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Effective Modelling of Structural Glass with Laminated Shell Elements 

Y. Liang1, F. Lancaster2, B.A. Izzuddin3 
 

Abstract 

The cross-sectional behaviour of laminated glass (LG) is characterised by a significant zigzag 

effect owing to the large stiffness mismatch between the glass and polymer layers. The 

approach incorporated in current glass design standards is based on the use of a monolithic 

model with an effective thickness, which suffers several sources of inaccuracy and limitations. 

In this paper, laminated shell elements with an alternating stiff/soft lay-up are enhanced and 

used to model LG structures, so as to accurately reproduce the through-thickness behaviour 

of LG with a minimal number of zigzag displacement parameters per node. In order to 

consider the influence of loading rate and temperature on the response of LG, a linear 

viscoelastic material model is adopted to simulate the polymer interlayer, which is formulated 

based on a recursive formula for stress calculation. Finally, several applications of the 

proposed modelling approach for two-ply and multi-ply LG structures are presented, 

considering typical deflection, stability and creep problems, where the benefits of the 

proposed approach are demonstrated through comparisons against monolithic shell models 

based on an effective thickness as well as 3D continuum models. 

Keywords: laminated glass; viscoelastic material; effective thickness; zigzag effect; 

transverse shear strain. 
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1 INTRODUCTION 

Laminated glass (LG) has been widely used in many applications of structural engineering 

owing to its transparency, aesthetic appearance and safety characteristics. It is composed of 

two or more glass plies bonded by polymer layers. Polyvinyl butyral (PVB) is the most 

commonly used interlayer, which, in the event of fracture of glass plies, could mitigate injury 

to occupants by retaining glass debris in place, withstanding further loadings, and absorbing 

more energy. In the previous century, LG has been mainly used as secondary structural 

components, such as façades in high-rise buildings, due to the brittle material characteristic of 

glass. More recently with the development of new interlayer materials [1-2] and 

improvements in glass manufacture, the utilisation of LG has also been extended to 

fundamental load resisting systems in some glass structures (e.g., roofs, stairs, beams and 

columns) [3].  

Despite the universally increasing interest in LG structures, there is a lack of adequate 

design and assessment guidance for such structures. The use of a monolithic model with an 

‘effective thickness’ has been suggested for the simplified analysis of LG in several design 

codes, including the American standard ASTM E1300 12-a [4] and the preliminary version of 

European standard prEN 13474 [5]. The fundamental idea of such approaches is to establish 

an effective monolithic thickness based on the material, geometry, and loading conditions of 

the considered LG beam, and to use a monolithic plate/shell model with this effective 

thickness and the same loading and boundary conditions for the prediction of the maximum 

deflection or stresses in the glass plies. Although the shear transfer capacity of the PVB 

interlayer is considered in the effective thickness approaches, their accuracy depends on the 

considered geometry and loading and boundary conditions [6-7].  

For an efficient design of LG structures, laminated shell models are actually more suitable 

than monolithic shell models owing to their ability to incorporate through-thickness 

descriptions of displacements and stresses, and pose much more realistic computational 

demands compared to three-dimensional (3D) continuum models while maintaining good 

levels of accuracy. Considerable research efforts have been devoted to the establishment of 

plate theory-based lamination models for a close estimation of the structural behaviour at 



reduced computational demands. Layer-wise models (LWMs) pioneered by Reddy and co-

workers [8-10] achieve the reproduction of piecewise continuous displacement fields in the 

thickness direction by employing first-order shear deformation theory (FSDT) or higher-order 

shear deformation theories (HSDTs) at each constitutive layer. On the other hand, equivalent 

single layer models (ESLMs) [11-16] obtain piecewise displacements by simply adding 

Murakami’s zigzag function [11] to a classical Taylor type expansion defined along the 

whole plate thickness. Both the LWMs and the ESLMs have shown good agreement with the 

3D continuum models, which thus have been widely used for simulating laminated plates and 

shells. 

In order to predict well the response of LG prior to fracture, the laminated shell models 

should cover the following mechanical characteristics: 

(i) Material mismatch. There is a significant stiffness variation through the thickness of 

LG where the glass-to-PVB stiffness ratio falls into the range from 103 to 106, which 

leads to a significant zigzag effect in displacements and complex stress fields in the 

thickness direction. 

(ii) Stacking sequence. The LG is associated with an alternating stiff/soft lay-up, which 

differs from usually encountered sandwich structures where all soft cores are layered 

together and sandwiched by outer stiff sheets.  

(iii) Large slenderness. Most LG components can be regarded as two-dimensional (2D) 

structures, which induce large deflections under transverse loading, and which are 

prone to structural instability under planar loading.  

(iv) Sensitivity to loading duration and temperature. The PVB interlayer is a viscoelastic 

material, the mechanical properties of which vary with different loading rates and 

temperature, hence leading to varying effective sectional modulus of the glass 

laminate [17].  

Recently, triangular and quadrilateral laminated shell elements have been developed by 

the authors [18-19], both of which fulfil the requirements (i)-(iii). In the embedded 

lamination model, zigzag displacements and transverse shear strain distributions following an 

alternating stiff/soft lay-up with very large stiffness ratio, as encountered in LG, were 



proposed [18]. In order to eliminate locking phenomena which arise with conforming 

displacement-based shell elements, the Mixed Interpolation of Tensorial Components (MITC) 

method [20-22] was employed, which overcomes locking by offering a two-level 

approximation that samples and interpolates strain components in a covariant coordinate 

system at a selection of positions. The application of the MITC method to each constitutive 

layer of the 6-noded and 9-noded laminated shell elements has been shown to yield improved 

element performance [18-19]. Furthermore, a co-rotational approach has been developed [23-

24] and adopted for geometric nonlinear analysis of the laminated shell elements, allowing 

the consideration of large displacement and buckling analysis.  

In this paper, an overview of the proposed approach for modelling LG using laminated 

shell element is provided, highlighting the limitations of the current monolithic approach in 

view of the through-thickness behaviour of LG, and presenting the relevant features of the 

developed laminated shell elements. A linear viscoelastic material model [25], adapted to 

laminated shell elements, is then presented to consider the influence of temperature and the 

loading rate on the interlayer mechanical properties. By using suitable material models and 

properties for glass and PVB, the proposed modelling approach utilising triangular and 

quadrilateral laminated shell elements can be applied for the accurate and efficient nonlinear 

analysis of a wide range of LG structural problems. This is demonstrated in this paper 

through several application examples of two-ply and multi-ply LG structures, considering 

typical deflection, stability and creep problems, where the benefits of the proposed approach 

compared to the monolithic effective thickness approach as well as 3D continuum models are 

clearly demonstrated. 

2 LIMITATION OF CURRENT EFFECTIVE THICKNESS APPROACH 

In current LG design codes, the effective thickness approach is usually suggested for the 

estimation of the maximum deflection and stresses in glass members. This approach aims at 

replacing a LG member with a monolithic glass member of the same planar dimensions, 

subject to the same loading and boundary conditions, except for the member thickness, such 

that the predicted maximum deflection or stress offers an adequate approximation of the 



corresponding entity in the real LG member. Accordingly, this effective thickness approach 

allows in principle the use of simple monolithic shell elements in the finite element (FE) 

model. 

2.1 The effective thickness approach in ASTM E1300-12a 

Appendix X9 of ASTM E1300-12a [4] provides engineering formulae for calculating the 

effective thickness of LG. Two different effective thickness values are determined for the 

prediction of the maximum deflection and the maximum stress in glass ply, respectively. 

These effective thickness values can be used with standard engineering formulae or FE 

methods for deriving both the deflection and stress of glass plies.  

In order to consider the influence of the shear transfer capacity of PVB on the overall 

structural behaviour of LG, a coefficient,  , is defined as a measure of the transfer of shear 

stresses across the interlayer [4]: 
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where vh  is the interlayer thickness; 1h  and 2h  are the minimum thicknesses of the two 

glass plies; E is glass Young’s modulus; a is the smallest in-plane dimension of bending of 

the laminate plate; and G is the interlayer complex shear modulus. 

For calculations of the maximum deflection, the effective thickness of the two-ply LG is 

given as [4]: 
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For calculations of the maximum glass bending stresses in glass plies ‘1’ and ‘2’, the 

corresponding effective thicknesses of the two-ply LG are given as [4]: 
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It is important to note that the above formulation is based on the original approach by 

Wӧlfel [26], who proposed a simple method to calculate the effective thickness of a 

monolithic beam with equivalent bending properties to a sandwich composite beam. It was 

assumed that (i) the external face sheets are thin enough to ignore the bending stiffness, and 

(ii) the interlayer resists shear force only. Later, Bennison et al. [27-28] developed Wӧlfel’s 

method specifically for the application to LG. The shear transfer coefficient,  , was defined 

by a universal expression: 
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where β is a coefficient depending on the loading condition. For uniform loading, β =9.6, 

which was adopted by ASTM E1300-12a, as shown in (1). Bennison et al. [27-28] also 

proposed an approximate second moment of area of the cross-section, which includes the 

contribution from the bending stiffness of the face sheets. In addition, it was assumed in the 

model that the shear force was resisted by the core layer only.  

 Galuppi and Royer-Carfagni [6-7] noted that the effective thickness approach in ASTM 

E1300-12a is accurate only for simply-supported beams under uniformly distributed loading 

and in those cases where the deflected shape is similar to this reference case. For other 

loading cases and for LG plates and shells, the above formula may not capture the structural 

response well. It is also noted that this approach could determine the effective thickness for 

beams and rectangular plates only. For LG members with other geometry, such as circular 

LG plates, the effective thickness cannot be determined by this approach. 

2.2 Cumulative effective thickness approach for multi-ply laminated glass 

The aforementioned effective thickness method is applicable to two-ply LG. For multi-ply 

LG, the displacement-effective thickness can in principle be easily obtained incrementally. 

The effective thickness of the first and second glass plies is calculated firstly, and then the 



corresponding equivalent monolith is combined with the third glass ply to calculate a new 

effective thickness. The same step is repeated until an effective thickness for the entire 

lamination is derived. This cumulative effective thickness approach has been suggested in a 

preliminary version of the European Standard prEN 13474 [5] and was described by Zenkert 

et al. [29].  

However, it has been pointed out by Galuppi and Royer-Carfagni that for the cases where 

the glass plies or the interlayers are not all of the same thickness, different effective 

thicknesses may be obtained depending on the chosen sequence of layers [7]. Another 

drawback of the generalised formula is that the effective thickness definition for maximum 

ply stresses is quite ambiguous, and the stress-effective thicknesses for internal layers can 

never be calculated [7].  

Therefore, the use of monolithic shell elements for the analysis of general multi-ply LG 

structures is fraught with inaccuracy and inapplicability. As an alternative, laminated shell 

elements offer a realistic option, combining accuracy and efficiency in the FE modelling of 

LG structures, provided the through-thickness behaviour of LG is captured well. 

3 THROUGH-THICKNESS BEHAVIOUR OF LAMINATED GLASS 

Herein, a simply-supported LG beam under a concentrated force at the mid-span is 

considered for illustration purposes (Figure 1), where a unit width is assumed and a 2D plane 

stress analysis is performed. Isotropic material models are used for both glass and PVB. Two 

LG lay-ups and two sets of material properties for the PVB interlayer are considered, 

resulting in four cases as follows:  

Case 1: two-ply LG with long-duration material properties of PVB; 

Case 2: two-ply LG with short-duration material properties of PVB;  

Case 3: four-ply LG with long-duration material properties of PVB; 

Case 4: four-ply LG with short-duration material properties of PVB. 

The geometric and material parameters, and the loading and boundary conditions are listed 

in Table 1.  



The through-thickness distributions of the quarter-span (x=L/4) longitudinal displacement 

by the 2D analysis are depicted in Figure 2, represented by dash lines with crosses. Evident 

from the graphs, significant zigzag effect is observed for Cases 1 and 3, corresponding to the 

long-duration material properties of PVB. On the other hand, for Cases 2 and 4 the cross-

sectional warping is less significant owing to the higher shear transfer capacity of PVB for 

short-duration loading. Table 2 lists the predicted rotations of the layer normals by 2D 

analysis for all the considered cases, from which it is found that the normals of all glass plies 

rotate by a nearly identical value for all the considered cases. 

Table 3 lists the percentage contribution of each layer to the overall transverse shear strain 

energy for all considered cases. It is observed that, compared with glass plies, the PVB 

interlayers contribute more to the overall transverse shear strain energy. Provided that the 

transverse shear strain distribution of the PVB interlayers is accurately represented, a good 

estimation of the overall transverse shear strain energy can be obtained. Figure 3 depicts the 

through-thickness distributions of the transverse shear strain by 2D analysis, represented by 

dash lines with crosses.  

Therefore, the through-thickness behaviour of LG under transverse loading is 

characterised by two features that distinguish it from other laminations: on one hand, all the 

glass plies exhibit nearly the same rotations of their ply normals; on the other hand, 

transverse shear strain energy comes mainly from the flexible PVB, with the transverse shear 

strain exhibiting a near constant variation in each PVB interlayer.  Provided that a lamination 

model captures both characteristics, an accurate representation of the through-thickness 

behaviour of LG members can be obtained. 

4 LAMINATED SHELL ELEMENT WITH AN ALTERNATING STIFF/SOFT 

LAY-UP 

Two efficient geometrically nonlinear laminated shell elements, Ln-MITC6 and Ln-

MITC9, have been recently developed for the analysis of laminations with an alternating 

stiff/soft lay-up [18-19], where ‘L’ stands for ‘layer’, n is the number of layers, and ‘MITC6’ 

and ‘MITC9’ stands for the employment of an MITC6 and an MITC9 strain mapping 

approach for overcoming locking in the curved triangular and quadrilateral elements. In both 



element formulations, displacement fields and transverse shear strain fields have been 

assumed in accordance with the aforementioned characteristics. In the following, the 

elements Ln-MITC6 and Ln-MITC9 are briefly described. 

4.1 Co-rotational system 

In formulating large displacement finite elements for small-strain problems, the 

relationship between the strain and displacement fields is highly nonlinear and complex if the 

displacement fields are referred to a fixed coordinate system, where the nonlinear strain terms 

arise mainly from the element rigid body rotations. In this respect, both the Ln-MITC6 and 

the Ln-MITC9 elements employ the co-rotational approach [23-24] to overcome this 

complexity. The coordinates of the corner nodes are used to define the co-rotational 

coordinate system that follows the element current configuration throughout the analysis, 

which addresses geometric nonlinearity through transformations between the local and global 

systems that are applied at the level of discrete element parameters, hence enabling the use of 

a low-order strain displacement relationship at the local element level. 

Assuming shallow shell elements, the local x- and y-axes are located at the middle surface 

of the lamination, while the z-axis is normal to the element plane (as shown in Figure 4). 

Each layer is identified by a unique index and is numbered from the bottom of the lamination, 

with Nl denoting the total number of layers. 

4.2 Through-thickness description of displacements 

The Ln-MITC6 and Ln-MITC9 elements with an alternating stiff/soft lay-up assume that 

the variation of planar displacements through its thickness is of a piecewise linear pattern, 

and that all stiff sheets have identical rotations of the normal whereas the soft sheets allow 

different rotations. Accordingly, for a LG consisting of (Nc+1) glass plies bonded by Nc 

interlayers (the subscript 'c' denotes the soft interlayer), the through-thickness distribution of 

the planar displacements can be decomposed into a constant and a linear mode, in accordance 

with the Reissner-Mindlin kinematic hypothesis, as well as Nc zigzag modes, denoted by

j (z)
c( j 1 N )  , which are orthogonal to the constant and linear modes and associated 



with the change of normals in the soft PVB layers [18]. The zigzag modes  for a three-

ply LG are depicted in Figure 5 for an illustration. 

The resulting planar displacement fields are expressed as [18]: 

 
cN

j
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where 0u  are the planar displacement fields along the x- or y-axis evaluated on the middle 

surface,   are the components of the normal vector along the x- or y-axis in the absence of 

zigzag displacements, and j
  are the additional fields associated with the proposed zigzag 

functions along the x- or y-axis.  

The transverse displacement is assumed to be constant through the plate thickness, and is 

thus denoted by z0u (x, y) . It is worth noting that in order to eliminate the nonlinear co-

rotational transformations of forces and stiffness associated with the zigzag parameters a 2D 

shell system was proposed to define the additional zigzag parameters directly [18, 30].  

In accordance with the assumed displacement fields, (5+2Nc) displacement parameters are 

defined for each node, resulting in a vector of local displacement parameters CU  and a 

vector of additional zigzag displacement parameters AU for the laminated shell elements: 
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where eN  is the number of nodes for the considered element (6 for the triangular element and 

9 for the quadrilateral element), with i referring to the node number. 

4.3 Kinematics of constitutive layer 

Each constitutive layer of the lamination shell element is regarded as a pseudo Reissner-

Mindlin plate, with the translational displacements  (k) (k) (k)
x y zu ,u ,u  and rotations  (k) (k)

x y, 

on the layer mid-surface obtained from the employed description of displacement fields, 

resulting in the following relationship [18]: 
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where 
(k) (k)

jj (z )    represents the extracted value of the zigzag function j(z)  on the 

middle surface of layer (k); 
(k)

z  is the extracted value of z on the middle surface of layer (k). 

Accordingly, the relationship between the nodal parameters and the pseudo nodal 

parameters at layer (k) is expressed as [18]: 
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where: CU  and AU  are local nodal parameters and additional parameters, respectively; 
(k )
CT

and 
(k )
AT  are the transformation matrices; and (k)

U are the pseudo nodal parameters at layer 

(k), expressed as: 
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are obtained by interpolating the 

pseudo nodal parameters with shape functions. For the 9-noded quadrilateral element, the 

shape functions are expressed in terms of natural coordinates ( , )   as follows: 
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where i i( , )  represent the natural coordinates of node i, i i i( ) 1,0,1        and 

i i i( ) 1,0,1        . 

For the 6-noded triangular element, the shape functions are expressed in terms of area 

coordinates ( 1 2 3L ,L ,L ) as follows: 

i i i i 3 i iN L (2L 1), N 4L L (i 1 3)       (17) 

where mod( ,3) 1i i   , and ( 1 2 3L ,L ,L ) are the area coordinates, with 1L 1  , 

2L   , and 3L   . 

In the local element system, the strain state within each layer (k) is fully determined by the 

membrane strains (k)
mε , bending generalised strains (k)

bε , and transverse shear strains (k)
sε , 

which are obtained as follows [18]: 
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in which z0 represents the offset of the shell mid-surface along the z-axis of the element local 

system. It is worth noting that quadratic terms of the membrane strains in (18) are not 

necessary within a co-rotational approach but enable better accuracy with coarser meshes.  

In order to address the locking phenomenon in the 6-noded and 9-noded shell elements, 

the MITC6 [20] and MITC9 [21-22] strain-mapping approaches are employed in the local 

formulation of each constitutive layer [18-19].  

4.4 Through-thickness description of transverse shear 

In both the Ln-MITC6 and the Ln-MITC9 formulations, a through-thickness distribution 

of the transverse shear strain is assumed as follows [18]: 

  (k) (k) (k)
k s k k+s,AS F (z) z h ,h  ε ε  (21) 
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where 
(k )

  is the shear correction factor of layer (k), which can be derived from energy 

equivalence at the generalised stress/strain and material stress/strain levels, resulting in 

l(N )(1) 3

4
     and 

(k)
l1 (k 2 N 1)     . 

In the range of the glass-to-PVB stiffness ratios, this assumed distribution for the 

transverse shear strain offers a realistic representation of the exact solution, albeit with 

discontinuous transvers shear stresses. This is besides the fact that an assumed strain 

distribution is much more practical than an assumed stress distribution when considering 

material nonlinearity. The exclusion of stress coupling between layers leads to a lamination 

formulation that achieves good levels of accuracy with high computational efficiency, which 

becomes even more pronounced for multi-ply LG.  

The considered LG beam problem in Section 3 is also analysed with a mesh of laminated 

beam elements employing the aforementioned through-thickness description of displacements 

and transverse shear strain, with sufficient elements considered to provide a convergent 

solution. The through-thickness distributions of displacements and transverse shear strains by 

the lamination models are depicted in Figures 2 and 3, respectively, represented by dotted 

lines with circles. The predicted layer rotations and transverse shear strain portions by the 

lamination models are listed in Tables 4 and 5, respectively. The results of the lamination 

models, in comparison with the solution by 2D analysis, show excellent accuracy with a 

minimal number of additional parameters and a decoupled relationship of the transverse shear 

stress at laminar interfaces.  

The efficiency and effectiveness of the 6-noded and 9-noded laminated shell elements 

Ln-MITC6 and Ln-MITC9 have been verified elsewhere [18-19]. In this paper, both elements 

are employed for the FE modelling of LG structures with different number of glass plies, 

various geometric configurations and subject to different loading conditions. 

5 LINEAR VISCOELASTIC MATERIAL MODEL 

PVB is a viscoelastic material, the mechanical properties of which depend on the 

temperature and the loading duration. For a reference temperature T0, the viscoelastic 



material property can be described by a generalised Maxwell model, which is expressed as a 

Prony series [17, 31]: 

M
j

N
t

j

j 1

E(t) E E e
 





   (23) 

where MN  is the number of Maxwell elements employed in the Maxwell series; j  is a 

relaxation time parameter of the jth Maxwell element; E  is the long-time plateau modulus.  

The time-temperature correspondence principle states that the effect of changing 

temperature is the same as applying a multiplicative factor to the time scale, which can be 

expressed as follows [32] : 

0 TE(T, t) E(T , t a )  (24) 

where T  is an arbitrary temperature, t is the real time scale, and the coefficient Ta  can be 

obtained with the use of the Williams-Landell-Ferry (WLF) equation [33]: 

1 0
10 T

2 0

C (T T )
log a

C T T


 

 
 (25) 

in which 1C  and 2C  are constants that vary from polymer to polymer. 

Equation (24) states that if the material modulus-time curve at a reference temperature 0T  is 

known, the modulus-time curve at an arbitrary temperature T can be obtained from the 

known curve by multiplying the time scale with a factor T1 a . 

The Boltzmann superposition principle yields a stress-strain relationship given as [32]: 
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The substitution of (23) into (26) leads to the following expression for the stress relaxation: 
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where jH  are history stress terms. 

A recursive formula for the calculation of stress relaxation [25] is employed and adapted 

herein for the simulation of the PVB interlayer.  



5.1 Recursive formula for stress relaxation 

Temporal discretisation of (27) leads to the stress relaxations at the previous time nt  and 

the current time n 1t  : 
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In order to obtain a recursive formula for the stress, Sedef et al. [25] assumed a linear 

strain variation in the current time step 
n 1

n 1 nt t t


   : 

n 1 n

n 1
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s t
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Accordingly, the history stress terms at the current time step, 
n 1
jH


, are related to 
n
jH  of 

the previous time step with the following relationship: 
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where 
n 1 n 1 n 

     .  

Further integration of (31) leads to: 
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with: 
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Substitution of (32) into (29) thus leads to a recursive formula for stress relaxation. 

5.2 Application to interlayer material 

Bennison et al. [31] conducted hydrostatic volumetric tests on PVB at different 

temperatures, and found that the value of the bulk modulus K(t) was relatively unchanged 



with temperature, which was fixed at around 2.0GPa. Accordingly, it is assumed herein that 

the bulk modulus, K, of the interlayer material has a constant value whereas the shear 

relaxation function, G(t), can be expressed as a generalised Maxwell series. Then the stress 

relaxation is derived as follows: 
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with 1 3i   , mod( ,3) 1i i   , and mod( 1,3) 1i i    . 

Application of the recursive formula by Sedef et al. [25] to (34)-(35) yields the stresses at 

the current time n 1t   as follows: 
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where the functions 
n 1
j,H ( , 1 3)

      are expressed in an recursive manner as: 
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The tri-axial viscoelastic material model described above can be directly applied to 3D 

continuum elements. In order to apply it to the developed laminated shell elements which 

ignore the transverse normal stress, a further modification is made by imposing a zero value 

constraint on the transverse normal stress 33 , leading to the constitutive equations being 

expressed as follows: 

n 1 n 1 n 1 n 1 n 1 n 1
p v,p p hist,p s v,s s hist,s,
     
   σ C ε σ σ C ε σ  (40) 



where 
T

n 1 n 1 n 1 n 1
p 11 22 12, ,
   
   σ and 

T
n 1 n 1 n 1
s 13 23,
  
  σ  denote respectively the planar and 

transverse shear stresses at time n 1t  ; 
T
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T
n 1 n 1 n 1
s 13 23,
  
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denote respectively the planar and transverse shear strains at time n 1t  ; 
n 1
v,p


C  and 
n 1
v,s


C  are 

viscoelastic constitutive matrices for respectively the planar and transverse shear 

stresses/strains at time n 1t  ; and hist,pσ  and hist,sσ  are stresses related to the loading history. 

The derivations of 
n 1
v,p


C  ,
n 1
v,s


C , hist,pσ  and hist,sσ  are provided in Appendix A. 

6 APPLICATION TO GLASS STRUCTURES 

The laminated shell elements Ln-MITC9 and Ln-MITC6 have been implemented in 

ADAPTIC [34] v2.14.4. Hereafter, three typical LG problems are modelled with the 

laminated shell elements, where the benefits of the proposed approach are demonstrated 

through comparisons with the results of 3D continuum models and monolithic shell models 

utilising the effective thickness approach outlined in Section 2. 

6.1 Laminated glass under biaxial bending 

This example relates to a series of biaxial flexural tests conducted by Bennison et al. [31], 

which were designed to investigate the response of circular LG panels at a wide range of 

loading rates. The circular LG panel, 100mm in diameter, is composed of two glass bonded 

by a PVB interlayer. The panel is supported at three points located on a radius r2 = 44.7 mm 

and is loaded with a circular punch which effectively produces a ring loading with a radius of 

r1 = 4.498 mm, as depicted in Figure 6. Bennison et al. [31] tested the LG panels with various 

displacement rates ranging from 10−3 to 102 mm/s.  

From the conducted material tests on the PVB interlayer, Bennison et al. also proposed a 

generalized Maxwell material model for the description of the shear relaxation modulus [31], 

which is depicted in Figure 7 corresponding to a reference temperature of 20°C with the 

material parameters listed for 11 Maxwell components in Table 6. For other temperatures, the 

time-temperature correspondence principle can be employed, as given in (24)-(25), with 

coefficients C1 and C2 provided as 20.7 and 91.1, respectively. 

Herein, due to symmetry, a 60° segment of the circular plate is modelled with meshes of 

the proposed laminated shell elements. With respect to the fan-shaped geometry, an efficient 



mesh type is used, where a ring of the 6-noded triangular element L3-MITC6 is employed 

surrounding the panel centre and rings of the 9-noded L3-MITC9 element are employed for 

the remaining part. A 1010 mesh, denoted as L3-MITC6|9, as shown in Figure 8, provides a 

convergent solution, which is thus used to reproduce some of the tests and compare with both 

the experimental results and the numerical predictions of 3D continuum models consisting of 

four layers of elements for each glass ply and two layers for the PVB interlayer [31]. 

Bennison et al. used uniaxial electrical-resistance strain gauges to record the strain of the 

lower ply on the supported (lower) glass surface along with the applied force for one LG test, 

where the punch force was applied with a displacement rate of 10-3mm/s at a constant 

temperature of 22.8°C [31]. Figure 9 records the principal stress at the bottom surface of the 

lower glass ply against the applied punch force for the 1010 laminated shell model. Also 

provided are the experimental results and the numerical predictions of the 3D continuum 

model. Clearly, the results of the laminated shell model are in excellent agreement with the 

experimental results and the numerical predictions of the more computationally demanding 

3D model. 

The through-thickness distribution of the principal stress at the panel centre is investigated 

for a given central deflection of δ = 0.6mm. Two normalised displacement loading rates have 

been considered: 
*

v  =0.675 and 6.75108, with the normalised loading rate defined by 

Bennison et al. [31] as follows: 

*
* Tva τ

v 


  

where v is the real displacement loading rate (mm/s), δ = 0.6mm is the central deflection, *
τ  

denotes the characteristic time for G(t) to relax to a value of around 1MPa, which is given as 

1127s, and aT is a coefficient associated with temperature, as defined in (25). 

Figure 10 shows that the predicted stress distribution of the L3-MITC6|9 shell model 

matches well with the 3D continuum model by Bennison et al. [31] at both loading rates. 

The variation of the stress distribution with the loading rate, corresponding to a 0.6mm 

maximum deflection, is investigated. Define the normalised stresses at the positions ‘i’ and 

‘o’, shown in Figure 6, as follows: 
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where i

1σ  and o

1σ  are the maximum principal stresses at the bottom of the upper and the 

lower glass ply, respectively, corresponding to a central deflection of δ = 0.6mm, and m

1σ  is 

the maximum principal stress for a monolithic glass pane of thickness 2hg with the same 

punch force. The normalised stress-loading rate curves predicted by the L3-MITC6|9 

laminated shell model are depicted in Figure 11. At a relatively slow loading rate, the PVB 

interlayer has a limited shear stiffness to transfer shear forces, resulting in rapid development 

of stresses in each glass ply. For a rapid loading rate, on the other hand, the PVB interlayer 

exhibits stiff material properties, which leads to the three layers working as a whole and 

hence reducing the normalised stress at position ‘o’ to around 1.0 and position ‘i’ to an even 

smaller value. As can be observed from the figure, the results of the laminated shell model 

are in good agreement with the curves obtained by the 3D continuum model [31], which 

verifies the accuracy of the L3-MITC6|9 shell model and the viscoelastic material model in 

the simulation of LG. Also shown in Figure 11 are the results of the FSDT-based shell model 

with the same 10×10 mesh, which are obtained by restraining all additional zigzag 

parameters in the laminated shell model. The deviation of the FSDT results from the others 

indicates the significant zigzag effects of the LG panels throughout the considered range of 

loading rates due to the modulus mismatch between glass and PVB. On the other hand, as 

indicated in the figure, this deviation of results reduces with much higher loading rates. 

6.2 Buckling analysis of laminated glass fin 

In recent years, not only has LG been widely used for secondary structural components 

(such as curtain wall glazing), but it has also become increasingly adopted for structural 

applications (Figure 12.a). LG members that are used in real structures are typically 

associated with large slenderness, thus posting equal importance of stability analysis to cross-

sectional strength analysis. Figure 12.b depicts a partial LG sub-structure extracted from the 

glass structure shown in Figure 12.a, where two halves of curtain wall glazing panels are 

supported by a LG fin with the employment of the adhesive silicone bond between the fin and 



the glazing panes, which provides a continuous elastic support along the vertical glazing edge, 

with a plan view as depicted in Figure 13. A uniform transverse loading is applied to the two 

halves of glazing to represent the wind load. For design purpose, ASTM E1300-12a [4] 

suggests using a linear elastic material model for the PVB with the shear relaxation modulus 

for a 3s load duration at a 50C operation temperature for the analysis of wind load. 

Therefore, a linear elastic material model is used, where the bulk modulus is 2.0GPa and the 

shear modulus is 0.44MPa, which is extracted from the shear relaxation model proposed by 

Bennison et al. [31] (Table 6) for a load duration of 3s at a 50C operation temperature. The 

geometric, material and loading conditions are listed in Table 7. A static analysis is 

performed to determine the stability of this partial structure under the wind load. 

The continuous elastic support provided by the silicone joint is modelled with matrix 

elements along the edge. Since silicone is associated with a large Poisson’s ratio (ν=0.499), 

the silicone joint undergoes relatively small bulk deformations under loading. In order to 

obtain the effective stiffness components of the matrix elements, a 3D continuum model with 

a fine mesh of a 20-noded brick element [35] is employed to model the silicone joint, which 

has a width tg = 36mm, a depth ts =20mm, and a height H = 50mm. As shown in Figure 14, 

the top and bottom surfaces are restrained in the y direction, whereas the left surface (at x = 0) 

is fully restrained. Three displacement modes are applied on the right surface (at sx t ), 

respectively:  

(1) elongation in the x direction, at sx t : 
6

xu 10


 m, y zu u 0  ; 

(2) shearing in the z direction, at sx t : 
6

zu 10


 m,
 x yu u 0  ; 

(3) rotation about the y axis, at sx t : 
6

x gu 10 (z t 2)


  m, yu 0 . 

The three models then correspond to respectively a tensile force Fx, a shear force Fz, and a 

bending moment Mry, respectively, which result in the effective stiffness terms as follows: 

ry6 2 5 2x z
x z ry

x z y

MF F
k 6.32 10 N / m , k 6.28 10 N / m , k 405.6(N m) / m

u H u H r H
         . 

Figure 15 depicts the deformation modes of the silicone joint cross-section for a uniform 

elongation and a uniform rotation, respectively, which clearly demonstrates the influence of 

small bulk deformations on the overall mode. In the following analyses, the effective stiffness 



terms, along with the element size along the y direction, are used for the spring matrix 

elements.  

The partial fin-glazing structure is simulated with a laminated shell element model, where 

the three-play glass fin is modelled with a 164 mesh of the L5-MITC9 element, and each of 

the half two-play glazing panels is modelled with a 168 mesh of the L3-MITC9 element. 

The boundary conditions of the partial model are depicted in Figure 16.a. The structure is 

more vulnerable to the suction load, hence uniform loads in the negative x direction are 

considered in this buckling analysis. Besides the fin-glazing model, a more simplified fin 

model is also used which consists of the glass fin only with the same element size. 

Figure 16.b shows the boundary conditions of the simplified model, and the suction load is 

assumed to be a uniform line load applied to the silicone joint. Both considered models 

provide convergent solutions. Figure 17 depicts the equilibrium paths of the z displacement at 

Point A with both the fin-glazing model and the fin model. Note that for the fin-glazing 

model the effective suction load is obtained by dividing the sum of the uniform loading on 

the glazing panels, subtracting the reaction forces in x direction at the top and bottom glazing 

edges (illustrated in Figure 16.a), by the glazing width. It is evident that the predicted 

buckling curve of the fin model matches well that of the fin-glazing model, which is hereafter 

used to assess the accuracy and efficiency of various FE modelling methods.  

For the fin model, the equilibrium path of the z displacement at Point A is predicted with 

four FE models. Model 1 corresponds to the 164 laminated shell model with the 

employment of the L5-MITC9 element. By restraining the entire additional zigzag DOFs, an 

FSDT-based laminated shell model is also obtained for comparison, which is denoted as 

Model 2. A 164 mesh of the 9-noded monolithic MITC9 element, denoted as Model 3, is 

also considered, where an effective thickness of 17.68 mm in accordance with Section 2.2 is 

employed as the monolithic glass thickness. Apart from the laminated and monolithic shell 

element models, the buckling analysis is also performed with a 3D continuum model using 

20-noded brick elements, where the fin is discretised into 4 elements along the x-axis and 50 

elements along the y-axis, and each layer is discretised into 2 elements through the thickness. 

The solid model, denoted as Model 4, provides a reference solution for comparison. 



The load-displacement curves of various models are depicted in Figure 18, with the 

predicted buckling load and the number of DOFs used for each model listed in Table 8. 

Clearly, Model 2 employing FSDT corresponds to a much stiffer response than the others 

owing to the assumption of a linear displacement variation through the thickness, which 

indicates a significant zigzag effect that cannot be ignored. Although the monolithic shell 

model (Model 3) takes into account the material mismatch by employing a reduced effective 

thickness, the model underestimates the buckling load, which may lead to an over-

conservative design. It is also observed that L3-MITC9 model (Model 1) shows comparable 

accuracy with the solid model but is 71.4 times faster, as also confirmed by comparing the 

total number of DOFs for the various models in Table 8. Figure 19 also depicts the through-

thickness distribution of the stress component y  at point A for Models 1 and 4, which again 

confirms the accuracy of the proposed approach based on laminated shell elements.  

The influence of the interlayer material stiffness on the predictions of the equilibrium 

paths is investigated in Figure 20, where four different shear modulus values for PVB are 

considered (0.44 MPa, 4.4 MPa, 44 MPa, and 440MPa) while the bulk modulus remains 

constant at 2.0 GPa. For the considered shear modulus values of the PVB, the corresponding 

effective thicknesses of the monolithic glass are 17.68 mm, 20.38mm, 30.06mm and 

37.35mm, respectively. The buckling curves of monolithic shell models employing the 

MITC9 element with various PVB shear modulus values are compared against the results by 

the laminated shell models employing the L5-MITC9 element, as depicted in Figure 20. 

These results indicate that the monolithic shell model based on an effective thickness 

underestimates the buckling load for a small-to-moderate PVB shear modulus. For the largest 

PVB shear modulus of 440MPa, both models yield identical equilibrium paths, where the 

shear stiffness of the PVB interlayer is sufficient to transmit shear forces. 

The accuracy of the effective thickness method for a 2-ply LG fin (212mm glass 

+11.52mm PVB) with the same planar dimensions is also investigated. Here again, the 

laminated shell model corresponds to a 164 mesh of the L3-MITC9 elements, and the 

monolithic shell model corresponds to a 164 mesh of the MITC9 element with the effective 

thickness calculated with reference to the ASTM E1300-12a [4]. For the considered shear 



modulus values of PVB (0.44 MPa, 4.4 MPa, 44 MPa, and 440MPa), the corresponding 

effective thicknesses of the monolithic glass are 15.33 mm, 16.88mm, 21.89mm and 

24.97mm, respectively. The resulting equilibrium paths with various interlayer shear stiffness 

values and models are depicted in Figure 21, which shows the same trend as for the three-ply 

LG fin.  

6.3 Creep of laminated glass stair 

Owing to the viscoelastic mechanical behaviour of the PVB interlayer, LG is associated 

with noticeable creep under long-duration loading. Here, the creep behaviour of a typical LG 

stair is considered, as shown in Figure 22. The LG stair, which is 1.8m wide and 0.3m deep, 

is installed horizontally with both edges simply supported. The glass stair is composed of 

four 12mm glass plies and three 1.52mm PVB interlayers. The material parameters of glass 

are E 70GPa  and 0.2  . The linear viscoelastic model proposed by Bennison et al. [31] 

is used for the PVB, where the parameters of the shear relaxation are listed in Table 6 and the 

bulk modulus is fixed at K = 2.0GPa. With the use of the viscoelastic material model for PVB, 

the creep behaviour of the glass stair under a self-weight of w = 1219.7 N/m2 with time at 

different operation temperatures can be analysed.  

Considering the constant loads and the long time span of the analysis, this problem can be 

regarded as a pseudo static problem. A static analysis is performed on a quarter model of the 

stair, which uses an 82 mesh of the L7-MITC9 elements to provide a convergent solution. In 

the following, the influence of loading duration and operation temperature is investigated and 

the results are discussed. 

Figure 23 depicts the time-history curves of the central deflection with various operation 

temperatures for 10 years, which shows that for an operation temperature of 30C the stair 

deflection approaches to the asymptotic value (3.05mm) at around 98 days after installation, 

whereas for an operation temperature of 10C the deflection at 10 years is 1.92mm, which is 

much lower than for the other considered temperatures. The maximum 10-year deflections 

for different operation temperatures have also been predicted by monolithic shell models with 

effective thicknesses, which employ the same mesh but with the MITC9 element utilising an 



effective thickness. For the considered operation temperatures (10C, 20C, 24C, 30C), the 

10-year shear modulus values of PVB are extracted from the generalised Maxwell model 

with the material properties given in Table 6. Accordingly, the shear modulus values 

corresponding to 10C, 20C, 24C, and 30C operation temperatures are determined as 

383.12kPa, 51.86 kPa, 51.72 kPa, and 51.72 kPa, respectively. The employment of the 

incremental effective thickness approach then results in effective thicknesses of 19.30 mm, 

19.08 mm, 19.08 mm, and 19.08 mm, respectively for the considered cases. Table 9 lists the 

predicted maximum 10-year deflections by monolithic shell models with an 8×2 mesh of the 

MITC9 element, which are compared against the reference values by the laminated shell 

models. Clearly, the effective thickness approach obtains very conservative predictions of the 

maximum deflection despite the fact that the stair is simply supported along two edges only 

and a uniform loading is applied.  

Assume that during operation an additional patch load p=2000N/m2 is exerted at some 

point in time on the glass stair, which stays permanent afterwards, as shown in Figure 24. 

Three loading histories are considered, as shown in Figure 25. The deflection time histories at 

a 20C operation temperature with various load histories are depicted in Figure 26, where it is 

evident that the deflections converge to around 4.4 mm after a sufficiently long duration. 

Results with various operation temperatures for load history 1 are also shown in Figure 27. 

Clearly, temperature has a major influence on the time required for the deflections to reach 

the maximum steady state value.  

7 CONCLUSIONS 

This paper presents a multi-layer shell modelling approach for the analysis of multi-ply 

LG structures, where 6-noded and 9-noded laminated shell elements specific to laminations 

with an alternating stiff/soft lay-up are employed, and viscoelastic material properties of PVB 

are considered.  

LG structures have been widely employed in structural engineering, which is characterised 

by a significantly large stiffness mismatch through the LG thickness and the variation of PVB 

mechanical behaviour with loading duration and temperature. The effective thickness 



approach is widely adopted in the current LG design standards owing to the simplicity in LG 

design. However, the effective thickness method is based on a restrictive set of assumptions 

which typically render in accurate for general geometric configurations of plates and shells, 

and its generalisation to multi-ply LG applications is subject to further ambiguity and 

associated inaccuracy.  

Two laminated shell elements, Ln-MITC6 and Ln-MITC9, have been developed, which 

are based on a lamination model that captures the distinctive characteristics of the through-

thickness distribution of planar displacements and transverse shear strains for LG. The 

underlying kinematic assumptions lead to a minimal number of zigzag displacement 

parameters and a decoupled relationship between layers by not imposing inter-laminar 

continuity constraints of transverse shear stresses. The accuracy of the lamination model is 

illustrated in this paper with a 1D LG beam problem, where the results match well with the 

solution by a 2D plane stress analysis. In order to consider the influence of temperature and 

loading rates to the behaviour of LG members, a viscoelastic material model is adapted and 

incorporated in the developed laminated shell elements for modelling the PVB interlayer. 

Several LG problems are finally analysed with laminated shell models, considering typical 

two-ply and multi-ply problems relating to deflection, stability and creep analysis. The accuracy 

and efficiency of the proposed approach are compared with the effective thickness method and 

3D continuum models. It is concluded that the proposed approach based on the laminated shell 

Ln-MITC6 and Ln-MITC9 elements provides comparable accuracy with 3D continuum models at 

a much reduced computation time, and that the effective thickness method can be subject to gross 

inaccuracy that typically renders too conservative for application in design practice. 
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Appendix A: Linear viscoelastic model for 2D shell elements 

 

In order to apply the viscoelastic material model described in Section 5.2 to 2D elements, 

the zero value constraint on the transverse normal stress 33  needs to be imposed, which 

yields a transverse normal strain n 1
33


  expressed as: 

 n 1 n 1 n 1
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By substituting (A1) into (36)-(37), (40) is obtained with the matrices 
n 1
v,p


C  and 
n 1
v,s
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where jA  is given in (33). 

The stress vectors hist,pσ  and hist,sσ are then derived as: 
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Table 1: Geometric, material, loading, and boundary conditions of the simply-supported LG 
beam. 

Geometric parameters 

Two-ply LG: lay-up: 2×12mm glass + 1×1.52mm PVB; 
                      thickness h=25.52mm 
Four-ply LG: lay-up: 4×12mm glass + 3×1.52mm PVB; 
                      thickness h=52.56mm 
Beam length: L=10h 

Material parameters 
Glass: Young’s modulus E=70.0 GPa, Poisson’s ratio ν=0.2 
PVB (short duration): shear modulus G=100MPa, bulk modulus K=2.0GPa 
PVB (long duration): shear modulus G=1.0 MPa, bulk modulus K=2.0GPa 

Loading condition Transverse concentrated force: P=100N/m 

Boundary conditions uz0(0) = uz0 (L) = 0 
ux0 (L/2)=0 

 
 
  



Table 2: Rotation of the normal for each layer at the quarter span (x=L/4) by 2D analysis. 

Layer Rotation of layer normal at quarter span (rad) 
Case 1 Case 2 Case 3 Case 4 

1 1.46E-05 5.29E-06 2.59E-05 2.86E-06 
2 -1.14E-04 -1.87E-05 -2.00E-04 -7.63E-06 
3 1.46E-05 5.29E-06 2.59E-05 2.84E-06 
4 - - -2.04E-04 -1.06E-05 
5 - - 2.59E-05 2.84E-06 
6 - - -2.00E-04 -7.63E-06 
7 - - 2.59E-05 2.86E-06 

 

 
  



Table 3: Percentage contribution of each layer to the transverse shear strain energy at the 
quarter span (x=L/4) by 2D analysis. 

Layer Relative percentage of transverse shear strain energy 
Case 1 Case 2 Case 3 Case 4 

1 7.53% 2.31% 0.20% 0.40% 
2 84.94% 95.38% 32.59% 26.69% 
3 7.53% 2.31% 0.24% 1.21% 
4 - - 33.94% 43.40% 
5 - - 0.24% 1.21% 
6 - - 32.59% 26.69% 
7 - - 0.20% 0.40% 



Table 4: Rotation of the normal for each layer at the quarter span (x=L/4) by the lamination 
model. 

Layer Rotation of layer normal at quarter span (rad) 
Case 1 Case 2 Case 3 Case 4 

1 1.46E-05 5.28E-06 2.59E-05 2.85E-06 
2 -1.14E-04 -1.87E-05 -2.00E-04 -7.63E-06 
3 1.46E-05 5.28E-06 2.59E-05 2.85E-06 
4 - - -2.04E-04 -1.06E-05 
5 - - 2.59E-05 2.85E-06 
6 - - -2.00E-04 -7.63E-06 
7 - - 2.59E-05 2.85E-06 

 

 
  



Table 5: Percentage contribution of each layer to the transverse shear strain energy at the 
quarter span (x=L/4) by the lamination model. 

Layer Relative percentage of transverse shear strain energy 
Case 1 Case 2 Case 3 Case 4 

1 8.30% 2.64% 0.19% 0.67% 
2 83.40% 94.72% 32.59% 26.68% 
3 8.30% 2.64% 0.25% 0.90% 
4 - - 33.94% 43.48% 
5 - - 0.25% 0.90% 
6 - - 32.59% 26.68% 
7 - - 0.19% 0.67% 

  



Table 6: Terms of the generalised Maxwell series description [31]. 

j Gj/G0 τ j(s) 
1 0.1606000 3.2557E-11 
2 0.0787770 4.9491E-09 
3 0.2912000 7.2427E-08 
4 0.0711550 9.8635E-06 
5 0.2688000 2.8059E-03 
6 0.0895860 1.6441E-01 
7 0.0301830 2.2648E+00 
8 0.0076056 3.5364E+01 
9 0.0009634 9.3675E+03 

10 0.0004059 6.4141E+05 
11 0.0006143 4.1347E+07 

Instantaneous shear modulus G0 = 0.471GPa; WLF parameters C1 = 20.7 and C2 = 91.1, at a 
reference temperature of 20°C. 

 

 

 
  



Table 7:  Geometric, material and loading parameters for the LG buckling problem. 

Geometric parameters 

LG fin:  
       lay-up: 3×12mm glass + 2×1.52mm PVB 
       height: H = 10m 
       depth: D = 0.4m 
LG glazing:  
       lay-up:2×10mm glass + 1×1.52mm PVB 
       height: H = 10m 
       half-width: W = 1m 
Silicone joint: 
       height: H = 10m 
       width (in z direction): tg = 36mm 
       depth (in x direction): ts = 20mm 

Material parameters 
Glass: Young’s modulus E=70.0 GPa, Poisson’s ratio ν=0.2 
PVB3s@50°C: shear modulus G=0.44MPa, bulk modulus K=2.0GPa 
Silicone: Young’s modulus E=1.4MPa, Poisson’s ratio ν=0.499 

Loading parameter Uniform suction load on glazing 
 

  



Table 8: Accuracy and efficiency comparisons of results using different models. 

Model Critical suction load (kN/m) Number of DOFs 
1 4.47  2660 
2 - 1510 
3 3.67 1510 
4 4.48 30747 

 

  



Table 9: The accuracy of predicted 10-year deflections by effective thickness approach with 
various operation temperatures. 

Operation temperature 
10-year deflection (mm) 

L7-MITC9 MITC9 
10°C 1.92 3.59 (+87.0%) 
20°C 3.05 3.68 (+20.7%) 
24°C 3.05 3.68 (+20.7%) 
30°C 3.05 3.68 (+20.7%) 

 

 

 



 

 

Figure 1: A simply-supported LG beam loaded with a transverse force at the midspan. 
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c. Case 3 d. Case 4 

Figure 2: Through-thickness distributions of the longitudinal displacement at the quarter-span 
for the considered cases. 
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a. Case 1 b. Case 2 

  
c. Case 3 d. Case 4 

Figure 3: Through-thickness distributions of transverse shear strain at the quarter-span for the 
considered cases. 
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Figure 4: Local coordinate system and layer numbering for LG panel. 

  



 

Figure 5: Zigzag modes for a three-ply LG lay-up.   
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Figure 6: Schematic drawing of the biaxial bending tests on LG panels [31]. 
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Figure 7: Plot of shear relaxation data for PVB at a reference temperature of 20°C [31]. 
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Figure 8: A sixth model of the LG problem (bold line denotes ring loading; point denotes 
support). 
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Figure 9: The principal stress-force curves of experimental data and numerical models. 
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Figure 10: Distribution of normal stress for different loading rates.  
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Figure 11: Normalised stress-to-force ratios with various loading rates. 
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a. Apple Store Fifth Avenue New York. 
(www.idesignarch.com). 

b. A partial model extracted from 
structure. 

Figure 12: A LG structure. 
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Figure 13: Plan view of the partial LG structure.  



 

Figure 14: Boundary conditions for the silicone joint model. 

  



  

a. Deformation mode for a uniform 
elongation.  

b. Deformation mode for a uniform rotation. 

Figure 15: Representative cross-sectional deformation modes of silicone joint. 
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Figure 16: Boundary conditions for the fin-glazing model and the fin model. 



 
Figure 17: Load-displacement curves of the fin-glazing model and the fin model. 
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Figure 18: Load-displacement curves at point A for different models. 
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Figure 19: Through-thickness distribution of stress σy at point A for different models for a 
suction load of 3 kN/m. 
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Figure 20: Load-displacement curves at point A with different PVB shear modulus (three-ply 

LG). 
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Figure 21: Load-displacement curves at point A with different PVB shear modulus (two-ply 

LG). 
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a. through-thickness representation. b. shell model of the glass stair. 

Figure 22: Geometric configuration and boundary conditions of the LG stair.  
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Figure 23: Influence of the temperature on the deflection time history. 
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Figure 24: Schematic representation of applied external loading. 

  



 

Figure 25: Three load histories with different times of load application. 
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Figure 26: Deflection time history of the LG stair with different time of loading. 
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Figure 27: Deflection time history of the LG stair with different operation temperatures. 
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