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Human impacts alter landscapes with consequences for the distribution and availability
of high-quality food resources to populations inhabiting those landscapes, which may
impact on the reproductive output of individuals in those populations. The sensitivity of
wild populations to changes in food resources may vary among stages of the annual
cycle. For example, in birds, effects are likely to be greater during costly stages such as
egg production. Here we compare assimilated diet (from stable isotope analysis of chick
feathers) and egg traits (egg size, shape, eggshell colour and maculation, using pattern-
analysis software) in Herring Gulls Larus argentatus, across seven colonies in southwest
Scotland and Northern Ireland. The Herring Gull is an opportunistic, generalist forager
on both marine and terrestrial resources which frequently exploits anthropogenic food
sources such as fishery discards and human refuse. We found that larger eggs were laid
in colonies where females consumed either a higher proportion of marine resources or
terrestrial resources; smaller eggs were laid in colonies where females had an intermedi-
ate diet. In colonies where females consumed more marine items, they also laid eggs
with higher maculation (intensity and size of spots) compared with colonies where
females mainly consumed terrestrial food. We also found smaller and more pointed eggs,
suggestive of resource shortages, in larger colonies. Generalist foragers are often thought
to have the capacity to buffer themselves against changes in the food web, provided that
enough alternative food is available. However, this study highlights that specializing on
the most profitable or available resources has consequences for egg traits even in an
opportunistic generalist forager exploiting a large range of habitats. If variation in egg
traits is related to reproductive output, then understanding the impact of assimilated diet
on reproduction early in the breeding season can provide important insights into how
populations will respond to landscapes altered by human impact.

Keywords: conservation, gull, intertidal, Larus, marine, pattern-analysis software, resource use,
stable isotopes.

Human impact on the landscape can affect the
quantity, quality and configuration of resources on
which animals depend (Benton et al. 2003, Chace
& Walsh 2006, Halpern et al. 2008). Landscape
composition can affect fitness-related traits with
potential consequences for demographic parame-
ters (e.g. Kurki et al. 2000, Penteriani et al. 2002,
Bond et al. 2004). Understanding the relationship
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between landscape characteristics and fitness-
related traits can therefore provide insights into
the conservation and management of populations
inhabiting human-impacted landscapes.

Human-impacted landscapes can have reduced
or degraded foraging habitat but may also provide
new foraging opportunities. Consequent changes
in resource availability may influence a consumer’s
diet and thus the composition of energy and nutri-
ents consumed (Amar & Redpath 2005, Palma
et al. 2006). The quantity and quality of con-
sumed resources can have important consequences
for survival and reproductive performance (Alver-
son 1992, Gr�emillet et al. 2008, €Osterblom et al.
2008, White 2008). Optimal foraging theory pre-
dicts that energy gain, and associated fitness, is
maximized by specializing on the single most
abundant and/or highest quality food (Stephens &
Krebs 1986). However, specialist foragers may be
negatively affected when landscape changes impact
their food availability (Montevecchi 1993, Davo-
ren & Montevecchi 2003, Vucetich & Peterson
2004, Millon & Bretagnolle 2008). Conversely,
generalist foragers are thought to buffer themselves
against changes in food availability by switching to
alternatives (Schoener 1971, Pyke et al. 1977).
However, how human-impacted landscapes influ-
ence generalists’ resource consumption and hence
their reproduction is not known in many wild
populations (Yohannes et al. 2016).

Sensitivity to resource availability may vary
among stages of the annual cycle (Lindstrom et al.
1993, Perrins 1996, Wikelski & Tarlow 2003) and
is likely to be greater during nutritionally and ener-
getically demanding periods. Egg formation in
birds is a particularly demanding stage (Robbins
1981, Monaghan & Nager 1997). Egg size is posi-
tively related to the abundance and quality of
resources during egg formation in birds (Bolton
et al. 1992, Christians 2002, Nager 2006, Sorensen
et al. 2009, Barrett et al. 2012, Kouwenberg et al.
2013, Bennett et al. 2017). Egg shape may also
depend on resource availability during egg forma-
tion (Ardendt 2004, G�orski et al. 2015). Further-
more, food availability and quality has been shown
to influence variation in egg pigmentation (eggshell
colour and maculation) in several bird species,
with less pigment deposited at low availability of
overall (Avil�es et al. 2006, Duval et al. 2013) or
specific resources (i.e. calcium, Gosler et al. 2005).
There is evidence that offspring development and
survival can depend on egg size (reviewed by Krist

2011) and egg pigmentation (Maurer et al. 2011,
Lahti & Ardia 2016, Hargitai et al. 2018). Thus,
female birds living in human-impacted landscapes
may find their preferred food reduced or may need
to rely on alternatives of different quality which
may affect egg quality and, ultimately, demo-
graphic rates.

One group of generalist foragers that increas-
ingly use human-impacted landscapes are the large
gulls, Laridae (Rock 2005). Even when breeding,
and constrained to a central nesting site, gulls can
move over a large area and exploit a variety of
resources from marine food, consisting of pelagic
fish and intertidal invertebrates, to terrestrial food
sources, including those derived from human
refuse and farming (Hunt 1972, G€otmark 1984,
O’Hanlon et al. 2017). As their marine food webs
have been simplified and impoverished by human
impact (Halpern et al. 2008), many European gull
populations are consuming anthropogenic terres-
trial food from farmland and built-up areas (Pons
& Migot 1995, Coulson & Coulson 2008, Sch-
wemmer et al. 2008, Garthe et al. 2016, Gyimesi
et al. 2016). Marine foods, in particular fish, are
thought to best meet the high energy and nutrient
requirements of laying female gulls (Hiom et al.
1991), but some populations now rely on anthro-
pogenic, terrestrial food resources (e.g. Pons &
Migot 1995, Steigerwald et al. 2015, Gyimesi et al.
2016). Across southwest Scotland and Northern
Ireland, there is a strong relationship between the
local landscape and diet of breeding Herring Gulls
Larus argentatus. Gulls predominantly forage on
the locally most available resources, and colonies
with a higher proportion of marine resources in
their diet have a higher breeding success (O’Han-
lon et al. 2017). The marine diet consists mainly
of intertidal invertebrates (crustaceans and
bivalves) with few marine fish, consistent with the
absence of any significant fin fishery in the region,
and therefore limited access to discards. Terrestrial
food consists mainly of grain, although terrestrial
invertebrates and anthropogenic food waste are
also consumed (O’Hanlon et al. 2017). Here we
test the relationship between assimilated diet dur-
ing egg formation, based on stable isotope analyses
of chick down feathers, and egg traits from seven
Herring Gull colonies across southwest Scotland
and Northern Ireland. These colonies occupy dif-
ferent landscapes, with varying availability of mar-
ine and terrestrial resources. We predict that
colonies consuming a more marine diet, at a higher
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trophic level, produce larger and more pigmented
eggs, measured as more intense eggshell colour
and maculation (intensity and size of spots). This
study aims to contribute to our understanding of
how altered landscapes impact egg formation of a
generalist seabird.

METHODS

Fieldwork was carried out between 5 May and 11
July 2014 across seven Herring Gull colonies
located in southwest Scotland and Northern Ire-
land covering an approximate area of 200 9 250
km (Fig. 1, Table 1). In this region, we selected
colonies that had within their foraging ranges low
(1–2 km2 built-up area > 10 km away) to high
human population density (over 400 km2 built-up
area as close as 2–3 km), and rocky intertidal habi-
tat with low wave fetch, supporting a diverse and
abundant invertebrate community (Burrows
2012), to resource-poorer, exposed coastlines with
high wave fetch (Table 1). The colonies typically
contained several gull species and we identified
Herring Gull nests by direct observations of
attending adults. Within our study colonies, clutch
initiation spread over approximately 3 weeks start-
ing in early May, with the incubation period last-
ing 4 weeks. We visited each colony for a few
days every 2 weeks (Table 1). Thus, at each visit
only a snapshot of clutches and chicks were avail-
able that were suitable for taking egg measure-
ments during incubation and for sampling down of
chicks in their first week of life for stable isotope
analysis. Consequently, we could not take assimi-
lated diet and egg measurements from the same
nests. There was no bias that a colony visited dur-
ing early egg-laying was also visited during early
chick-rearing (Spearman rank correlation:
rs = 0.16, n = 7, P = 0.73).

Egg measurements

During short colony visits during the incubation
period between 5 May and 3 June, we took digital
photographs of Herring Gull clutches in situ, under
standardized conditions, to minimize the duration
of disturbance (Fig. S1). The modal clutch size of
Herring Gulls is three eggs (Pierotti 1982). In this
study it was unknown whether smaller clutches had
been subject to partial nest predation, so we did not
know clutch size at laying. Thus, we include clutch
size in data analyses. From these digital photographs

we measured four egg traits: size, shape, eggshell
colour and maculation (a more detailed account of
how we did this is provided in Appendix S1). Egg
size, measured as egg volume, and shape were mea-
sured using the Egg Measurement Tool plugin devel-
oped by Troscianko (2014) in IMAGEJ (Schneider
et al. 2012). We measured egg length (l) and width
(w) to calculate egg volume (V), using V = klw2

(Hoyt 1976) where k is a species-specific shape con-
stant, here taken as 0.000476 (Harris 1964). Egg
shape was calculated as the deviation from a perfect
ellipse, with a higher shape index indicating more
pointed eggs (Fig. S2). We measured eggshell colour
from the background, excluding maculation, as red
(R), blue (B) and green (G) values in IMAGEJ. Egg-
shell colour was represented by the green/blue (G/
B) ratio, with a high G/B ratio indicating brown-
coloured and a low G/B ratio paler, green-blueish
coloured eggs (Fig. S3). We also measured macula-
tion, which is a complex trait comprising the distri-
bution, intensity and size of spots (Gosler et al.
2000). A range of approaches have been developed
to measure maculation (Gosler et al. 2005, Stod-
dard et al. 2014, Wegmann et al. 2015, Brulez et al.
2016, G�omez & Li~n�an-Cembrano 2016). We used
NaturePatternMatch (Stoddard et al. 2014), which
determined the similarity of an egg to an un-
maculated reference (duck) egg. This measure
considers the intensity and size of spots but not distri-
bution, with the less maculated eggs (fewer and
lighter spots) having a higher similarity score
(Fig. S4). The number of sampled nests varied
among colonies owing to differences in colony size,
the proportion of nests that were accessible and the
time available to take photographs (Table 1). Egg
size, shape and eggshell colour were determined for a
total of 514 eggs from 194 clutches. Maculation
could only be determined for 318 eggs from 128
clutches; 66 clutches (34%) were excluded as one or
more eggs within the clutch were dirty or had started
to pip, which would have biased the estimate of the
similarity score, or contained eggs that returned no
maculation score, as the software rejected images
due to insufficient contrasts. The proportion of eggs
rejected for maculation scoring did not differ across
colonies (Chi-square test: v26 = 0.62, P = 0.996).

Assessment of assimilated diet

We collected samples of several down feathers
from different areas of the body (head, back and
sides) from chicks from accessible nests in each
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colony at the appropriate developmental stage (see
Table 1 for sample sizes). Sampled chicks needed
to be less than 1 week old based on known age or
judged from chick development (Kadlec et al.
1969) to ensure that we collected only feather
material that was grown by the chicks while devel-
oping in the egg. Thus, their carbon and nitrogen
stable isotope signature reflects the resources that
the female gulls consumed during egg formation
(Klaassen et al. 2004).

Collected feathers were washed in liquid deter-
gent (Ecover) diluted with deionized water (ap-
proximate 1 : 99 dilution), followed by a wash in
a 2 : 1 mixture of chloroform/methanol. Dried
samples were then homogenized. Where more
than one chick from the same brood was sampled,
feather material from all chicks of that brood were
homogenized together to provide one sample per
brood. Homogenized samples of feathers were
weighed (mass between 0.7 and 0.8 mg) and

sealed in tin capsules, combusted and analysed for
carbon and nitrogen isotopes by continuous-flow
isotope ratio mass spectrometry (using a Costech
Elemental Analyser (Milan, Italy) linked to a
Thermo Finnigan Delta Plus XP Mass Spectrome-
ter (Bremen Germany)) at the NERC Life
Sciences Mass Spectrometry Facility in East Kil-
bride (UK). The stable isotope ratios are expressed
as d13C (13C/12C) and d15N (15N/14N) in parts
per thousand (&) relative to the international ref-
erences Vienna PeeDee belemnite (V-PDB) mar-
ine fossil limestone for carbon, and atmospheric
N2 for nitrogen, respectively. Measurement accu-
racy was �0.09& for d13C and �0.12& for d15N
based on the standard deviation of the repeated
analyses of tryptophan as a lab standard. The
nitrogen ratio reflects trophic level while the car-
bon ratio varies along a gradient from marine,
coastal to terrestrial habitats (Hobson & Wassenaar
1999). For our study area, the isotopic analysis of

Figure 1. Study region and location of the seven Herring Gull breeding colonies across southwestern Scotland and Northern Ireland:
1 Islay, 2 Oronsay, 3 Pladda, 4 Lady Isle, 5 Portpatrick, 6 Copeland Islands, 7 Strangford.
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these two elements captured the continuum from
marine to terrestrial resource use by gulls (O’Han-
lon et al. 2017). Although down feathers could
only be obtained from two broods at Portpatrick
(Fig. 1), we are confident that these feathers pro-
vide a representative reflection of resource use at
this colony, as pellets and stable isotope analyses
of feathers from older chicks from this colony indi-
cated a similar diet (O’Hanlon 2016).

Statistical analyses

We performed all statistical analyses in R, Version
2.12.0 (R Development Core Team 2014). For each
egg trait (eggshell colour, maculation, shape and
size) we used the mean value of all eggs measured
in a clutch as the unit of analysis, as the exact order
of laying was unknown. To determine whether the
egg traits were related to one another, we per-
formed linear mixed effect models using lme4 with
one egg trait as the response variable and the other
egg traits as the explanatory variables, so that all
combinations were tested. To account for the data

being representative of a population, these models
included colony as a random effect and included
only clutches where all four egg traits were mea-
sured (n = 128 clutches). As our visits were not
standardized to the phenology of each colony, we
performed Spearman rank correlation tests between
egg sampling dates and each egg trait, and chick
down sampling dates and resource assimilation.

Resource assimilation of a colony was character-
ized by the first principal component of the stable
isotope ratios d13C and d15N from chick down feath-
ers collected in that colony (isotope-PC1) using the
R package prcomp. Isotope-PC1 explained 84.6% of
the variation in isotope ratios, with an eigenvalue of
7.13 and factor loadings for d13C = 0.90 and
d15N = 0.44. Hence, isotope-PC1 reflected where
on the marine–terrestrial gradient birds from a col-
ony foraged, with low isotope-PC1 values when a
terrestrial diet was consumed and high values for
marine diets, and also reflected trophic level, which
increased from terrestrial to marine diets (Fig. S5).

To explore the effect of variation in assimilated
resources (isotope-PC1) prior to egg-laying on

Table 1. Information on the land use around the Herring Gull study colonies across southwest Scotland and Northern Ireland
(Fig. 1), sample sizes of eggs and clutches photographed, and broods from which down feathers were collected for stable isotope
analyses.

Colony

Dates egg
photographs
were taken

Latitude
(�N)

Longitude
(�W)

Amount of
built-up area
within 50 km

of the
colony (km2)
and nearest
distance (km)
in parentheses

Average
wave
fetch
within
50 km
of the
colony
(km)a

Colony
sizeb

Number
of eggs
(clutches)

Number
of broods
down

feathers
were

sampled
from

Dates down
feathers
were

sampled

1. Islay 18 May 2014 55.8 6.48 1 (12) 1044 25 24 (9) 11 27 May 2014
2. Oronsay 3 June 2014 55.43 5.12 2 (28) 743 95 75 (31) 33 6 June 2014,

17 June 2014,
2 July 2014

3. Pladda 31 May 2014 54.84 5.13 89 (29) 840 150 38 (15) 24 20 June 2014,
28 June 2014

4. Lady Isle 13 May 2014 55.53 4.73 473 (3.5) 957 830 72 (24) 28 30 May 2014,
11 June 2014,
18 June 2014

5. Portpatrick 5 May 2014 54.43 5.57 222 (8) 1243 175 58 (28) 2 9 June 2014
6. Copeland 11 May 2014 &

23 May 2014
54.69 5.52 405 (3.5) 993 683 141 (48) 22 15 June 2014,

29 June 2014
7. Strangford 14 May 2014 54.40 5.61 406 (2) 1004 190 106 (39) 13 11 June 2014
Total – – – – – 514 (194) 133

aWave fetch is calculated based on the exposure of a coastline depending on its topography (Burrows et al. 2008). A low (or short)
wave fetch value reflects a more sheltered intertidal habitat, with short distances to the nearest land mass, whereas high (or long)
wave fetch values reflect an exposed coastline, with greater distances to the nearest land mass. Rocky shorelines with low wave
fetch support a greater abundance and diversity of potential intertidal prey species (Burrows 2012). bColony size is the count of
apparently occupied nests (AON) in 2012 or 2013 using standard monitoring techniques (Walsh et al. 1995).
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among-colony differences in egg traits we used lin-
ear mixed effect models. We ran separate models
for each egg trait, with the mean egg trait of each
clutch as the response variable. Mean isotope-PC1,
colony size and clutch size were included as
explanatory variables. We included colony size, as
the study colonies varied in size from 25 and 830
apparently occupied nests (Table 1). Larger colo-
nies can exert increased levels of competition and
deplete local resources (Furness & Birkhead 1984,
Birt et al. 1987, Lewis et al. 2001), which could
affect egg traits. We included clutch size as the
number of eggs in each clutch varied between one
and three, which might also influence the egg trait
measurements (see above). The variable isotope-
PC1 only varied among colonies, so the power of
our mixed model to find an effect of assimilated diet
on egg traits is reduced, and hence we applied a
conservative test. Colony identity was again
included as a random effect to account for the non-
independence of clutches from the same colony.
We tested the main effects (mean isotope-PC1, col-
ony size and clutch size) and all two-way interac-
tions between them using an information theoretic
approach (Burnham & Anderson 2002) to deter-
mine the best-fitting model across all competing
models. Akaike’s information criterion (AICc), cor-
rected for small sample sizes, and Akaike weights
(wi) were calculated for all models in the R package
MuMIn (Barton 2012) and compared across candi-
date models. To account for model uncertainty, we
retained all competing models with DAICc ≤ 2
compared with the model with the lowest AICc

(Burnham & Anderson 2002). We calculated the
weighted average of each supported explanatory
variable across all retained models to obtain parame-
ter estimates and 95% confidence intervals. The fact
that the 95% confidence intervals did not overlap
with zero supports that variable is important.

We checked all diagnostic plots to ensure model
assumptions were met; colony size had to be
ln-transformed. We visually inspected all relation-
ships for linearity and, where plots suggested a
non-linear relationship, we also tested the fit of a
second-order polynomial function. The significance
threshold was set at a two-tailed P < 0.05.

RESULTS

All four egg traits (eggshell colour, maculation,
shape and size) varied independently of each other
with no significant relationships among any of the

traits across colonies (linear mixed effect models,
all P > 0.10, n = 128). We found no seasonal
change in mean egg traits (P > 0.62) or assimilated
diet (rs = 0.003, n = 132, P = 0.98) among colo-
nies. Female Herring Gulls’ assimilated diet during
the pre-laying period, reflected in chick’s down
feather isotope_PC1, varied significantly across the
seven colonies (F6,126 = 15.73, P < 0.001,
R2 = 0.40). Variation in assimilated diet among
colonies during egg formation was important in
explaining variation in Herring Gull egg size and
maculation, with 95% confidence intervals that did
not overlap zero (Tables 2 and 3). In colonies with
the most terrestrial, low trophic level diets (low
values of d13C and d15N contribute to a negative
isotope_PC1 value representing grain, terrestrial
invertebrates and some human refuge; Islay and
Portpatrick) or the most marine, high trophic level
diets (high values of d13C and d15N contribute to
a positive isotope_PC1 representing intertidal
invertebrates, fish and occasional mammal and bird
prey; Oronsay and Pladda) eggs were larger than
in the remaining colonies which had an intermedi-
ate diet (Table 3, Fig. 2a). Furthermore, egg size
declined with increasing colony size (Table 3,
Fig. S6a). In colonies with a more marine, higher
trophic level diet, eggs were also more maculated
(Table 3, Fig. 2b). We found no relationship
between isotope_PC1 and eggshell colour or egg
shape; however, eggs in larger colonies were more
pointed (Table 3, Fig. S6b). There was no support
for clutch size explaining any of the observed vari-
ation in egg traits.

DISCUSSION

Colonies of Herring Gulls, generalist foragers
inhabiting landscapes with a range of marine and
terrestrial foraging opportunities, differed in their
assimilated diet during egg formation. These differ-
ences explained a significant part of the among-
colony variation in egg size and maculation, but
not in eggshell colour or egg shape. Based on pre-
vious work in the study region, this variation
would be expected to be related to local availabil-
ity of foraging habitats (O’Hanlon et al. 2017).
Our results thus indicate that egg traits of Herring
Gulls are sensitive to variation in landscape struc-
ture reflecting relative local availabilities of marine
and terrestrial resources.

In our study region, breeding Herring Gulls
during incubation and chick-rearing generally
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consumed the most abundant resources in the
local landscape, which varied among colonies
(O’Hanlon et al. 2017). Female Herring Gulls also
probably consumed resources gathered locally for
egg formation as they depend largely on exoge-
neous resources for egg formation (income breed-
ers, Kilpi et al. 1996). Although Herring Gulls can
make regional movements in the non-breeding sea-
son (Coulson & Butterfield 1985, Camphuysen
et al. 2011), they return to their breeding area 1–
2 months prior to the start of egg-laying (N. J.
O’Hanlon unpubl. data). Some stored lipid

reserves can be used for egg formation (Hario et al.
1991) but it is not known when they are accumu-
lated and whether they are differentially allocated
among the eggs of a clutch. Furthermore, down
feathers are thought to reflect the protein more
than the lipid stores deposited into the egg (Hob-
son 2006). Consequently, the isotope values of
chick down feathers are thought to provide an
accurate reflection of the diet of females prior to
egg-laying.

At the colony level, Herring Gulls foraging
more on either marine or terrestrial resources laid

Table 2. Rank of general linear multivariate regression models explaining variation in Herring Gull egg traits by isotope_PC1 (proxy
for assimilated diet), colony size and clutch size using Akaike’s information criterion corrected for small sample size (AICc): k is the
number of estimated parameters included, wi is the Akaike weight, and ΔAICc is the AICc difference. Supported models (ΔAICc < 2)
are shown in bold and were used in the model averaging to obtain parameter estimates (Table 3).

Variables included within model k AICc ΔAICc wi

(A) Eggshell colour
Intercept only 1 �913.3 0.00 0.320
Clutch Size 2 �912.6 0.70 0.225
Colony Size 2 �911.3 1.98 0.119
Isotope_PC1 2 �911.2 2.06 0.114
Clutch Size, Isotope_PC1 3 �910.5 2.78 0.080
Clutch Size, Colony Size 3 �910.4 2.86 0.077
Colony Size, Isotope_PC1 3 �909.1 4.12 0.041
Clutch Size, Colony Size, Isotope_PC1 4 �908.3 5.03 0.026

(B) Maculation
Colony Size, Isotope_PC1 3 �601.3 0.00 0.487
Isotope_PC1 2 �599.9 1.44 0.238
Clutch Size, Colony Size, Isotope_PC1 4 �598.4 2.92 0.113
Clutch Size, Isotope_PC1 3 �598.2 3.13 0.102
Clutch Size 2 �595.1 6.25 0.021
Intercept only 1 �594.9 6.45 0.019
Colony Size 2 �593.5 7.78 0.010
Clutch Size, Colony Size 3 �593.4 7.90 0.009

(C) Shape
Colony Size 2 �254.8 0.00 0.432
Colony Size, Isotope_PC1 3 �253.6 1.24 0.232
Clutch Size, Colony Size 3 �253.0 1.86 0.171
Clutch Size, Colony Size, Isotope_PC1 4 �251.6 3.27 0.084
Intercept only 1 �249.9 4.93 0.037
Clutch Size 2 �249.2 5.59 0.026
Isotope_PC1 2 �247.5 7.36 0.011
Clutch Size, Isotope_PC1 3 �246.6 8.18 0.007

(D) Size
Clutch Size, Colony Size, Isotope_PC12 4 1234.3 0.00 0.474
Colony Size, Isotope_PC12 3 1234.8 0.46 0.377
Colony Size 2 1238.2 3.88 0.068
Clutch Size, Colony Size 3 1238.9 4.60 0.048
Isotope_PC12 2 1241.4 7.05 0.014
Clutch Size, Isotope_PC12 3 1241.6 7.23 0.013
Intercept only 1 1243.8 9.49 0.004
Clutch Size 2 1244.6 10.25 0.003

The superscript 2 refers to the quadratic term in the model as Isotope_PC1 was not linear so was fit to a second order polynomial.
Isotope_PC1 without the subscript in the linear term.
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on average larger eggs than those with an interme-
diate diet. A positive relationship between egg size
and food quantity and quality has been observed
in several gull species (Hiom et al. 1991, Bolton
et al. 1992, Blight 2011, Svagelj et al. 2015, Ben-
nett et al. 2017). The observed association of
assimilated diet with egg size may reflect differ-
ences in resource quality and availability (Sibly &
McCleery 1983, Pierotti & Annett 1991). Foraging
on marine resources at a higher trophic level, espe-
cially fish, is generally thought to provide more
energy and protein than foraging on lower trophic
and terrestrial items (Hiom et al. 1991, Pierotti &
Annett 1991, Ronconi et al. 2014, Blight et al.
2015). For example, among-colony differences in
egg size in Balearic Shearwaters Puffinus mauretan-
icus over a relatively small spatial scale were attrib-
uted to differences in trophic level (Louzao et al.
2008). In our study, Herring Gulls at colonies
where they consumed more marine items (Oron-
say, Strangford) laid the largest eggs, although the
Gulls only rarely consumed fish (O’Hanlon et al.
2017). More marine items were consumed in colo-
nies along sheltered coastlines (O’Hanlon et al.

2017) harbouring a higher abundance and diversity
of marine invertebrates (Burrows 2012). In con-
trast, terrestrial and low trophic level resources
have been considered a lower quality diet for gulls
(Murphy et al. 1984, Pierotti & Annett 1991, Pons
1992, Belant et al. 1993, Duhem et al. 2008, Wei-
ser & Powell 2010, Hobson et al. 2015, O’Hanlon
et al. 2017), although some resources, for example
refuse from landfills, can have a high energy and
protein content (Sibly & McCleery 1983, Pierotti
& Annett 1987, 1991, Pons & Migot 1995). In our
study region, grain was the main terrestrial food
(O’Hanlon et al. 2017), and its source (farmland)
was the dominant terrestrial habitat (86.2–99.7%
of all potential terrestrial foraging habitat), close to
all study colonies. However, female Gulls in colo-
nies with a mainly terrestrial diet (Islay, Port-
patrick) also laid large eggs, possibly because
terrestrial resources are thought to be more pre-
dictably available compared with intertidal
resources that may only be available at low tide
(Van Donk et al. 2017), which may compensate
for small differences in resource quality (Pierotti &
Annett 1991, Steigerwald et al. 2015). Future

Table 3. Final model-averaged parameter estimates for each egg trait with standard error and 95% confidence intervals. Effects are
model-averaged slope estimates derived from the supported models in Table 2, ranked by relative importance of each explanatory
variable to explain variation in changes in Herring Gull egg traits.

Parameter Effect se

95% confidence intervals

Relative importanceaLower Upper

(A) Eggshell colour
Intercept 1.113
Clutch Size 0.001 0.002 �0.002 0.008 0.408
Colony Size 0.0003 0.001 �0.005 0.007 0.263

(B) Maculation
Intercept 0.068
Isotope_PC1 �0.004 0.0012 �0.007 �0.002 0.940
Colony Size �0.003 0.0029 �0.009 0.001 0.619

(C) Shape
Intercept 0.3233
Colony Size 0.025 0.010 0.006 0.043 0.919
Isotope_PC1 0.001 0.003 �0.005 0.013 0.334
Clutch Size 0.001 0.007 �0.021 0.035 0.288

(D) Size
Intercept 84.388
Colony Size �2.068 0.533 �3.119 �1.018 0.967
Isotope_PC1 16.115 6.301 3.684 28.539
Isotope_PC12 20.864 6.548 7.946 33.782 0.878
Clutch Size �0.594 0.723 �2.367 0.232 0.538

aRelative importance refers to the sum of all model weights in which a given parameter occurs. The superscript 2 refers to the quad-
ratic term in the model as Isotope_PC1 was not linear so was fit to a second order polynomial. Isotope_PC1 without the subscript in
the linear term.
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work should test whether terrestrial resources are
relatively more predictable and abundant than
intertidal food resources in our region. Intermedi-
ate diets probably represent a mixed diet of terres-
trial and marine food consumed by an individual.
As specialized behavioural, physiological or mor-
phological adaptations are often required to obtain
or digest particular food items, these individuals
may be less efficient (Bolnick et al. 2003). If Her-
ring Gulls show such specializations, this could
result in smaller eggs laid by individuals consuming
a mixed diet. Thus, it may be advantageous to
Herring Gulls to select a specific resource, either
because they exploit the most abundant or prof-
itable resource or because they become efficient in
using that resource.

Several studies have investigated the association
between egg pigmentation (eggshell colour and
maculation) and female condition or environmen-
tal conditions experienced during egg formation,
but the relationship is not clear (Moreno &
Osorno 2003, Osorno et al. 2004, Siefferman et al.
2006, Krist & Grim 2007, Martinez-de la Puente
et al. 2007, Morales et al. 2008, Soler et al. 2008,
Sanz & Garc�ıa-Navas 2009, L�opez de Hierro & De

Neve 2010, De Coster et al. 2013, Duval et al.
2013, Hargitai et al. 2016, 2018). Different studies
have measured different components of eggshell
pigmentation using different approaches, and it is
likely that each measurement provides different
information (Bad�as et al. 2017). Background egg-
shell colour did not vary with consumed diet in
our study. This is consistent with experimental
food restriction in Japanese Quails Coturnix cotur-
nix japonica not affecting eggshell colour, although
it did increase the amount of pigment in the shell
(Duval et al. 2013). Background colour of Herring
Gull eggs has been shown to vary with the egg’s
contamination load (Hanley & Doucet 2012). The
results from our analysis of eggshell colour cannot
support any differences in food limitation between
colonies or potential systematically different con-
tamination loads associated with different diets.
We also measured maculation (size and intensity
of spots) with less maculated eggs (fewer and
lighter spots) laid in colonies with a low trophic
level, terrestrial diet. Previous studies found that
less maculated eggs were associated with poorer
foraging and female condition (Christians 2002,
Reynolds et al. 2009, Duval et al. 2014), whereas

Figure 2. Relationship between mean (a) egg size and (b) egg maculation (higher similarity scores relate to less maculated eggs) with
mean assimilated diets during egg formation from feather isotope analyses at the colony level. Assimilated diet is expressed by the iso-
tope value (PC1 score from d13C and d15N, see Methods), ranging from low isotopic scores on the left, reflecting low trophic, terrestrial
resources, to high isotopic scores on the right, reflecting high trophic, marine resources. Solid lines indicate the trend line with 95% con-
fidence intervals (dashed lines) predicted from a linear model, which also included colony size (Table 2B). Shown are means � 1 se
for each colony. Number refers to colony numbers as shown in Fig. 1.
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Martinez-de la Puente et al. (2007) and Hargitai
et al. (2016) found the opposite association. The
relationships between diet, female condition and
foraging conditions in Herring Gulls need further
study before a clear conclusion can be drawn.
Including a measure of the distribution of spots,
which also can be associated with female condition
(Sanz & Garc�ıa-Navas 2009), may provide further
information that we missed by only looking at size
and intensity of spots.

Interestingly, female Herring Gulls in colonies
consuming the most terrestrial diet, largely com-
posed of grain (Islay, Portpatrick) and in colonies
consuming the most marine diet (mostly intertidal
invertebrates) laid similarly large eggs, but differed in
maculation. As maculation possibly reflects differ-
ences in egg or parental quality as discussed above,
the quality of Herring Gull eggs may vary with
assimilated diet, independent of egg size. However,
the existing information on the association between
maculation and environmental and fitness-related
traits is still unclear. Therefore, to elucidate further
the observed maculation relationship, and test
whether eggs formed on one diet are of higher qual-
ity than those formed on the other diet would
require a study of hatching and fledgling success.
Larger eggs can more probably result in surviving off-
spring (reviewed by Krist 2011), and egg pigmenta-
tion can play an important role in the successful
development of the embryo (Maurer et al. 2011,
Lahti & Ardia 2016). Unfortunately, due to the logis-
tical constraints of studying seven colonies, we do
not have measures of success for individual eggs or
nests. Future studies should consider relationships
between egg traits, diet and breeding success among
nests within a colony. These logistical constraints also
meant that we were unable to standardize our colony
visits to specific times of breeding. However, we did
not sample eggs or down feathers consistently early
or late, and egg traits and diet were not related to
sampling date. Therefore, differences in breeding
phenology related to parental quality are unlikely to
have influenced the relationships we found among
egg traits and Herring Gull diet.

We found that egg size and shape, but not pig-
mentation, were associated with colony size. In lar-
ger colonies, Herring Gulls laid smaller eggs (also
observed by Coulson et al. 1982, Bennett et al.
2017) and more pointed eggs. Individuals nesting
in larger colonies may experience increased com-
petition for limited resources (Ashmole 1963,
Lewis et al. 2001, Wakefield et al. 2013), resulting

in smaller and more pointed eggs (Houston et al.
1983, Kilpi et al. 1996, Nager et al. 2000). If the
larger colonies are expanding, there may be more
young, inexperienced birds that lay smaller eggs
(Coulson et al. 1982), whereas in declining colo-
nies larger eggs may be attributed to reduced
resource depletion or disproportionately more
older individuals breeding (Bennett et al. 2017). In
this study region, colony size was unrelated to
population trends (O’Hanlon & Nager 2018),
which makes it unlikely that the colonies differed
in age structure; instead, female Gulls in larger
colonies are likely to have experienced greater
resource competition.

CONCLUSION

At the colony level, Herring Gull egg traits mea-
sured by digital photography in the field, which
was an efficient tool to measure multiple egg traits
with minimal disturbance to the colony, were
related to differences in resources consumed when
eggs were formed. As Herring Gulls, at least in
our study region, used the resources from habitats
that were most readily available to them (O’Han-
lon et al. 2017), differences in resource use during
egg formation among colonies with different com-
position of habitats in their landscape also affected
egg traits. Anthropogenic changes in local land-
scapes that alter the resources available to general-
ist birds such as Herring Gulls may therefore
affect reproduction from the earliest stage in the
breeding cycle.
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SUPPORTING INFORMATION

Additional supporting information may be found
online in the Supporting Information section at
the end of the article.

Appendix S1. Photographic determination of
egg size, shape, colour and maculation.

Figure S1. Egg holder to photograph Herring
Gull eggs in the field with the graph paper back-
ground and QPcard+201 colour checker panel and
scale. Grey squares P03–P09 highlighted on row 1
and colour square P15 highlighted on row 2.

Figure S2. Contrasting egg shapes with (a) low
egg shape deviation scores describing oval eggs and
(b) high deviation scores describing pointy eggs.

Figure S3. Contrasting egg colours with (a) low
GB ratios reflecting more blue, less brown, eggs
and (b) high GB ratios reflecting brown eggs.

Figure S4. Contrasting egg maculation with (a)
low similarity scores reflecting highly maculated
eggs and (b) high similarity scores reflecting less
maculated eggs.

Figure S5. Relationship between mean (�sd)
d13C and d15N values based on stable isotope anal-
ysis of Herring Gull down feather samples.

Figure S6. Relationship between Herring Gull
mean (a) egg volume and (b) egg size (higher
deviation scores relate to pointier eggs) with col-
ony size (natural logarithm). Solid lines indicate
the trend line with 95% confidence intervals
(dashed lines) predicted from model averaged
Mixed Effect Models, which also included iso-
tope_PC1 and clutch size (Table 2). Shown are
means �1 se for each colony. Number refers to
colony numbers as in Fig. 1.
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