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Abstract�This paper reports the �rst ever transmission mea-
surements for a wide choice of different indoor materials such
as wood, plastic, paper, brick, glass and leather at frequencies
from 750 GHz to 1.1 THz using up-conversion (frequency-
domain) method employing Swissto12 system. This commercially
available system consists of three parts, namely, vector network
analyzer (VNA), the material characterization kit (MCK), and
two waveguide extenders which measure the S-parameters in
the frequency range of interest to derive the complex dielectric
properties of material samples using stepwise Nicolson-Ross-Weir
(NRW) method. These frequency dependent material parameters
such as permittivity, refractive index and absorption coefficient
are mandatory to analyze and model the wave propagation
thoroughly for the aforementioned unexplored frequencies along
with the ability to classify and localize these different materials
precisely. Until previously, only THz time-domain spectroscopy
(THz TDS) system based on down-conversion (time-domain)
method is employed to measure the spectroscopic responses for
this cause.

Keywords�Terahertz, Terahertz channel modeling, Vector Net-
work Analyzer, Material Characterization.

I. INTRODUCTION

During the last decade, terahertz (THz) frequency region,
0.3-1 THz, has been massively studied and is expected to be
one of the possible resources to be exploited for future wireless
communication networks beyond 5G. Wireless transmission
over this band will offer several advantages such as terabit-per-
second (Tbps) channel capacities, and small size transceivers
[1]. However, this technology needs to address a couple of
challenges in order to reach outstanding performances. In
fact, THz application extends to security, medical, biology,
aerospace technology, and nondestructive evaluations of mate-
rials used in airplanes, such as foams, plastic, and �berglass
composites [2]. Therefore, material dielectric properties' char-
acterization at these frequencies is of paramount importance.
It should be accomplished with high precision through appro-
priate measurement and extraction techniques. While material
characterization is extensively investigated at low frequencies,
published information is still scares for applications within
the THz frequency spectrum region. In fact, the main tech-
niques for characterizing dielectrics are namely, time-domain
spectroscopy (frequency down-conversion) and measurements
using a vector network analyzer (frequency up-conversion)
[3]. The selection of the most suitable measurement method
depends on some parameters such as the material phase,
temperature and frequency range [4]. In [5] the measured

complex dielectric and magnetic properties of liquid and solid
biological tissues removed from human arteries at the frequen-
cy range from 110 to 170 GHz are presented. The evaluation
of the dielectric properties is performed using the Nicholson-
Ross-Weir (NRW) conversion process. In [6], an extensive
calculation analysis of substrate permittivity, characteristic
impedance, total loss, and dielectric loss tangent is presented
for up to 500 GHz frequency range. In [7], the characterization
of the dielectric properties of a variety of common building and
plastic materials between 100 and 1000 GHz using THz TDS
transmission system is presented. In fact, the existing reports
about dielectric properties of indoor materials are limited, i.e.,
leather and mirror glass are not characterized yet. Therefore,
providing a new database of dielectric properties based on
very sophisticated material characterization kit (MCK) already
validated in [8] is important. Furthermore, THz Metamaterial
samples are characterized in [9]. The presented results are a
part of the larger measurement campaign targeting the search
of material parameters of a variety of indoor materials between
0.75 and 1.1 THz. Next, this research work is expected to
be very useful and helpful for accurate modeling of future
indoor wireless communication channels at THz frequencies.
In addition, the measured material parameters may also be used
for the investigation and development of high-speed wireless
networks.

II. STATE-OF-THE-ART

The potential of modern THz systems in material char-
acterization offers a unique solution in imaging, sensing,
spectroscopy and communication. Meanwhile, the academia as
well as industry are reviewing how this emerging terahertz �eld
might be implemented in a variety of �real world� applications
by sharing their experimental database to the world, ranging
from the materials' dielectric properties [10], material surface
textures [11] and the molecular spectroscopic database [12].
To measure material spectroscopic responses, the state-of-the-
art THz systems based on time-domain and frequency-domain
methods are classi�ed as follows: (i) THz time-domain spec-
troscopy (THz TDS) systems [7]; (ii) THz quasi time-domain
spectroscopy (THz QTDS) systems [13]; (iii) continuous wave
THz (cw THz) systems [14]; and (iv) frequency modulated
continuous wave (FMCW) radar transceiver systems [15].
However, each method is con�ned to speci�c frequencies,
materials and applications in its own constraint. In addition,
material characterization kit developed by Swissto12 is now
commercially available (cf. Fig. 1a) which in conjunction
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Fig. 1: Measurement system (a) Schematic diagram of MCK and (b) The 0.75 to 1.1 THz VNA system at University of Glasgow.

with VNAs enables the measurement of both the re�ection
coefficients (S11, S22) and transmission coefficients (S12, S21)
in the WM-250 (or equivalent WR-01) waveguide band that
supports frequencies from 750 GHz to 1.1 THz explained
brie�y later in Section II.B.

A. Material Samples (Indoor)

We have characterized six common indoor building mate-
rials encountered in the indoor wireless propagation channel.
In addition to the channel modeling, the study of propagation
(cf. Fig. 2) through different indoor materials can expedite the
development of a basic theory for pulse shaping and receiver
design. The knowledge of material samples' thicknesses is
mandatory in extracting the material parameters and hence,
the average of the thicknesses of different indoor materials
measured at �ve different locations is tabulated in Table I.

TABLE I: LIST OF MEASURED MATERIALS WITH
THEIR THICKNESS

Material group ID Sample Thickness

Wood W4 Bamboo (hard wood) 14 mm

Plastic A3 Vinyl tile sheet 1.2 mm

Paper P3 Hardboard paper 3.90 mm

Brick B2 White ceramic wall tile 6.5 mm

Glass G2 Mirror glass 2.9 mm

Leather L2 Genuine leather 1.4 mm

B. Measurement System and Experimental Details

The experimental system for the THz transmission mea-
surements in this study comprises of three parts, vector
network analyzer, the material characterization kit Swissto12
waveguide system, and two frequency extension modules to
measure in the frequency range of 750 GHz to 1.1 THz for
different indoor materials. Fig. 1a depicts the schematic layout
of the state-of-the-art MCK. A two-port short, open, load, and
through (SOLT) WR-01 waveguide standards are acquired to
calibrate the measurement equipment. This calibration stream-
lines the systematic errors between VNA transceivers and
waveguide �anges. The MCK kit is made up of two parts and
each part further consists of three waveguides, the former one
is a rectangular substituted by a circular corrugated one in the
middle which �nally in the latter most part transits to a low

loss corrugated waveguide. The purpose for this transitional
waveguide design is to accomplish the THz transmission in
an enclosed environment with minimal losses as shown in
Fig. 1b. Furthermore, the left hand segment of the setup
is �xed as opposed to the movable right one for the ease
of characterizing material samples of different thicknesses.
As the indoor materials are not chemically pure, we have
selected three locations and recorded three readings for each at
laboratory temperature 18◦C± 0.2◦C with humidity 30%± 2%.

III. MEASUREMENT TECHNIQUE

In this section, the procedure for processing the measured
data and extracting the material parameters is presented.

A. Stepwise Nicolson-Ross-Weir (NRW) Method

This work concentrates on measurements of the complex
dielectric properties (i.e., permittivity, refractive index, absorp-
tion coefficient) of materials extracted from the S-parameters'
measurements using stepwise NRW method [16]. Besides, this
method has been affirmed and documented for the characteri-
zation of materials at THz frequencies [17].

B. Permittivity Extraction

To derive the complex relative permittivity εr(ω) from S-
parameters, the re�ection Γ(ω) and transmission coefficient
T(ω) needs to be obtained �rst as follows

Γ(ω) = K ±
√
K2 − 1 , K =

S 2
11
− S 2

21
+ 1

2S 11

(1)

T(ω) =
S 11 + S 21 − Γ(ω)

1 − (S 11 + S 21)Γ(ω)
(2)

where ω is the angular frequency of the THz waves. Note
that the re�ection coefficient should comply with |Γ(ω)| ≤ 1
for passive materials at hand. Now, by assuming the material
sample thickness d the transmission coefficient considering the
wave propagation through the material may written as

T(ω) = exp(−γd) = exp

(
− jωn∗(ω)d

c

)
(3)

Here, c = 1/
√
ε0µ0. From (3) the complex refractive index

n∗(ω) can be obtained. Finally, from the complex refractive
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Fig. 2: Measured S-parameter S21 [dB] versus frequency of
indoor materials using MCK system.

index one can calculate the relative material parameters such
as relative permittivity εr(ω), relative permeability µr(ω) [16]
and absorption coefficient α∗(ω) [18].

IV. MEASUREMENT RESULTS

Fig. 3 depicts the measured permittivity as a function of
frequency using the stepwise NRW equations. Unlike α∗(ω)
(not shown due to brevity), the permittivities vary inconspic-
uously with frequency for the materials at hand.
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Fig. 3: Measured permittivity response of indoor material
samples using the stepwise Nicholson-Ross-Weir (NRW) e-
quations.

V. CONCLUSIONS

Based on the commercially available THz Swissto12 sys-
tem, this paper presented material properties (i.e., permittivity)
of several indoor materials measured in transmission mode
over the frequency range 750 GHz to 1.1 THz. The extraction
of the dielectric properties of these materials enable us to study
and understand well the wave propagation in this frequency
range. Furthermore, the measured data opens the way to
advance towards the study of characterizing surface as well
as sub-surface materials along with the ability to classify and
localize these different materials precisely.
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