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Abstract

Understanding the constitutive behavior of the human brain is critical to interpret the physical environment during neurodevelop-
ment, neurosurgery, and neurodegeneration. A wide variety of constitutive models has been proposed to characterize the brain
at different temporal and spatial scales. Yet, their model parameters are typically calibrated with a single loading mode and fail
to predict the behavior under arbitrary loading conditions. Here we used a finite viscoelastic Ogden model with six material
parameters–an elastic stiffness, two viscoelastic stiffnesses, a nonlinearity parameter, and two viscous time constants–to model
the characteristic nonlinearity, conditioning, hysteresis and tension-compression asymmetry of the human brain. We calibrated
the model under shear, shear relaxation, compression, compression relaxation, and tension for four different regions of the human
brain, the cortex, basal ganglia, corona radiata, and corpus callosum. Strikingly, unconditioned gray matter with 0.36 kPa and white
matter with 0.35 kPa were equally stiff, whereas conditioned gray matter with 0.52 kPa was three times stiffer than white matter
with 0.18 kPa. While both unconditioned viscous time constants were larger in gray than in white matter, both conditioned con-
stants were smaller. These rheological differences suggest a different porosity between both tissues and explain–at least in part–the
ongoing controversy between reported stiffness differences in gray and white matter. Our unconditioned and conditioned parameter
sets are readily available for finite element simulations with commercial software packages that feature Ogden type models at finite
deformations. As such, our results have direct implications on improving the accuracy of human brain simulations in health and
disease.
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1. Introduction

Understanding the mechanical characteristics of human brain
tissue has challenged scientists for many decades. The ultra-
soft behavior is highly sensitive to spatial and temporal reso-
lutions [1]. Even for quasi-static loading rates and relatively
small strains, brain tissue exhibits a highly nonlinear, hysteretic
behavior [2, 3, 4], where both time-independent and time-
dependent characteristics show regional variations [5, 6, 4, 7].
A key to establish realistic constitutive models for the brain is
not only to develop mathematical models that capture the time-
dependent tissue response at finite strains but also to design ap-
propriate experiments to accurately identify the corresponding
material parameters.

Limited by the availability of human brain tissue [8, 9, 10,
11, 6], researchers alternatively consulted porcine [12, 13, 14]
or bovine brains [15, 16, 17, 18] due to their structural simi-
larities with the human brain. Animal studies have been ex-
ceptionally valuable to better understand the highly complex
mechanical response of brain tissue. However, to accurately
characterize, model, and simulate the human brain, data from a
different species could provide imprecise results [13].
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Previous studies concerned with the time-dependent mechan-
ical behavior of human brain tissue have mostly been limited to
linear viscoelastic properties at small strains [8, 9, 10, 11, 6]. A
popular approach to characterize the time-dependent behavior
using a Prony series [12, 13, 14, 18, 6], has recently resulted in
poor predictions of porcine brain experiments when the actual
strain history was taken into account [19]. Since material pa-
rameters identified for a single loading mode do not necessarily
represent the constitutive behavior under arbitrary loading cases
[12, 2], we are generally limited by the lack of experimental
data for accurate parameter identification [20]. Here, we use
the experimental data of human brain tissue under multiple uni-
axial loading conditions, cyclic simple shear, unconfined com-
pression, tension, and shear relaxation, and compression relax-
ation, for four different brain regions, the cortex, the basal gan-
glia, the corona radiata, and the corpus callosum. To eliminate
inter-specimen variations, we performed all five tests sequen-
tially on one and the same specimen. In one region, the corona
radiata, we performed additional multiaxial tests [4], combined
compression/tension-shear loading, to provide viscoelastic ma-
terial parameters that are capable of predicting the response of
human brain tissue under multiaxial loading conditions. The
objective of this study was to systematically compare the vis-
coelastic response of human brain tissue for five different types
of loading and, ultimately, identify a set of material parameters
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that is best suited to characterize the overall constitutive behav-
ior of four structurally distinct regions of the brain.

We model the finite constitutive behavior of human brain tis-
sue considering a class of viscoelastic models within the gen-
eral setting of finite deformation continuum mechanics. We
multiplicatively decompose the deformation gradient into elas-
tic and inelastic parts [21], and additively decompose the free
energy function into equilibrium and non-equilibrium parts
[22, 7]. We introduce internal variables to account for the rate-
dependent behavior, and integrate the viscous rate equation in
time using an operator split based on an exponential mapping
algorithm [23]. As the main result of this study, we provide
parameter sets for human brain tissue that are directly applica-
ble to finite element simulations in commercial software pack-
ages such as Abaqus, where the viscoelastic material behavior
is represented through the multiplicative decomposition of the
deformation gradient.

An interesting question that has not been fully answered to
date is whether different regions in the brain display a different
rheology. Regional variations in the characteristic time scales
could explain why some studies reported cortical gray matter to
be stiffer than white matter [24, 4], while others found the oppo-
site [17, 18, 5, 25]. By systematically analyzing time-dependent
effects under multiple loading conditions, we carve out possible
mechanisms on the cellular level. We emphasize how viscoelas-
tic modeling can implicitly address porous effects caused by the
cerebrospinal fluid. The fluid phase makes up about 80% of to-
tal brain mass, which is held in the solid network of cells and in
the extracellular matrix. To discriminate between the different
mechanisms that trigger time-dependent effects, we provide in-
dividual parameter sets for the unconditioned and conditioned
tissue response.

2. Materials and methods

2.1. Experiments

We obtained 1 cm thick coronal brain slices from n = 10 hu-
man cadavers ages 54 to 81, three female and seven male [4].
None of the subjects had suffered from any neurological dis-
ease known to affect the microstructure of the brain. To mini-
mize tissue degradation, we kept the tissue samples refrigerated
at 3◦C and humidified with phosphate-buffered saline solution
at all times. We completed all tests within less than 60 h post
mortem. We extracted specimens of 5 × 5 × 5 mm from four
different regions, the corpus callosum (CC), inner white matter
with high fiber density, mostly consisting of uniaxially oriented
nerve fiber bundles running between the two hemispheres, the
corona radiata (CR), outer white matter with lower fiber den-
sity, the basal ganglia (BG), inner gray matter, and the cortex
(C), outer gray matter, as illustrated in Fig. 1a. We mounted
each specimen onto the triaxial testing device [4] to investigate
the mechanical response under multiple loading modes, sim-
ple shear, compression, and tension. We conducted all tests
at room temperature and chose quasi-static loading conditions
with a speed of v = 2 mm/min. In compression and tension, the
upper platform of the testing device moved in the z-direction. In

shear, the lower platform moved in the x- and y-directions [26].
To capture various aspects of the complex response of human
brain tissue, we performed two different testing protocols.

Table 1: Testing protocol for sequential shear, compression, and tension.

Protocol: Sequential loading

• Simple shear in x-direction up to γ = 0.2
three loading cycles

• Stress relaxation in x-direction at γ = 0.2
300 s holding

• Simple shear in y-direction up to γ = 0.2
three loading cycles

• Stress relaxation in y-direction at γ = 0.2
300 s holding

• Unconfined compression in z-direction up to λ = 0.9
three loading cycles

• Stress relaxation in z-direction at λ = 0.9
300 s holding

• Uniaxial tension in z-direction up to λ = 1.1
three loading cycles

The first testing protocol consisted of a sequence of different
loading modes as summarized in Table 1. We started with si-
nusoidal simple shear up to an amount of shear of γ = 0.2 in
two orthogonal directions, where the amount of shear γ spec-
ifies the relative in-plane displacement of two parallel layers
in the material body divided by their separation distance. At
each recorded time instant, we calculated the shear stresses
τxz/yz = Pxz/yz = f /A as the shear force f , the force recorded in
the direction of shear, divided by the shear area A = WL with
specimen length L and specimen width W. Next, we conducted
an unconfined uniaxial compression test up to a compressive
stretch of 0.9, a relaxation test of 300 s holding at this compres-
sion level, and a uniaxial extension test up to a tensile stretch
of 1.1. Hereby, we computed the stretch λ = 1 + ∆z/H with
specimen height H and z-displacement ∆z and the first Piola
stress Pzz as the force fz divided by the cross-sectional area A
of the specimen in the unloaded reference configuration, i.e.
Pzz = fz/A. For all loading modes, we applied three loading
cycles. We interpreted the first cycle as the unconditioned re-
sponse and the third cycle as the conditioned response. For
data analysis, we only included specimens, which stayed intact
throughout the entire testing protocol in Table 1. If a specimen
broke during the course of the protocol, we excluded it from
the study. This allowed us to ensure that the obtained material
parameters represented the behavior of the same tissue sample
under multiple loading modes. Motivated by our previous stud-
ies, in which the response of brain tissue was independent of
the loading direction [4], we only evaluated the shear data of
one direction, the y-direction. We included data from a total of
n = 58 samples: n = 13 from the cortex, n = 15 from the basal
ganglia, n = 19 from the corona radiata, and n = 11 from the
corpus callosum.
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Figure 1: (a) Human brain slice with four characteristic regions, the corpus callosum (CC), the corona radiata (CR), the basal ganglia (BG) and the cortex (C).
(b) Multiplicative decomposition model, where F is associated with the main elastic network characterized by material parameters µ∞ and α, Fv

1 is the viscous
damper associated with fluid flow inside the cell characterized by the viscosity η1 with the corresponding hyperelastic spring Fe

1 with parameters µ1 and α, and Fv
2

is the viscous damper associated with fluid flow within the solid network of cells and extracellular matrix characterized by the viscosity η2 with the corresponding
hyperelastic spring Fe

2 with parameters µ2 and α.

The second protocol consisted of combined compres-
sion/tension and shear loading as summarized in Table 2. We
first decreased the compressive stretch from 1.00 to 0.75 in in-
crements of 0.05, and subsequently increased the tensile stretch
from 1.00 to 1.25, again in increments of 0.05. At each stretch
level, we applied three cycles of sinusoidal simple shear up to
γ = 0.2 in two orthogonal directions. We performed tests ac-
cording to Protocol 2 data for n = 4 samples from the corona
radiata as the other regions did not provide enough space to
extract additional reasonably sized specimens after completing
Protocol 1.

Table 2: Testing protocol for combined compression/tension and shear.

Protocol 2: Combined loading

• Unconfined compression in z-direction decreasing
from λ = 1.00 to λ = 0.75 in increments of 0.05 with
Superposed simple shear in x- and y-direction
up to γ = 0.2 with three loading cycles per direction

• Uniaxial tension in z-direction increasing
from λ = 1.00 to λ = 1.25 in increments of 0.05 with
Superposed simple shear in x- and y-direction
up to γ = 0.2 with three loading cycles per direction

2.2. Kinematics

To characterize the deformation during testing, we use the
nonlinear equations of continuum mechanics and introduce the
deformation ϕ (X, t), which maps the specimen from the unde-
formed, unloaded configuration with position vectors X at time
t0 to the deformed, loaded configuration with position vectors

x = ϕ (X, t) at time t. We determine the associated deforma-
tion gradient F in its spectral representation in terms of the
eigenvalues λa and the deformed and undeformed eigenvectors
na = F · Na and Na,

F = ∇Xϕ =

3∑
a=1

λa na ⊗ Na . (1)

Tables 1 and 2 summarize our testing protocols under simple
shear, uniaxial compression and tension, and combined com-
pression/tension and shear. Guided by our experience with adi-
pose tissue [26] and myocardial tissue [27], we assume that our
brain samples deform isochorically, J = det(F) = λ1λ2λ3 = 1,
and homogeneously [4]. This implies that we neglect boundary
effects and assume a constant deformation gradient F across the
sample [28]. We thus assume the following deformation gra-
dient F for simple shear in the y-direction,

[F]s =

 1 0 0
0 1 γ
0 0 1

 , (2)

for compression and tension in the z-direction,

[F]c, t =

1/
√
λ 0 0

0 1/
√
λ 0

0 0 λ

 , (3)

and for combined loading,

[F]c, t−s =

1/
√
λ 0 λγ

0 1/
√
λ 0

0 0 λ

 . (4)
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To model the viscoelastic nature of brain tissue, we decompose
the deformation gradient into elastic and viscous parts,

F = Fe
i · F

v
i ∀ i = 1, ..,m , (5)

where i denotes the parallel arrangement of m viscoelastic ele-
ments [21]. We can then introduce the spatial velocity gradient,

l = ∇xv = Ḟ · F−1 = lei + lvi , (6)

and decompose it additively into elastic parts, lei = Ḟe · (Fe
i )−1,

and viscous parts, lvi = Fe
i ·Ḟ

v
i ·(F

v
i )−1 ·(Fe

i )−1. From the deforma-
tion gradient, we determine the left Cauchy Green deformation
tensor b and its spectral representation in terms of the principal
stretches λa and the deformed eigenvectors na,

b = F · Ft =

3∑
a=1

λ2
ana ⊗ na . (7)

It proves convenient, to introduce the elastic left Cauchy Green
deformation tensor for each mode,

be
i = Fe

i · (F
e
i )t =

3∑
a=1

[λe
i a]2 ne

i a ⊗ ne
i a , (8)

with eigenvalues λe
i a and eigenvectors ne

i a, which are, in general,
not identical to the eigenvectors of the total left Cauchy Green
deformation tensor, ne

i a , na. The material time derivative of
the elastic left Cauchy Green deformation tensor,

ḃe
i = 2 [ lei · b

e
i ]sym = 2 [ l · be

i ]sym − 2 [ lvi · b
e
i ]sym, (9)

introduces the Lie-derivative,

Lv be
i = −2 [ lvi · b

e
i ]sym , (10)

along the velocity field of the material motion.

2.3. Constitutive modeling
In a previous study, we have shown that, for the current test

setup, the constitutive behavior of brain tissue was independent
of the loading direction [4]. Motivated by these findings, we as-
sume an isotropic material response for both the elastic and the
viscoelastic behavior. We introduce the viscoelastic free energy
function ψ as the sum of three terms, an equilibrium part ψeq in
terms of the total principal stretches λa, a non-equilibrium part
ψneq =

∑m
i=1 ψi in terms of the i, ..,m elastic principal stretches

λe
ia, and a term p [ J − 1 ] that enforces the incompressibility

constraint, J − 1 = 0, via the Lagrange multiplier p,

ψ = ψeq + ψneq − p [ J − 1 ] with ψneq =

m∑
i=1

ψi . (11)

Similarly, we introduce the stress power P as the sum of an
equilibrium part Peq = τeq : l in terms of the equilibrium Kir-
choff stress τeq and a non-equilibrium part Pneq = τneq : l in
terms of the non-equilibrium Kirchoff stress τneq =

∑m
i=1 τi,

P = Peq + Pneq = [ τeq + τneq ] : l with τneq =

m∑
i=1

τi . (12)

We can then evaluate the dissipation inequality, D = P − ψ̇ ≥
0, in terms of the individual equilibrium and non-equlibrium
contributions,

D = [Peq + Pneq ] − [ ψ̇eq + ψ̇neq ] ≥ 0. (13)

With the assumption of isotropy, we can rewrite the non-
equilibrium stress power in terms of the Lie derivative of the
elastic left Cauchy Green deformation tensor (10), Pneq =∑m

i=1[τi · (be
i )−1] : 1

2 [ ḃe
− Lvbe

i ], and obtain the following ex-
plicit representation of the dissipation inequality,

D =

[
τeq − 2

∂ψeq

∂b
· b
]

: l

+

m∑
i=1

[
1
2
τi · (be

i )−1 −
∂ψi

∂be
i

]
: ḃe

i

−

m∑
i=1

[
1
2
τi · (be

i )−1
]

: Lvbe
i ≥ 0 .

(14)

Following standard arguments of thermodynamics, we obtain
the definition of the equilibrium Kirchhoff stress,

τeq = 2
∂ψeq

∂b
· b =

3∑
a=1

∂ψeq

∂λa
λana ⊗ na , (15)

the definition of the non-equilibrium Kirchhoff stresses,

τi = 2
∂ψi

∂be
i
· be

i =

3∑
a=1

∂ψi

∂λe
i a
λe

i ane
i a ⊗ ne

i a , (16)

and the reduced dissipation inequalities for each individual
mode i,

Dred
i = −τi : 1

2 [Lvbe
i · (b

e
i )−1] ≥ 0 . (17)

It remains to specify the equilibrium and non-equilibrium parts
of the free energy, ψeq and ψneq, and the evolution of the in-
ternal variables be

i . For the equilibrium energy, we follow the
recommendations of recent studies that have compared different
constitutive models [4, 29, 30] and have identified the one-term
Ogden model [31] to best represent the hyperelastic behavior of
human brain tissue,

ψeq =
2µ∞
α2
∞

[ λα∞1 + λα∞2 + λα∞3 − 3 ] , (18)

which introduces two parameters, the shear modulus µ∞ and
the tension-compression asymmetry parameter α∞ [4], and is
parameterized in terms of the total stretches λa. The derivative
in equation (15) then becomes

∂ψeq

∂λa
= 2µ∞

λα∞−1
a

α∞
. (19)

For the non-equilibrium energy, we adopt the same Ogden
strain energy function [7],

ψi(λ̃e
i a) =

2µi

α2
i

[ (λ̃e
i1)αi + (λ̃e

i2)αi + (λ̃e
i3)αi − 3 ] , (20)
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which introduces two additional parameters µi and αi for each
mode i, and is now parameterized in terms of the deviatoric
elastic principal stretches λ̃e

i = (Je
i )−1/3λe

i , the square roots of
the eigenvalues of the isochoric part of the elastic left Cauchy
Green tensor, b̃e

i = (Je
i )−2/3be

i . The derivatives in equation (16)
then become

∂ψi

∂λe
i a
λe

i a =
2µi

αi

[
2
3

(λ̃e
i a)αi −

1
3

(λ̃e
i b)αi −

1
3

(λ̃e
i c)αi

]
, (21)

where a, b, c = {1, 2, 3} and a , b, a , c, and b , c. To a priori
satisfy the reduced dissipation inequality (17), we choose the
following evolution equation for the internal variables be

i ,

−Lvbe
i · (b

e
i )−1 =

1
ηi
τi , (22)

which introduces one additional parameter for each mode i, the
viscosity ηi > 0, or, when scaled with the corresponding shear
modulus µi, the associated relaxation time, τi = ηi/µi [7]. Moti-
vated by finite elastoplasticity [32, 22], this choice introduces a
dissipation inequality of quadratic form,Dred

i = 1/ηi τi : τi ≥ 0.
Since the internal variables be

i are a linear function of the devia-
toric Kirchhoff stress τi, the elastic deformation always remains
volume preserving, Je

i = 1, and thus Jv
i = J/Je

i = 1. Finally, for
comparison with the experimental measurements, we calculate
the Piola stress P as the partial pull back of the Kirchhoff stress
τ,

P = τ · F−t = [ τeq + τneq − p I ] · F−t . (23)

In unconfined compression and tension, the Lagrange multi-
plier p follows from the lateral boundary conditions, Pxx =

Pyy
.
= 0. In simple shear and combined loading, the shear

stresses Pxz and Pyz are independent of the Lagrange multi-
plier p. To advance the non-equilibrium part of the constitutive
equations in time, we perform an implicit time integration with
exponential update [23, 7].

2.4. Parameter indentification

In general, our viscoelastic model has 2+2 m+m parameters,
µ∞ and α∞ to characterize the equilibrium response, µi and αi to
characterize the non-equilibrium response, and ηi to character-
ize the relaxation time for each viscoelastic element i = 1, ..,m.
Here, for simplicity, we assumed that α = α∞ = αi, which
reduced the number of indepedent parameters to 2 + 2 m. We
identified these parameters using the nonlinear least-squares al-
gorithm lsqnonlin in MATLAB. We optimized two distinct
parameter sets to best represent the unconditioned response of
the first loading cycle and the conditioned response of the third
loading cycle. When identifying the parameters for the condi-
tioned response, we evaluated the model for all three cycles.
Yet, only the values of the third cycle entered the parameter
identification. To evaluate the suitability of different loading
conditions for the parameter identification, we first calibrated
the viscoelastic model separately with the average experimen-
tal data from each loading mode–simple shear, shear relaxation,

unconfined compression, compression relaxation, and uncon-
fined tension–to obtain one set of material parameters per load-
ing mode. We minimized the objective function,

χ2 =

n∑
i=1

[Paz − Pψ
az]2

i , (24)

where n is the number of considered experimental data points
indicated by the black dots in Figs. 3 and 5. Paz and Pψ

az with
directions a = { x, y, z } are the experimentally measured and
computationally predicted Piola stresses. Since the shear mod-
ulus can only adopt positive values, we constrained it to µ∞ > 0
and µi > 0. In the next step, we simultaneously considered all
five loading conditions for the calibration using the objective
function

χ2 =

ns+nsr∑
i=1

[ Pxz − Pψ
xz ]2

i +

nc+ncr+nt∑
i=1

[ Pzz − Pψ
zz ]2

i , (25)

where ns, nsr, nc, ncr, and nt are the numbers of experimental
data points for shear, shear relaxation, compression, compres-
sion relaxation, and tension.

When identifying the material parameters for combined
compression/tension-shear loading with Protocol 2 in Table 2,
we fitted the shear stresses of all shear curves for eleven ax-
ial stretch levels simultaneously, and minimized the objective
function

χ2 =

11∑
k=1

n∑
i=1

[Pxz,k − Pψ
xz (λk)]2

i , (26)

where λk = { 1.00, 0.95, 0.90, 0.85, 0.80, 0.75, 1.05, 1.10, 1.15,
1.20, 1.25 }. To evaluate the ‘goodness of fit’, we determined
the coefficient of determination, R2 = 1−Pres/Ptot, where Pres =∑n

i=1[Pi − Pψ
i ]2 is the sum of the squares of the residuals with

the experimental data Pi, the corresponding model data Pψ
i , and

the number of data points n, and Ptot =
∑n

i=1[Pi − P̄]2 is the
total sum of squares with the mean of the experimental data
P̄ = 1/n

∑n
i=1 Pi.

3. Results

3.1. Prony series
Fig. 2 illustrates the characteristic stress relaxation behavior

in shear and compression with the Prony series model for dif-
ferent brain regions, the cortex, the basal ganglia, the corona
radiata, and the corpus callosum. The Prony series assumes
that the time-dependency follows a reduced relaxation function
G(t) = [1 −

∑n
i=1 gk[1 − exp−t/τi]] with the characteristic re-

laxation times τi and the relaxation coefficients gi. It is often
referred to as Fung’s theory [33] or quasi-linear viscoelastic-
ity (QLV). For comparison with previous experimental studies,
we determined the characteristic time constants τi by approx-
imating the scaled relaxation behavior assuming instantaneous
loading. Based on our recent results of human brain tissue [7],
we used a two-term Prony series.

Table 3 summarizes the two time constant τ1 and τ2 for dif-
ferent brain regions. The shorter time constant τ1, which we
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Figure 2: Average experimental data and two-term Prony series model for shear relaxation (a) and compression relaxation (b) in four brain regions, the cortex (C,
n = 13), the basal ganglia (BG, n = 15), the corona radiata (CR, n = 19), and the corpus callosum (CC, n = 11), see Table 3.

Table 3: Characteristic time constants τi = ηi/µi for Prony series approach of shear relaxation and compression relaxation.

shear compression
relaxation relaxation

τ1 τ2 R2 τ1 τ2 R2

[ s ] [ s ] [ s ] [ s ] [ s ] [ s ]
C 1.81 61.80 0.978 4.07 88.91 0.996
BG 1.58 44.56 0.973 3.98 83.01 0.994
CR 1.06 46.58 0.969 3.16 73.45 0.993
CC 1.09 46.76 0.951 2.80 81.85 0.994

associate with fluid flow within the cell as illustrated in Fig. 1b,
shows similar regional trends for shear and compression load-
ing. The cells in the white matter, the corona radiata and the
corpus callosum, responded faster than in the gray matter, the
cortex and the basal ganglia. The second time constant is largest
for the cortex, similar to the first one, while we do not observe
a clear trend for all other brain regions. All time constants are
generally larger for compression than for shear loading. No-
tably, we observed a marked sensitivity of the time constants
with respect to the experimental data, not only for the absolute
values but also for regional trends, especially for the longer time
scale. To address this sensitivity, we used more data points in
the early relaxation up to 50 seconds as indicated by the dots in
Fig. 2. This allowed us to eliminate a generally observed draw-
back of the Prony series, the correlation of the time constants τ
to the holding time of the relaxation experiment [20].

3.2. Sensitivity of viscoelastic material parameters towards
loading mode

Fig. 3 compares the performance of our viscoelastic model
from Section 2.3 calibrated using the unconditioned response
of each loading mode separately by minimizing the objective
function (24) against using all loading conditions simultane-
ously with the objective function (25). Here, we illustrate this
comparison exemplarily for the corona radiata.

Fig. 4 illustrates the experimental data during the first load-
ing cycle associated with the unconditioned response in all four
regions, the cortex (C, n = 13), the basal ganglia (BG, n = 15),
the corona radiata (CR, n = 19), and the corpus callosum (CC,

n = 11) together with the corresponding constitutive model cal-
ibrated using data from all five loading modes simultaneously.

Table 4 summarizes the corresponding material parameters
and coefficients of determination for all four regions calibrated
using data from each loading mode separately and from all
loading modes simultaneously. Evidently, the cyclic data alone
fail to satisfactorily calibrate the model with two viscoelastic
modes, and cannot appropriately represent both early and late
relaxation. Here, simple shear experiments showed a better
performance than cyclic compression and tension since they
were the longest experiments with a total duration of 50 sec-
onds compared to only 20 seconds for compression or tension.
The parameters from the tension data alone drastically under-
estimated the compressive stresses. Parameters calibrated from
either compression or tension failed to depict the pronounced
compression-tension asymmetry, which is well apparent when
comparing graphs 3b and 3c. Shear relaxation experiments
were the most suitable to obtain parameters that were valid un-
der various loading modes. We note, though, that in contrast to
the Prony series approach in the previous Section, we evaluated
the full integral over the entire loading history including the
loading ramp, instead of assuming an instantaneous loading.
This helped significantly to reduce the sensitivity of the time
constants towards the selection of experimental data points and
additionally provided a reasonable identification of the elastic
parameters. We achieved an even better agreement with exper-
imental data when we calibrated the viscoelastic model with all
loading conditions simultaneously. The resulting set of six pa-
rameters is not only valid for a single loading mode, but for

6



0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

no
m
in
al
st
re
ss

[k
P
a]

time [s]
0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

sh
ea
r
st
re
ss

[k
P
a]

time [s]

−0.2 −0.1 0.0 0.1 0.2

−0.4

−0.2

0

0.2

0.4

0.6

amountof shear [−]

sh
ea
r
st
re
ss

[k
P
a]

1.0 1.02 1.04 1.06 1.08 1.1
−0.1

0

0.1

0.2

0.3

0.4

stretch [−]

no
m
in
al
st
re
ss

[k
P
a]

1.0 0.98 0.96 0.94 0.92 0.9

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

stretch [−]

no
m
in
al
st
re
ss

[k
P
a]

Shear Compression Tension

a b c

d e

experiment

model calibrated with simple shear data

model calibrated with shear relaxation data

model calibrated with compression relaxation data

model calibrated with compression data

model calibrated with tension data

model calibrated with all modes simultaneously

Figure 3: Sensitivity of parameter identification with respect to loading mode. Average experimental data during the first loading cycle associated with the
unconditioned response during simple shear (a), compression (b), tension (c), shear relaxation (d), and compression relaxation (e), shown for specimens from the
corona radiata, with corresponding constitutive models calibrated using data from each loading mode separately and all loading modes simultaneously, see Table 4.
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Figure 4: Simultaneous parameter identification for all five loading modes. Average experimental data during the first loading cycle associated with the uncondi-
tioned response, with standard deviations indicated by the error bars, in four regions, cortex (C, n = 13), basal ganglia (BG, n = 15), corona radiata (CR, n = 19),
and corpus callosum (CC, n = 11), with corresponding constitutive model calibrated using data from all loading modes simultaneously, see Table 4.
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arbitrary loading conditions. With the chosen framework, the
parameters are conform with many commercial finite element
software including Abaqus. This was not possible for our previ-
ously provided parameter sets, for which we used different pa-
rameters α∞ and αi for the equilibrium and non-equilibrium re-
sponses [7]. Independent of the loading mode, the equilibrium
shear moduli were largest in the cortex, comparable in basal
ganglia and corona radiata, and smallest in the corpus callosum,
which is in agreement with previous studies [4]. We observed
similar trends for shear moduli associated with large viscosities
ηi. For shear moduli associated with small viscosities ηi, how-
ever, regional trends shifted: Both white matter regions stiff-
ened with respect to the gray matter regions [7], which becomes
clearly apparent for µ1 calibrated with shear or compression re-
laxation experiments. Shear relaxation experiments indicated
the largest nonlinearity with large absolute values of α closely
followed by cyclic unconfined compression, while tension ex-
periments showed the smallest nonlinearity.

Table 5 summarizes the loading-mode-specific time con-
stants τi = ηi/µi for the unconditioned tissue response in all four
regions. Again, it becomes well apparent that cyclic experi-
ments alone fail to provide reasonable time constants. They par-
tially adopt extremely large values, since the experimental time
was too short. As a result, the corresponding time constants re-
veal no clear regional trends. Yet, both relaxation experiments
show similar regional trends: the first time constant τ1 is largest
in the cortex, slightly smaller in the basal ganglia, followed by
the corpus callosum, and smallest in the corona radiata; the sec-
ond time constant τ2 is largest in the corpus callosum, followed
by the cortex, the basal ganglia, and again smallest in the corona
radiata. This suggests that, at small time scales, the corona ra-
diata stiffens significantly compared to the other brain regions.
Interestingly, the second time constants were larger for shear
relaxation than for compression relaxation, while the first time
constants showed the opposite trend. The parameters calibrated
with all loading modes simultaneously show similar trends as
the stress relaxation experiments with the exception that the
second time constant was much smaller for the corpus callo-
sum than for all other regions. We attribute this observation to
the fact that the recorded tensile forces for the corpus callosum
were in the range of the sensitivity of the force sensor.

Fig. 5 compares the performance of the viscoelastic model
calibrated using the conditioned experimental data of each load-
ing mode separately by minimizing the objective function (24)
against using all loading conditions simultaneously by mini-
mizing the objective function (25). Again, we illustrate this
comparison exemplarily for the corona radiata.

Fig. 6 illustrates the experimental data during the third load-
ing cycle associated with the conditioned response in all four
regions, the cortex (C, n = 13), the basal ganglia (BG, n = 15),
the corona radiata (CR, n = 19), and the corpus callosum (CC,
n = 11) together with the corresponding constitutive model cal-
ibrated using data from all five loading modes simultaneously.

Table 6 summarizes the corresponding material parameters
and coefficients of determination for all four regions. Even for
the conditioned response, stress relaxation experiments provide
better estimates for the material parameters with larger coeffi-

cients of determination R2 than cyclic experiments. We note
that the relaxation data are the same for the unconditioned and
conditioned parameter identification. Again, models calibrated
with compression data only overestimate tensile stresses. Con-
sidering all loading modes simultaneously for calibration, we
obtain a set of six material parameters that well represent the
conditioned tissue response under all loading conditions per-
formed during Protocol 1. The region-specific parameter sets
can be used immediately for large scale simulations in com-
mercial finite element software that use the multiplicative de-
composition of the deformation gradient (5) such as Abaqus.
The viscoelatic shear moduli µ1 and µ2 from the cyclic fits are
smaller–only about half the value–for the conditioned than for
the unconditioned response. This suggests that the fluid phase,
which can escape the solid matrix during the initial loading,
adds further resistance to load. When we identify the param-
eters with all loading conditions simultaneously, this effect is
less pronounced. As expected, the equilibrium shear moduli
are only marginally affected by conditioning. Interestingly, the
conditioned response is more non-linear than the unconditioned
response with larger absolute values of α. This suggests that the
nonlinearity can be attributed to the solid matrix rather than to
the fluid phase.

Table 7 summarizes the loading-mode-specific time con-
stants τi = ηi/µi for the conditioned response in all four regions.
The time scales were generally larger compared to the uncon-
ditioned behavior, which we attribute to the fluid phase, which
can be squeezed out during initial loading (also see Fig. 1b)
and is no longer present in the later cycles. When we consid-
ered all loading conditions simultaneously for calibration, the
first time constants were slightly larger for the conditioned than
for the unconditioned response, but generally showed similar
trends. The second time constants, in contrast, had significantly
increased compared to the unconditioned response; this effect
was more pronounced in white than in gray matter. This sug-
gests that most fluid escaped from specimens of the corpus cal-
losum followed by those from the corona radiata; gray matter
specimens from the cortex seem to loose the least fluid during
the first cycle.

3.3. Combined loading
Fig. 7 shows the average unconditioned shear stress versus

the amount of shear for specimens from the corona radiata. The
graph summarizes the combined compression/tension-shear re-
sponse for all eleven stretch levels according to Protocol 2 in
Table 2 calibrated by minimizing the objective function (26).
Our model is capable of capturing the increase in shear stresses
with increasing compression, but much less with increasing ten-
sion, which is the natural outcome of the compression-tension
asymmetry observed in Figs. 3 and 5. It underestimates stresses
during the initial loading [7], but agrees well with the experi-
mental data after that. We believe that the marked decrease in
shear stresses from 0 to 5% tension is rather an artifact of the
test setup than an inherent tissue characteristic. We unavoidably
conditioned the tissue during compression-shear loading, which
might have led to a slight drop in shear stresses for the first ten-
sion level compared to the initial loading. To avoid this arti-
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Figure 5: Sensitivity of parameters identification with respect to loading mode. Average experimental data during the third loading cycle associated with the
conditioned response during simple shear (a), compression (b), tension (c), shear relaxation (d), and compression relaxation (e), shown for specimens from the
corona radiata, with corresponding constitutive models calibrated using data from each loading mode separately and all loading modes simultaneously, see Table 6.
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Figure 6: Simultaneous parameter identification for all five loading modes. Average experimental data during the third loading cycle associated with the conditioned
response, with standard deviations indicated by the error bars, in four regions, cortex (C, n = 13), basal ganglia (BG, n = 15), corona radiata (CR, n = 19), and
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Table 4: Viscoelastic parameters and coefficients of determination calibrated with the averaged unconditioned response in four brain regions, the cortex (C, n = 13),
the basal ganglia (BG, n = 15), the corona radiata (CR, n = 19), and the corpus callosum (CC, n = 11), for different loading modes separately, shear, compression,
tension, shear relaxation, and compression relaxation, and all modes simultaneously.

unconditioned µ∞ α µ1 η1 µ2 η2 R2
s R2

sr R2
c R2

cr R2
t

response [kPa] [–] [kPa] [kPa·s] [kPa] [kPa·s] [–] [–] [–] [–] [–]
simple shear

C 0.01 -16.25 22.94 4.09 2.33 148.23 0.979 -5.06 0.911 -6.05 -0.72
BG 0.90 -7.53 13.46 3.49 0.17 20957.81 0.975 -12.77 0.967 -9.59 -3.20
CR 0.01 -9.97 15.09 3.67 1.18 873.24 0.973 -6.73 0.964 -2.96 -6.84
CC 0.01 -4.70 7.67 2.08 0.85 42.35 0.976 -4.84 0.897 -1.85 -9.54

shear relaxation
C 0.61 -18.71 1.28 2.40 0.80 138.38 0.821 0.979 0.890 0.882 0.825
BG 0.24 -20.97 0.70 1.00 0.31 43.98 0.828 0.966 0.835 0.934 0.765
CR 0.29 -21.47 1.26 1.00 0.40 56.61 0.842 0.975 0.770 0.943 0.332
CC 0.11 -20.06 0.76 1.00 0.24 47.09 0.719 0.937 0.645 0.824 0.059

compression
C 0.01 -11.92 14.93 3.46 2.17 314.92 0.941 -1.54 0.997 -2.19 -0.29
BG 0.01 -12.73 5.27 2.14 0.99 116.44 0.944 -2.37 0.997 -3.04 -1.05
CR 0.01 -16.77 8.48 2.39 1.24 93.37 0.916 -2.84 0.992 -2.54 -4.26
CC 0.01 -20.35 5.99 1.62 0.75 39.81 0.924 -4.03 0.987 -1.95 -4.98

compression relaxation
C 1.12 -6.64 1.29 4.04 0.95 97.16 0.890 0.954 0.910 0.993 -0.58
BG 0.65 -3.93 0.69 1.97 0.47 36.72 0.915 0.494 0.933 0.988 -3.06
CR 0.79 -4.05 1.26 2.36 0.67 44.29 0.914 0.514 0.916 0.985 -9.68
CC 0.26 -10.89 0.85 1.81 0.39 47.17 0.894 0.580 0.860 0.989 -4.89

tension
C 0.80 -0.00 0.78 1.50 0.80 1.56 0.556 -0.660 0.133 -1.97 0.970
BG 0.14 -0.00 0.74 2.08 0.12 278.91 0.534 -1.14 -0.02 -3.58 0.992
CR 0.19 -0.00 0.77 1.50 0.07 206.60 0.436 -1.55 -0.22 -3.54 0.990
CC 0.04 -0.01 0.44 1.50 0.01 529.11 0.298 -1.40 -0.26 -2.51 0.985

all modes
C 0.36 -16.07 1.78 10.18 0.82 697.88 0.922 0.963 0.954 0.861 0.308
BG 0.33 -17.23 0.79 2.89 0.29 48.71 0.915 0.882 0.945 0.895 0.318
CR 0.35 -20.80 1.18 2.51 0.41 40.72 0.936 0.915 0.915 0.897 -0.71
CC 0.17 -21.41 0.78 1.91 0.30 22.85 0.907 0.678 0.894 0.905 -1.77

Table 5: Characteristic time constants τi = ηi/µi calibrated with the unconditioned response of each loading mode separately and for all loading modes simultane-
ously.

unconditioned shear shear compression compression tension all
response cyclic relaxation cyclic relaxation cyclic modes

τ1 τ2 τ1 τ2 τ1 τ2 τ1 τ2 τ1 τ2 τ1 τ2
[ s ] [ s ] [ s ] [ s ] [ s ] [ s ] [ s ] [ s ] [ s ] [ s ] [ s ] [ s ]

C 0.18 63.54 1.87 173.18 0.23 145.26 3.14 101.79 1.93 1.94 5.73 849.85
BG 0.26 126824.54 1.42 143.57 0.40 117.22 2.87 78.85 2.81 2304.78 3.65 167.53
CR 0.24 741.61 0.80 142.79 0.28 75.02 1.87 66.59 1.96 2781.62 2.12 99.48
CC 0.27 49.82 1.32 193.61 0.27 52.76 2.14 119.87 3.44 51946.26 2.46 77.37

fact, we could have tested each specimen under a single strain
level only. However, with the large inter-specimen variation
observed for brain tissue in general, this would have required
a large number of samples to provide statistically meaningful
results.

Table 8, top, summarizes the material parameters for the un-

conditioned response. Calibrating the viscoelastic constitutive
model with all axial stretch levels during combined loading
simultaneously yielded a larger equilibrium modulus µ∞ than
the simultaneous fit of all uniaxial loading modes in Protocol
1 in Table 4, bottom. This can be associated with the much
smaller absolute value of α; a large absolute value of α as
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Table 6: Viscoelastic parameters and coefficients of determination calibrated with the averaged conditioned response in four brain regions, the cortex (C, n = 13),
the basal ganglia (BG, n = 15), the corona radiata (CR, n = 19), and the corpus callosum (CC, n = 11), for different loading modes separately, shear, compression,
tension, shear relaxation, and compression relaxation, and all modes simultaneously.

conditioned µ∞ α µ1 η1 µ2 η2 R2
s R2

sr R2
c R2

cr R2
t

response [kPa] [–] [kPa] [kPa·s] [kPa] [kPa·s] [–] [–] [–] [–] [–]
simple shear

C 0.37 -28.74 12.70 2.03 0.99 43.67 0.949 -0.30 0.858 -0.76 0.644
BG 0.52 -20.82 6.52 2.17 0.08 22405.38 0.931 -4.12 0.972 -4.88 0.031
CR 0.52 -25.00 8.52 2.17 0.01 20063.23 0.887 -2.08 0.888 -1.81 -0.32
CC 0.36 -19.13 3.48 1.71 0.07 8466.82 0.825 -2.56 0.879 -1.04 -3.13

shear relaxation
C 0.61 -18.72 1.28 2.40 0.80 138.33 0.830 0.980 0.885 0.882 0.175
BG 0.24 -20.99 0.71 1.00 0.31 44.03 0.842 0.967 0.782 0.934 0.373
CR 0.29 -21.47 1.26 1.00 0.40 56.61 0.842 0.979 0.692 0.943 -0.37
CC 0.11 -20.08 0.76 1.00 0.24 47.17 0.716 0.941 0.617 0.824 -1.32

compression
C 0.01 -28.08 1.71 5.71 0.78 256.46 0.862 -0.23 0.923 -1.08 -0.23
BG 0.01 -25.71 0.84 4.63 0.34 270.55 0.934 0.517 0.937 -0.20 -1.89
CR 0.01 -28.77 3.66 1.50 1.17 122.02 0.774 -3.27 0.919 -5.19 -5.75
CC 0.01 -50.00 0.70 3.61 0.07 71.82 0.816 -0.93 0.859 -1.57 -5.06

compression relaxation
C 1.12 -6.63 1.29 4.04 0.95 97.18 0.899 0.955 0.859 0.993 -2.94
BG 0.66 -3.92 0.69 1.97 0.47 36.73 0.936 0.487 0.873 0.988 -6.56
CR 0.79 -4.06 1.26 2.36 0.66 44.29 0.915 0.512 0.876 0.985 -17.7
CC 0.26 -10.90 0.85 1.81 0.39 47.14 0.886 0.578 0.849 0.989 -11.6

tension
C 0.62 -0.16 0.44 1.52 0.45 1.63 0.534 -1.41 0.179 -3.01 0.669
BG 0.06 -0.02 0.56 5.09 0.01 308.90 0.652 -2.63 0.195 -5.47 0.343
CR 0.14 -0.01 0.45 2.12 0.05 355.96 0.497 -2.08 -0.07 -4.13 0.431
CC 0.01 -0.08 0.30 1.55 0.04 529.01 0.351 -1.60 -0.10 -2.68 0.198

all modes
C 0.52 -20.47 1.35 2.92 0.62 144.67 0.804 0.935 0.879 0.962 0.371
BG 0.22 -21.27 0.61 2.44 0.25 128.48 0.890 0.946 0.890 0.954 -0.40
CR 0.18 -27.53 0.87 2.45 0.24 151.78 0.872 0.963 0.827 0.948 -0.90
CC 0.05 -30.64 0.54 1.92 0.14 141.71 0.760 0.897 0.748 0.972 -1.82

Table 7: Characteristic time constants τi = ηi/µi calibrated with the conditioned response of each loading mode separately and for all loading modes simultaneously.

conditioned shear shear compression compression tension all
response cyclic relaxation cyclic relaxation cyclic modes

τ1 τ2 τ1 τ2 τ1 τ2 τ1 τ2 τ1 τ2 τ1 τ2
[ s ] [ s ] [ s ] [ s ] [ s ] [ s ] [ s ] [ s ] [ s ] [ s ] [ s ] [ s ]

C 0.16 44.28 1.87 173.15 3.34 328.12 3.14 101.80 3.46 3.64 2.17 235.07
BG 0.33 291561.25 1.42 143.83 5.49 802.43 2.87 78.87 9.07 30360.59 3.97 520.41
CR 0.25 2006278.35 0.80 142.78 0.41 103.86 1.87 66.60 4.71 7781.03 2.82 644.80
CC 0.49 125151.51 1.32 194.14 5.18 1035.19 2.14 119.83 5.17 14306.23 3.58 1039.17

the one obtained from Protocol 1 would yield unrealistically
large shear stresses for large compressive or tensile pre-strain in
the combined loading case. Similar to the parameter estimates
from the cyclic experiments in Table 4, the cyclic combined
compression/tension-shear tests are not sufficient to accurately
characterize the long-term time parameters. Consequently, the
larger viscosity adopts an unrealistically large value. While we

achieve coefficients of determination close to one for the com-
bined loading tests in Figure 7, the corresponding predictions
for the uniaxial loading at smaller strains in Protocol 1 are rela-
tively poor, which becomes apparent through smaller R2 values
in Table 8, top. We note, though, that Protocol 1 was not per-
formed on the same specimens as Protocol 2, which implies
that we can not exclude possible influences of inter-specimen
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Figure 7: Unconditioned response during combined compression/tension-shear.
Sinusoidal simple shear superimposed on axial stretch with λ=1.0 (n=8), 0.95
(n=8), 0.9 (n=8), 0.85 (n=8), 0.8 (n=8), 0.75 (n=8), 1.05 (n=8), 1.1 (n=8), 1.15
(n=8), 1.2 (n=8), and 1.25 (n=5). Experiments (solid lines) and viscoelastic
model (dashed lines) with parameters from Table 8, top. The model captures
the pronounced increase in shear stresses with increasing compressive strain
and the less pronounced increase in shear stresses with increasing tensile strain.

variations.
Fig. 8 shows the average conditioned shear stress versus

amount of shear curves during all eleven stretch levels of com-
bined compression/tension-shear loading according to Protocol
2. Again, the model captures the increase in shear stresses ac-
companied by an increase in hysteresis area with increasing
compression, but not with increasing tension. The fact that
the opening of the hysteresis at zero shear increases with ax-
ial compression, but not with axial tension, suggests that the
experimentally observed increase in shear stresses in tension is
in part an artifact of the testing method rather than an inherent
characteristic of the tissue. The time required to complete the
combined loading protocol was exceptionally long and it was
difficult to keep the tissue fully hydrated; samples dried out to-
wards the end of the testing period, which led to an artificial
increase in stresses for the axial stretch levels that we probed
last. This could also explain why the increase in shear stresses
with axial tension is more pronounced in the current study than
in previous experimental studies on mouse brain tissue [34].

Table 9, top, summarizes the corresponding material param-
eters for the conditioned tissue response. Again, the absolute
value of the nonlinearity parameter α is much smaller than es-
timated from the uniaxial loading cases in Protocol 1, but it is
slightly larger than for the unconditioned response in Table 8,
top. The viscosities seem more realistic than those obtained for
the unconditioned response.

3.4. Optimized material parameters for larger loading

Since experimental evidence suggests that the viscosity of
brain tissue is independent of the deformation [7, 19], we as-
sumed that the viscosities calibrated with Protocol 1 were also
valid for the combined loading cases with Protocol 2. To op-
timize the parameters in Section 3.3, we used the information
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Figure 8: Conditioned response during combined compression/tension-shear.
Sinusoidal simple shear superimposed on axial stretch with λ=1.0 (n=8), 0.95
(n=8), 0.9 (n=8), 0.85 (n=8), 0.8 (n=8), 0.75 (n=8), 1.05 (n=8), 1.1 (n=8), 1.15
(n=8), 1.2 (n=8), and 1.25 (n=5). Experiments (solid lines) and viscoelastic
model (dashed lines) with parameters from Table 9, top. The model captures
the pronounced increase in shear stresses with increasing compressive strain
and the less pronounced increase in shear stresses with increasing tensile strain.

from stress relaxation experiments in the corona radiata in Ta-
bles 4 and 6: We set η1 = 2.5s and η2 = 40s for the uncon-
ditioned tissue response, and η1 = 2.5s and η2 = 150s for the
conditioned tissue response. Then we re-ran the parameter op-
timization for the remaining four parameters.

Figs. 9 and 10 show the performance of the optimized model
to capture the unconditioned and conditioned behavior during
uniaxial shear, compression, and tension according to Proto-
col 1, and during combined compressen/tension-shear accord-
ing to Protocol 2. Tables 8 and 9, bottom, summarize the cor-
responding constitutive parameters. The model still underesti-
mates stresses in shear and compression for small strains during
Protocol 1 as illustrated in Figs. 9a–b and 10a–b. However,
the qualitative stress relaxation behavior is much better cap-
tured compared to the material parameters in Tables 8 and 9,
top. Even though this is not directly apparent through the coef-
ficients of determination R2, it will ensure that the relaxation at
larger strains will be adequately predicted. Furthermore, the op-
timized approach ensures that the predicted opening of the hys-
teresis for cyclic simple shear at zero shear in Fig. 10a agrees
well with the experiment.

4. Discussion

Material parameters for brain tissue are commonly reported
for a single loading mode, usually shear [10, 11, 15, 28, 35]
or compression [14], and sometimes tension [19, 2, 36]. Yet,
under physiological conditions, the living brain rarely sees a
single loading mode in pure isolation. Rather, it is exposed to
a combination of shear, compression, and tension and a wide
range of loading rates. To characterize the response of the brain
under combined loading, we modeled brain tissue using a finite
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Figure 9: Average unconditioned response during uniaxial simple shear (a), compression (b), tension (c), shear relaxation (d), compression relaxation (e), and
combined compression/tension-shear (f) and optimized viscoelastic model with parameters from Table 8, bottom, in the corona radiata. We calibrated viscosities
using uniaxial experiments (a–e) and elastic parameters using combined loading f.
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Figure 10: Average conditioned response during uniaxial simple shear (a), compression (b), tension (c), shear relaxation (d), compression relaxation (e), and
combined compression/tension-shear (f) and optimized viscoelastic model with parameters from Table 9, bottom, in the corona radiata. We calibrated viscosities
using uniaxial experiments (a–e) and elastic parameters using combined loading f.
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Table 8: Viscoelastic parameters and coefficients of determination calibrated with the averaged unconditioned response in the corona radiata (CR) for combined
compression/tension-shear and optimized viscoelastic parameters and coefficients of determination calibrated with the averaged unconditioned response in the
corona radiata (CR) for combined compression/tension-shear in combination with uniaxial experiments.

combined compression/tension-shear loading
unconditioned µ∞ α µ1 η1 µ2 η2 R2

s R2
sr R2

c R2
cr R2

t
response [kPa] [–] [kPa] [kPa·s] [kPa] [kPa·s] [–] [–] [–] [–] [–]
CR 0.74 -6.40 2.90 2.91 0.01 47931.27 0.853 0.472 0.644 0.163 -1.71

optimized constitutive parameters for large loading
unconditioned µ∞ α µ1 η1 µ2 η2 R2

s R2
sr R2

c R2
cr R2

t
response [kPa] [–] [kPa] [kPa·s] [kPa] [kPa·s] [–] [–] [–] [–] [–]
CR 0.69 -6.44 3.00 2.50 0.07 40.00 0.838 0.511 0.616 0.124 -1.25

Table 9: Viscoelastic parameters and coefficients of determination calibrated with the averaged conditioned response in the corona radiata (CR) for combined
compression/tension-shear and optimized viscoelastic parameters and coefficients of determination calibrated with the averaged conditioned response in the corona
radiata (CR) for combined compression/tension-shear in combination with uniaxial experiments.

combined compression/tension-shear loading
conditioned µ∞ α µ1 η1 µ2 η2 R2

s R2
sr R2

c R2
cr R2

t
response [kPa] [–] [kPa] [kPa·s] [kPa] [kPa·s] [–] [–] [–] [–] [–]
CR 0.01 -9.05 2.90 2.00 0.60 320.35 0.780 0.070 0.524 -1.00 -0.61

optimized constitutive parameters for large loading
conditioned µ∞ α µ1 η1 µ2 η2 R2

s R2
sr R2

c R2
cr R2

t
response [kPa] [–] [kPa] [kPa·s] [kPa] [kPa·s] [–] [–] [–] [–] [–]
CR 0.03 -11.00 0.61 2.50 0.47 150.00 0.787 -0.55 0.524 -1.90 -1.42

strain Ogden type viscoelastic model with six material parame-
ters: one elastic and two viscoelastic stiffnesses µ∞, µ1, and µ2,
a single non-linearlity parameter α, and two viscoelastic time
constants η1 and η2. In contrast to our previous model with
three different non-linearity parameters α∞, α1, and α2 [7], the
current formulation now allows us to directly adopt finite ele-
ment software packages such as Abaqus, where the viscoelas-
tic formulation uses a single, unified non-linearity parameter α.
Although our current model has two parameters less than our
initial model, its agreement with experimental data is almost
identical to our previous model [7]. In this study, we identi-
fied the six model parameters for different regions in the human
brain under multiple loading conditions, both individually and
simultaneously.

We note that despite some promising results, our method has
several inherent limitations. First, by the very nature of triaxial
testing, gluing the sample to the specimen holder may induce
boundary effects and the deformation might not be as homoge-
neous as we had assumed. Yet, this effect seems to be more
pronounced in tension and compression, rather than in simple
shear [28]. In accordance with the literature [35], we verified
computationally that–for our chosen constitutive model, param-
eterized with our parameter set–the deformation was mainly ho-
mogeneous and boundary effects remained strictly local. Sec-
ond, our goal was to complete all tests for each brain within a
time window of 60 h post mortem. This posed practical limi-
tations to the recovery time between the different tests and we
can not guarantee that the results of individual tests were en-
tirely independent of previous tests. Third, unfortunately, our

current test setup does not allow us to characterize the poroelas-
tic behavior of brain tissue. We are in the process of designing a
combination of drained and un-drained experiments [3] to truly
characterize brain as a poro-viscoelastic solid.

Our study confirms the general intuition that parameter sets,
identified for a single loading condition and at a certain strain
level, can considerably under- or overestimate the response un-
der different loading conditions and at different strain levels. Of
all three loading modes, shear, compression, and tension, our
study showed that simple shear tests were better suited to char-
acterize the ultra-soft response of brain tissue than compression
or tension tests alone [35]. This agrees well with a recent study
that argued that simple shear tests were more reliable, less sen-
sitive to boundary effects, and more robust under large strains
[28]. Of all five experiments, we found that shear relaxation ex-
periments were best suited to identify the time-dependent ma-
terial parameters. However, this was only true when the whole
strain history–including the loading path–was included into the
calibration. When fitting the reduced relaxation function and
assuming an instantaneous loading [12, 14, 36], the relaxation
times became highly sensitive to the duration of the experiment
and to the selection of data points for the fit [20]. We ob-
served that this sensitivity was greatly reduced when integrating
over the entire loading history. More importantly, by including
cyclic experiments into the fit, the parameter identification be-
came less sensitive and more robust. Our findings agree well
with a recent study on the viscoelasticity of the porcine cor-
pus callosum during equibiaxial stress-relaxation [19], which
found that a major fraction of relaxation occurs during the ini-
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tial loading period. This implies that Heaviside loading func-
tions lead to poor predictions for elastic material parameters.
To prevent these artifacts, we proposed a combined theoretical
and experimental approach that reliably identified both elastic
and viscoelastic parameters using data from multiple loading
conditions: Instead of calibrating the elastic parameters using
only the loading path and the viscous parameters using only the
stress relaxation behavior [12, 14, 6], our approach integrates
data from simple shear, unconfined compression, tension, shear
relaxation, and compression relaxation to holistically character-
ize the overall behavior of gray and white matter tissue.

Unlike most soft tissues, the brain is not only ultrasoft, but
also has an exceptionally high water content, 0.83 g/l in gray
matter and 0.71 g/l in white matter [37]. This suggests that
brain tissue is effectively poro-viscoelastic [38]. Notably, we
observed that both unconditioned viscous time constants were
larger in gray matter with 6 s and 850 s than in white matter with
2 s and 99 s. Yet, both conditioned constants were smaller in
gray matter with 2 s and 235 s than in white matter with 3 s and
645 s. These rheological differences suggest a different poros-
ity between both tissues. We can rationalize these observations
with the underlying tissue microstructure: The corona radiata
consists of a sparsely cross-linked network of myelinated ax-
ons [39], whereas the cortex is made up of a densely connected
network of dendrites that traps the fluid phase inside the tis-
sue. These differences could explain the ongoing discussion
between reported stiffness differences in gray and white mat-
ter. Modeling the brain as a poro-viscoelastic solid and probing
poro-viscoelasticity using drained and undrained experiments
[3] would be critical to elucidate these time-dependent phenom-
ena. Understanding the poro-viscoelasticity of the brain is im-
portant in the context of brain swelling [40] with pathological
applications to edema [41], hydrocephalus [42], or decompres-
sive craniectomy [43].

To discriminate between the initial loading cycle, with the
porous fluid included, and repeated loading cycles, with the
fluid partly squeezed out, we identified four distinct param-
eter sets associated with the unconditioned and conditioned
responses at normal, physiological and elevated, pathological
strain levels. While the unconditioned parameter set could be
useful to mimic the in vivo conditions of fluid-saturated tis-
sue in the living brain, the conditioned parameter set is eas-
ily reproducible under ex vivo conditions in the laboratory. To
provide guidelines for simulations and comparisons for exper-
imentalists, we view both data sets as rather independent, but
valuable for their own class of applications. A challenge when
performing several sequential tests on one and the same sam-
ple is to ensure sufficient recovery time between the individual
tests, avoid tissue damage, and maintain tissue integrity during
the course of the experiment. Here we restricted the maximum
compressive and tensile stretches to λ = 0.9 and λ = 1.1 and the
maximum shear to γ = 0.20 to ensure that the tissue remained
intact throughout all three loading modes. Our preliminary ex-
periments had shown that larger strains permanently damaged
the tissue. With a maximum compressive stretch of 0.9, we
have previously shown that the tissue fully recovers and fol-
lows the initial loading path after a resting period of about one

hour [4]. Some previous studies had identified parameters us-
ing the loading path–but not the unloading path–for up to 50%
strain or more [12, 44], which might be critical in view of tis-
sue damage. The damage threshold for diffuse axonal injury,
for example, has been reported at as low as 18% tensile strain
[45]. While smaller strain levels minimize damage through-
out the course of the experiment, restricting the calibration to
moderate strains has several other drawbacks: When comparing
the calibration of the individual loading from Protocol 1 in Ta-
bles 4 and 6 with the calibration of the combined loading from
Protocol 2, we found that the model overestimates the stress re-
sponse at strains beyond the tested strain level; when calibrating
the model with the combined loading from Protocol 2, in con-
trast, the model underestimates the stress response at moderate
strains. This motivated us to combine the viscous parameters
from Protocol 1 with the elastic parameters from Protocol 2.
The associated optimized parameter sets for unconditioned and
conditioned tissue seem to provide the best fit of the experi-
mental data at finite strains. Their characteristic parameters are
summarized in Tables 8 and 9, bottom.

Understanding cellular mechanisms and tissue microstruc-
ture is critical to interpret the constitutive behavior of the hu-
man brain. Here we have identified material parameters for
each loading mode separately to better understand loading-
mode specificity. This also allows us to correlate the param-
eters to the underlying mechanisms of load transfer within the
tissue. Our findings strengthen our hypothesis that the rheol-
ogy of brain tissue is characterized by at least two different
time scales, one associated with the poroelastic interaction of
the solid and fluid phases within the tissue and one related to
the viscoelastic nature of the solid skeleton itself [38]. Fur-
ther studies will be needed to explore the interplay of porosity
and viscosity and their effects on brain tissue rheology both in
time and space. We have already ruled out the possibility of
permanent softening or irreversible damage as a possible inter-
pretation for the observed time-dependent response [3]. When
re-testing the same sample after a resting period of 60 minutes,
we observed that the behavior was fully reversible: The rested
sample followed the identical loading path as the initial sample
[4].

5. Conclusion

We have shown that a finite viscoelastic Ogden model with
an elastic stiffness, two viscoelastic stiffnesses, a single uni-
fied nonlinearity parameter, and two viscous time constants
can characterize the experimental behavior of human brain tis-
sue under multiple uniaxial and multiaxial loading conditions.
Strikingly, parameters identified for a single loading mode can
generate huge errors when used for a different mode of load-
ing. These errors were smallest for parameters associated with
shear relaxation experiments. This suggests that, of all loading
modes, shear relaxation probes the broadest spectrum of mate-
rial characteristics. When fitting our relaxation tests to the pop-
ular Prony series, we observed that the parameter identification
was highly sensitive to the duration of the experiment and to the
selection of data points for the fit. To address these limitations,
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we performed a combination of shear, shear relaxation, com-
pression, compression relaxation, and tension tests and simul-
taneously identified sets of viscoelastic parameters for all five
loading conditions. Altogether, we identified four distinct pa-
rameter sets associated with the unconditioned and conditioned
responses at normal and elevated strain levels. In general, the
elastic stiffness was on the order of 0.3 kPa, the viscoelastic
stiffnesses were 1.0 kPa and 0.4 kPa, the nonlinearity parame-
ter was on the order of -20, and the two viscous time constants
were on the order of seconds and minutes. Notably, the uncon-
ditioned tissue was about one third stiffer than the conditioned
tissue suggesting that porous fluid supports some of the initial
load, but is then squeezed out throughout the first loading cy-
cle. We believe that our parameter sets will be widely used for
finite element simulations with custom-designed or commer-
cial software packages such as Abaqus that feature Ogden type
models at finite deformations. Our finite viscoelastic model is
most applicable to simulate the response of the brain at moder-
ate to long time scales with applications in neurodevelopment,
neurooncology, neurosurgery, and neurodegeneration.
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