuosity of horizontal movement within dives was on average 

0.022 (±0.025), up to 0.117 and varied even between sequential dives (Fig. 7). We expected 

tortuosity to reflect animals ‘working a patch’, maintaining residence in an area, and therefore 

hypothesized that dives with higher filtered volumes, or more or shorter fluking bouts, would have 

more tortuous paths. We found no relationship between the total volume filtered per dive and the 

mean tortuosity within that dive (F1,128 = 0.793, p = 0.375, R2 = -0.002) nor the bout duration (inter-

pause interval) and the tortuosity of the dive (F1,128 = 0.003, p = 0.958).    

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

Figure 7. Subsurface foraging behaviour (pseudo-tracks) of four sequential dives (A, B, C, and D) of 

one example North Atlantic right whale (05_215a) foraging in the Bay of Fundy, Canada. The 

estimated volume of water filtered per dive is printed on each panel. Filled black triangles indicate 

position of dive initiation (downwards-facing) and surfacing (upwards-facing); white triangles at 

depth indicate pauses in fluking behaviour. The colour along the track indicates estimated swimming 

speed.  

 

Discussion 

Balaenid whales acquire their food in a short period in the spring and summer, putting a 

premium on understanding where, how and how much prey-laden water these ram filter feeders 

process to fuel their capital-breeding lifestyle. We employed pressure, inertial, and acoustic sensors 

on bio-logging tags to estimate the filtration rates of right whales and the biomechanics relevant to 

their foraging behaviours: 1) How fast do right whales filter? 2) Do right whales show the same 

characteristic gait patterns as other ram filter feeders during foraging dives? 3) If so, are pauses in 

fluking a biomechanical pattern or related to prey processing/density/patch structure?  

We found that right whales made repeated foraging dives to depths where they slowed to 

1.1 (±0.3) m/s, or 0.09 (±0.03) body lengths/s. At depth, they carried out a repetitive gait with short, 

~2 second pauses between bouts of higher frequency fluking behaviour. We suggest that, similar to 

observations in bowhead whales, right whales swim at consistently low speeds when foraging to 
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reduce the drag of their open mouths. However, right whales only slow down by 26% (compared to 

40% for bowhead whales; Simon et al. 2009), likely due to the smaller cross-sectional mouth area 

per body size; the faster swimming speed of right whales provides a higher filtration rate, but only 

partially compensates for the smaller mouth area. To acquire similar prey resources as bowheads, 

right whales must feed on higher density prey aggregations, on prey with higher energy density, and 

(or) for longer periods of time.  

Based on in-situ speed estimates, measured diving behaviour and individual-specific gape 

measurements, the right whales in this study filtered on average 3211 (±874) m3 of water per hour 

during complete foraging dives (i.e., a round-trip from the surface, including time of descent and 

ascent). Over the course of deployments, filtration rates varied from 342 m3/h to >3300 m3/h 

depending on individual behaviour and size. During active foraging at the bottom of U-shaped dives, 

the whales filtered 4520 (±1230) m3/h, which is ~30% lower than the estimates of 6250 m3/h by 

Kenney et al. (1986) and 6534 m3/h by Baumgartner and Mate (2003). This difference is primarily 

due to explicitly including variation in mouth gape with age (determined from body size and baleen 

length, Fig. 2), as well as in situ estimates of swimming speed as these individuals forage at depth 

with their mouths agape (Fig. 1).  

Previous models of foraging in right whales assume a constant mouth area of 1-1.2 m2 and 

speeds of 1.5 m/s (Kenney et al. 1986; Baumgartner & Mate 2003), whereas our gape estimates 

account for changes with age for the first time (1-2 m2, a doubling over the lifespan). Not including 

this variation would lead to considerable underestimates of the volumes filtered and subsequent 

prey consumed by adult right whales. This study included many sub-adult individuals, aged 2-4 years, 

with estimated gape areas of 1.1-1.3 m2 (Table 1). The difference in estimated filtered volumes for 

these animals, using age-specific gape versus a constant gape of 1.2 m2 (Kenney et al. 1986; 

Baumgartner & Mate 2003), is negligible at ~4%. However, the underestimate of filtered volume is 

considerable in older and larger individuals with estimated gape areas of up to 1.8 m2 (Fig. 2). We 

estimated a gape of 1.8 m2 for an >11-year old male (02_221d) in this study. This individual filtered 

an average of 760 (±400) m3 of water per dive. Per-dive volume estimates would have been 530 

(±270) m3, 230 m3 or 30% less than if we had assumed a non-age adjusted gape of 1.2 m2.  

Second, previous studies used higher fixed values for swimming speed, or at least minimum 

swimming speeds of 1.5 m/s (Watkins & Schevill 1976; Watkins & Schevill 1979; Kenney et al. 1986; 

Baumgartner & Mate 2003). We estimated swimming speeds of 1.1 (±0.3) m/s for whales when 

foraging. Though this difference may seem minimal, it translates to considerable differences in 

volume filtered: an 8-m whale with a gape of 1.6 m2 would filter 8640 m3/h swimming at 1.5 m/s, 
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compared to 5760 m3/h (33% less) swimming at 1.0 m/s. Considering the error in our speed 

estimation (mean RMSE = 0.13 m/s), filtered volume estimates are likely within ±10%, still less than 

the difference between assuming a constant speed versus an estimate from flow noise. Speed 

estimates from flow noise do have a low-speed limitation because 1) flow noise must be higher than 

background noise and self-noise of the recorder so will be more challenging to detect at slow 

speeds, 2) the regression relationships induce errors at either end of the measured speeds (Figure 3; 

Burgess et al. 1998; Blackwell et al. 1999; von Benda-Beckmann et al. 2016; Cade et al. 2018). We 

measured vertical speeds in the range of 0.4-3.5 m/s (Fig. 3). Though there are limitations in the 

flow-noise approach, they provide estimates of variation in swimming speed critical to addressing 

our main hypotheses. Including morphological variation and tag-derived estimates of swimming 

speed through water with the time spent foraging during the bottom phase of U-shaped dives 

refined the estimates of filtration and therefore hourly prey ingestion during foraging with variable 

behaviour over the course of a day.  

We found a marked stereotypy in the diving behaviour of right whales in deep-water 

foraging habitats: individuals performed repeated foraging dives to consistent depth and duration 

for periods of >10 hours (34 dives, Fig. 3). Right whales are able to rapidly descend to foraging depth 

at high pitch angles, and similarly return to the surface quickly after foraging, optimizing their time 

at depth (Nowacek et al. 2001; Baumgartner & Mate 2003). We hypothesized that if whales were 

consistently diving to their aerobic dive limit, they would have filtered lower total volumes of water 

in deeper dives, due to the time required to transit to the foraging patch (Thompson & Fedak 2001). 

However, the lack of a significant effect of dive depth on the total volume filtered per dive and the 

low explanatory power of depth on foraging duration emphasizes that by completing many shorter, 

aerobic dives with steep ascents and descents and short surface intervals right whales maximize the 

time spent foraging in a consistent prey patch, regardless of its depth (Baumgartner et al. 2017). 

While individuals are able to optimize their time foraging in high-density prey layers, they apparently 

will also go without foraging for extended periods of time (2+ hours; Fig. S1) in this otherwise rich 

environment. Understanding why individuals do or do not forage should be explored with future 

prey-density measurements simultaneous with tag deployments (Baumgartner & Mate 2003; Parks 

et al. 2012); this may improve our understanding the effects of physiological mechanisms such as 

digestion and prey processing that may  limit the duration of productive foraging bouts (Horning 

2012).  
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Previous descriptions of right whale diving behaviour in deep-water foraging habitats 

categorized three types of dives based on k-means clustering: foraging dives, V-shaped dives and 

‘other’ or ‘Type 2’ dives (Baumgartner & Mate 2003; Nousek-McGregor 2010). These ‘Type 2’ dives 

are often to depths just above of the bottom mixed layer and even to the seafloor (Baumgartner & 

Mate 2003). These dives have previously been described as intermediate between foraging and V-

shaped dives: they do not maximize the time spent at depth, with longer ascents compared to 

typical foraging dives (Baumgartner & Mate 2003; Nousek-McGregor 2010). However, the reduction 

in speed in the clear bottom phase of these dives is consistent with foraging (Nousek-McGregor 

2010). In this analysis, we separated deep dives into foraging and non-foraging categories based only 

on a clear bottom phase and found that shorter dives with a lower proportion of time spent on the 

bottom (fitting the description of ‘Type 2’ dives) do show clear fluking bouts at low speeds (Figures 

4A; 5 B,C). The ‘Type 2’ or ‘other’ dives therefore may be those where foraging was terminated, 

perhaps due to inadequate prey densities (Thompson & Fedak 2001; Stephens 2008; Hazen, 

Friedlaender & Goldbogen 2015). The deep non-foraging dives may serve to locate and/or judge 

prey patches. The diverse suite of sensors in these DTAGs is therefore useful to further elucidate 

behaviours previously inferred from time-depth recorders, without inertial sensors. 

Presenting dive behaviour through time can be misunderstood to suggest that a submerged 

animal’s path is straight in the horizontal dimension. The incorporation of inertial sensors in tags 

enables the estimation of a dead-reckoned track, though these are also imperfect due to additive 

error in the sensors and ignorance to external forces, e.g., currents (Johnson & Tyack 2003; Schmidt 

et al. 2007; Shiomi et al. 2010; Liu et al. 2015). Irrespective of these errors, pseudo-tracks do, 

however, capture the qualitative nature of animal movement and can be useful in inferring how 

animals move, rather than where they go; for our purpose, these tracks illustrate the degree to 

which right whales move horizontally within dives (Fig. 7). The variation in the horizontal movement 

patterns of whales foraging at depth (Fig. 7) as well as small-scale changes in the vertical dimension 

between dives (Fig. S3) further suggest that right whales are capable of detecting fine-scale 

variations in prey density and adjusting their foraging behaviour accordingly (Mayo & Marx 1990; 

Mayo & Goldman 1992; Kenney, Mayo & Winn 2001; Baumgartner et al. 2017). Simultaneous 

measurements of the vertical distribution of prey and right whale diving behaviour made in foraging 

habitats have shown how right whales are able to repeatedly target the depth of maximum copepod 

concentrations (Baumgartner & Mate 2003; Parks et al. 2012). By making fine-scale adjustments in 

the vertical dimension (~20 cm), right whales can increase energy intake by as much as 20% (Mayo & 

Goldman 1992). In the horizontal plane, copepod energy density can vary by a factor of 3.5 over a 

horizontal distance of 2 km in the Bay of Fundy (Michaud & Taggart 2011), and high energy (10-30 
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kJ/m3) patches ~1km in length and 1-10 m thick can form in similar deep-water foraging habitats of 

right whales (Davies, Taggart & Smedbol 2014); variations in C5 concentration, lipid content and 

energy density are considerable at horizontal scales of 500 m (Michaud & Taggart 2011). Further 

study to map the fine-scale horizontal distribution of copepod layers, and their nutritional value, 

especially relative to surface-corrected 3-D movements of foraging whales could further elucidate 

how right whales exploit and detect patches of different energy densities and dimensions.  

The bowhead whale is a closely related balaenid species with similar foraging ecology and 

behaviour to right whales; both target calanoid copepod prey by continuous ram filtration (Laidre, 

Heide-Jørgensen & Nielsen 2007; Pomerleau et al. 2011; Walkusz et al. 2012). Bowhead and right 

whales share similar morphology (Figures 8, 9) but differ considerably in the magnitude of their gape 

area, as well as their baleen areas, widths and lengths for a similar body size (Omura et al. 1969; 

Werth 2004; Lambertsen et al. 2005; George et al. 2016; Werth et al. 2018). We have shown that 

right whales slow to 1.1 (±0.3) m/s during presumed foraging bouts, faster than the estimate by 

Simon et al. (2009) of 0.7 (±0.1) m/s for foraging bowhead whales. The slow foraging speed of 

balaenids has been linked to their ram-filtering strategy that incurs high drag, the level of which is a 

function of the frontal area of the whale, i.e., its gape and the square of the forward speed. The 

estimated gape sizes for right whales in this study were 1.1-1.8 m2; a 12-m right whale would have a 

gape of 1.3 m2, compared to the 4.2 m2 gape of a 12-m adult bowhead (Werth 2004; Simon et al. 

2009). Due to their smaller gape per body size compared to bowheads (Fig. 8B), right whales have a 

lower frontal area and therefore can forage at higher swimming speeds while likely incurring similar 

levels of drag and energetic cost as bowheads. Within the tagged right whales in our study, this is 

illustrated in the inverse relationship between gape and foraging speed (Fig. 6 projected on bottom). 

However, foraging at higher speeds only partially compensates for a smaller gape and still does not 

achieve the same filtration rate.  

Drag increases linearly with area, but with the square of velocity (Vogel 1994). While the 

baleen area primarily affects drag forces and the outflow speed after water is filtered through the 

baleen (Werth & Potvin 2016; Potvin & Werth 2017; Werth et al. 2018), the mouth opening area 

affects the inflow volume of prey-laden water. The tradeoffs in the relationship between mouth 

friction drag, area, and speed have been illustrated by Potvin et al. (2017); we present the estimated 

open-mouth friction drag relative to bowhead whales (i.e. scaled by gape area) and put these values 

in context with their resulting filtration rates (Fig. 8A). When foraging at higher speeds, right whales 

incur similar drag forces to bowhead whales, due to their smaller gape area; however, even at these 

speeds their filtration rate remains lower. At 1.1 m/s, an 11-m right whale filters at a rate of 1.1 
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m3/s; a bowhead of the same length with a gape of 4.2 m2 filters nearly 3 m3/s of water at its 

preferred speed (Fig. 8). That same right whale, with a gape of 1 m2, would achieve a filtration rate 

of 3 m3/s only by swimming at 3 m/s, where its drag force would be roughly 4x greater than the 

bowhead filtering at the same rate swimming at 0.7 m/s. A larger (14 m) right whale with a gape of 2 

m2 could filter 3 m3/s swimming at 1.5 m/s, but would incur twice the drag cost doing so. While the 

filtration of ram feeding vs. intermittent lunge/suction feeding has been often contrasted in 

cetaceans (Goldbogen et al. 2016; Werth et al. 2018), there has been little discussion of the drag and 

size tradeoffs in filtration efficiency within balaenids.  

 

Figure 8. A: Filtration rates (dashed lines) and relative mouth friction drag (solid lines, relative to 

bowhead) across swimming speeds for a 12-m bowhead whale with an estimated gape area of 4.2 

m2 and two right whales (body lengths 11 m and 14 m) with gape areas of 1 m2 and 2 m2. Average 

speeds of filtering bowhead (Simon et al., 2009) and right whales (this study) are marked with 

arrows. B: Length-specific filtration rate of bowheads (black triangles; Simon et al., 2009) and right 

whales (coloured triangles; this study) and length-specific gape of bowhead (blue dot-dash; data 

from Werth 2004) and right (blue dash) whales. Error bars are ±1SD. 

 

With a smaller gape than bowhead whales, and with greater drag-induced costs and 

pressures, right whales have been predicted to target higher densities of prey when foraging. Prey-

field sampling in areas around right whales when foraging or not have suggested density thresholds 

of 800-1000 copepods/m3, below which right whales will stop feeding (Murison & Gaskin 1989; 

Mayo & Marx 1990; Beardsley et al. 1996). At those thresholds, right whales in this study, which 

filtered 1.4 m3/s at the bottom of foraging dives, would be concentrating >60,000 copepods per 

minute in their mouths. In situ measurements of the prey field in the vicinity of whales tagged with 

time-depth recorders suggest that right whales target prey patches of 103-105 copepods/m3 

(Baumgartner & Mate 2003). By selectively targeting high-density prey patches, right whales are 
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likely able to obtain sufficient energy to offset their high-drag foraging strategy. There are few 

estimates of prey densities selected by foraging bowhead whales, especially around tagged 

individuals. Laidre, Heide-Jørgensen and Nielsen (2007) report densities of 1 g/m3 in surface waters 

but do not provide densities at depths where bowhead whales spend the majority of their time 

feeding (Simon et al. 2009). Such densities appear low; even assuming prey densities around 

bowhead whales are an order of magnitude higher (10 g/m3), right whale energy acquisition 

considerably outpaces that of bowheads.  

If right whales waited until the end of a dive to process or swallow prey, a massive 

accumulation of material would occur in the mouth (Werth 2001; Werth et al. 2018). We estimated 

that right whales filtered 670 m3 of water per foraging dive (mean body length = 12.1±0.6 m). Even 

assuming the lowest threshold of copepod density measured in the Bay of Fundy (800 copepods/m3; 

Murison & Gaskin 1989), and with a capture efficiency of 95% (Mayo, Letcher & Scott 2001), a 12-m 

right whale would accumulate 5x105 copepods in their mouth by the end of a dive (1.7 MJ based on 

the lower individual energy content of 3.4 J; Michaud & Taggart 2007). At the highest measured 

copepod densities of 15000 copepods/m3 (Baumgartner & Mate 2003), this would translate to as 

many as 9 million copepods per dive (18-36 L, 45 MJ based on the upper individual energy content of 

5 J; Michaud & Taggart 2007). Such high maximum feeding rates highlight why right whales may be 

able to acquire a large proportion of their total annual energy intake in the months when copepods 

are at their highest energy densities and when and where they maximally aggregate. It also 

highlights that taking brief pauses from foraging to swallow prey throughout the dive is therefore 

likely to be necessary.  

Simon et al. (2009) reported a characteristic swimming gait in bowhead whales, where 

periods of high-amplitude and high-frequency (0.12 Hz) fluking were interrupted by consistent 

pauses, half a fluke stroke in duration, occurring every 2.4 minutes, or ~480 m3 of water filtered. 

They suggested these pauses may be related to prey handling and that the consistency of the 

behaviour may be due to exploitation of continuous prey patches. In balaenids, the prey slurry likely 

accumulates in the postlingual recess just before the esophagus, prior to swallowing (Lambertsen et 

al. 2005). If pauses in fluking are linked to prey processing, and if that processing is linked to 

accumulated prey mass (i.e. if it is limited by pharynx/esophagus size, 3-10 cm; Albert 1981; Lowry & 

Frost 1984), then the timing of the pauses should be a function of swimming speed and prey density. 

We detected similar pauses, ~3 sec long, between ~50 second bouts of fluking behaviour. We found 

that the timing of pauses did not occur at completely fixed time intervals (SD 22 s) or after specific 

volumes of water were filtered (SD 30 m3), which is consistent with the alternative hypothesis that 
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the rate of prey acquisition or bolus formation may instead be the driver of these intervals. These 

pauses lasted less than half a full fluke stroke cycle (~6.25 sec) and therefore differ from prolonged 

glides (>5 sec) employed in burst-and-coast swimming (Weihs 1974; Videler & Weihs 1982; Williams 

1999). These pauses are also consistent with observations of right whales ‘nodding’ at the surface 

while skim feeding (Mayo & Marx 1990). Further, the more frequent timing of these pauses in right 

whales compared to bowheads is consistent with filtering much more dense concentrations of prey, 

in concert with the morphological differences described above.  

After obtaining prey via an efficient cross-flow filtration system (Sanderson et al. 2016; 

Potvin & Werth 2017), accumulated prey must be swallowed; pausing filtration to swallow has been 

observed in other ram-filter feeders ranging in size from basking and whale sharks (Fig. 9; Sims 

2000b; Nelson & Eckert 2007; Motta et al. 2010) to paddlefish (Sanderson, Cech & Cheer 1994) and 

herring, shad, sardines, menhaden, and alewife (Sanderson & Wassersug 1990). Hallacher (1977) 

and later Sims (2000) noted pauses in the open-mouth feeding behaviours of basking sharks, with ~3 

s interruptions to swallow prey. The rates of prey-handling pauses may therefore be additional 

density-mediated foraging behaviours (Hallacher 1977; Runge, Pepin & Silvert 1987). The differences 

in gape areas, body size, filtration rate, and prey density between balaenids and large fishes (Fig. 9) 

illustrate how continuous ram filtration in large fishes is much less efficient per unit time, though 

they often forage on similar prey species. Basking sharks often forage on calanoid copepods though 

in different habitats they will forage on larger zooplankton prey (Baduini 1995; Sims & Merrett 1997; 

Sims 2008). The much longer feeding season and an order of magnitude lower metabolic rate in 

large ram-filter-feeding fish (Sims 2000a; Motta et al. 2010; Watanabe et al. 2015) likely allows for 

much lower acquisition rates. Additionally, fish are able to forage continuously, as they do not have 

the same time restriction of returning to the surface to breathe as whales do; the oxygen demands 

of filter-feeding fish are met within the medium and by the same water flow through the gills as is 

used to filter prey (Sanderson, Cech & Cheer 1994; Sanderson et al. 2001; Sims 2008). Still, ram-

feeding fish show evidence for threshold feeding behaviours, leaving patches when prey densities 

are <0.5-0.7 g/m3 (Sims 1999). Specific models to incorporate metabolic rate and oxygen demand 

versus drag, speed, and filter area of ram-filter feeding marine animals may elucidate how different 

species and groups address these tradeoffs in morphology, movement, and energetics.  
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Figure 9. Comparative morphometrics, swimming speed during filtering, filtration rate, prey 

concentration and inter-pause interval for four species of large ram-filter feeders. The four buccal 

cavity outlines shown are colour-coded: white represents baleen or gill racks, grey the tongue 

(mysticetes), black and dark grey for the overall shape of the head.   

  

Some of the parameters used to estimate filtration rates of swimming animals could 

incorporate improved measures in future studies. For example, changes in mouth aperture or gape 

are hard to measure, especially at depth. At the surface, aerial footage from surface-feeding whales 

may be useful to quantify rates of mouth closure or small changes in gape or mouth position through 

time, but how these movements translate from surface-feeding to depth would be unknown. Use of 

sensors on tags to measure gape would help refine these estimates (Liebsch et al. 2007; Robson et 

al. 2009). Prey density and energy content are important to inform the optimal filtering speed for 

trade-offs between energy expenditure and acquisition. Attempts to co-locate zooplankton sampling 

with time-depth recorders have led to estimates of energy acquisition (Baumgartner & Mate 2003), 

but there is always some degree of spatial and temporal decoupling that may lead to substantial 

errors in these estimates. In-situ prey-field measurements from onboard sonar tags would address 

many of the temporal and spatial decoupling problems between tag data and ship-based 

echosounders (Lawson et al. 2015; Goulet et al. In Press). These, in concert with the speed estimates 
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and biomechanics, could help elucidate individual foraging decisions, fluking behaviours and how 

they directly relate to measured prey densities.  

Short-duration, minimally invasive acoustic bio-logging tags provide short glimpses into the 

foraging behaviours of right whales at depth. These technologies can be combined with repeated 

aerial photogrammetry or photographs over time to estimate changes in body shape and condition 

(Pettis et al. 2004; Miller et al. 2011; Nousek-McGregor et al. 2013; Pettis et al. 2017), as well as over 

what time periods and in what areas right whales may be obtaining sufficient energy resources. With 

the recent observed changes in distribution, body condition, and prey availability (Angell et al. 2004; 

Greene et al. 2013; Meyer-Gutbrod & Greene 2014; Davis et al. 2017), it is critical to further 

understand the energetic tradeoffs between filtration and acquisition in right whales. If prey 

densities or energy content decrease (DFO 2018), the energy gained per energetic cost incurred will 

not balance and could result in an energy deficit and poor body condition (Fortune et al. 2013). 

Comparative studies that integrate prey measurements, filtration and biomechanics could further 

quantify how foraging in different habitats directly contributes to individual health, nutritive status, 

and the fitness necessary for the survival and recovery of the species.  
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