
 

 
 
 
 
 
Riehl, S. and Steinmann, P. (2017) On structural shape optimization using an 
embedding domain discretization technique. International Journal for Numerical 
Methods in Engineering, 109(9), pp. 1315-1343. (doi:10.1002/nme.5326). 
 
   
There may be differences between this version and the published version. You are 
advised to consult the publisher’s version if you wish to cite from it. 
 
This is the peer reviewed version of the following article: Riehl, S. and Steinmann, 
P. (2017) On structural shape optimization using an embedding domain 
discretization technique. International Journal for Numerical Methods in 
Engineering, 109(9), pp. 1315-1343, which has been published in final form at 
10.1002/nme.5326. This article may be used for non-commercial purposes in 
accordance with Wiley Terms and Conditions for Self-Archiving. 
 
 
 

http://eprints.gla.ac.uk/185715/ 
     

 
 
 
 
 
 
Deposited on: 14 June 2019 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk 

http://dx.doi.org/10.1002/nme.5326
http://dx.doi.org/10.1002/nme.5326
http://olabout.wiley.com/WileyCDA/Section/id-828039.html#terms
http://eprints.gla.ac.uk/185715/
http://eprints.gla.ac.uk/185715/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


On structural shape optimization using an embedding domain
discretization technique
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Abstract

This contribution presents a novel approach to structural shape optimization that relies on an
embedding domain discretization technique. The evolving shape design is embedded within a
uniform finite element background mesh which is then used for the solution of the physical state
problem throughout the course of the optimization. We consider a boundary tracking procedure
based on adaptive mesh refinement to separate between interior elements, exterior elements, and
elements intersected by the physical domain boundary. A selective domain integration procedure
is employed to account for the geometric mismatch between the uniform embedding domain
discretization and the evolving structural component. Thereby, we avoid the need to provide a
finite element mesh that conforms to the structural component for every design iteration, as it
is the case for a standard Lagrangian approach to structural shape optimization. Still, we adopt
an explicit shape parametrization that allows for a direct manipulation of boundary vertices for
the design evolution process. In order to avoid irregular and impracticable design updates, we
consider a geometric regularization technique to render feasible descent directions for the course
of the optimization.

Keywords: finite element, embedding domain, shape optimization, design sensitivity analysis

1. Introduction

Along with the advent of the finite element method in the engineering community in the
1970s, the field of structural shape optimization has emerged as a promising area of applica-
tion. Early attempts in this field of research, however, revealed severe drawbacks when altering a
structural design component through a direct manipulation of nodal point coordinates in its finite
element representation [1, 2, 3]. Not only did one suffer from undesired mesh dependency effects,
such as a varying structural response when perturbing interior nodal points, but also struggled
with irregular and impracticable design updates at the domain boundary.
Even more, in order to represent comparatively large shape changes using one and the same fi-
nite element mesh, one needs to accept a highly non-uniform interior mesh distribution at later
design iterations. And in some cases the premature termination of the domain update procedure
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is unavoidable due to severe element distortions.
Two main considerations have evolved to bypass these conceptual shortcomings. On the one
hand, a separate geometry model can be employed to govern the design update procedure [4, 5,
6, 7]. By this mechanism, the inconvenient direct manipulation of nodal point coordinates within
the corresponding finite element representation is avoided. Based on the respective parametriza-
tion of the geometry model1, the admissible design space for the course of optimization is lim-
ited, and hence the development of impracticable zig-zag patterns at the domain boundary is
overcome. In fact, these undesired patterns can no longer be represented by any combination of
design variables and are effectively excluded from the available design space for optimization.
On the other hand, the initial finite element analysis model may be updated during the course of
the optimization not only to adhere to the varying boundary of the geometry model, but also to
improve element mesh quality or the accuracy of the numerical analysis results [8, 9, 10, 11].
This may for instance take the form of geometric mesh smoothing operations, and goal-oriented
or error-controlled adaptive mesh refinement. However, these mechanisms may still encounter
difficulties when it comes to large shape changes, or even topological changes throughout the
course of the optimization, which then necessitates the use of an elaborate, computationally ex-
pensive re-meshing algorithm that is conducted in turn with the domain update procedure.
From this perspective, so-called embedding (or fictitious) domain discretization techniques seem
an ideal supplement and a natural choice for the application in structural shape optimization
[12, 13, 14, 15, 16, 17]. For these methods, the main idea is to extend the structural analysis
problem to a regularly-shaped auxiliary domain that encloses the physical domain boundary.
Then, for the approximate numerical solution of the structural analysis problem, it suffices to
provide a uniform discretization for the auxiliary domain, rather than a finite element mesh that
conforms the arbitrary-shaped structural component itself. Further, when considering domain
variations of the structural component, its material points are not attached to finite element nodal
points but rather move through the stationary finite element mesh of the embedding domain such
that no mesh distortion is observed.
However, these apparent advantages do not come along without numerical challenges. In fact,
the computational effort is shifted from the use of reliable meshing algorithms towards elaborate
numerical integration schemes. This is to account for the geometric mismatch between the phys-
ical domain boundary and its non-conforming finite element representation within the auxiliary
domain setting. All elements that are intersected by the boundary of the structural component
are subject to a selective domain integration procedure to distinguish the respective element area
fractions interior and exterior to the physical domain boundary. This selective domain integra-
tion procedure is crucial to the numerical accuracy that is attributed to the embedding domain
analysis results, and a number of different approaches have been investigated in the literature.
A first approach, common to applications in topology optimization [18, 19], is to homogenize (or
distribute evenly) the material characteristics within intersected elements based on the respective
interior element area fraction. Thereby, intersected elements are taken into account by use of a
standard quadrature rule, only to scale down all integral contributions by the interior element area
fraction subsequently. This approach is computationally efficient but is also known to provide
comparatively low accuracy for the embedding domain structural analysis [20, 21].
A more selective approach to track the physical boundary within the embedding finite element

1A basic parametrization of the geometry model may for instance comprise a set of straight lines, different radii, or
a set of interconnected spline curves. Also, more elaborate geometry descriptions based on Bezier curves or NURBS
parametrizations may be taken into account.
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domain is to provide for all intersected elements a greater number of integration points as is nec-
essary for the exact integration of the intrinsic finite element polynomial space. Each integration
point is then checked to be interior or exterior to the physical domain boundary [22]. Based on
this classification, the integral contribution from each integration point is either taken into ac-
count, or neglected for the evaluation of the respective element domain integral. However, even
for a large number of integration points, the sharp intra-element material discontinuity cannot
be represented exactly by this procedure. A conceptually related approach is employed in the
finite cell framework [23, 24, 25]. Therein, intersected elements are subject to a selective domain
integration employing hierarchical tree data structures, a computationally efficient procedure on
the basis of nested element subdivisions.
Still, the highest level of accuracy for the embedding domain structural analysis is achieved only
when an exact integration of intersected elements is taken into account. One approach to meet
this requirement is to partly loosen the uniform mesh principle in the embedding domain setting.
More specifically, one aims to re-orient a layer of finite elements within the embedding domain
discretization such as to conform the physical domain boundary [26, 27, 28, 29, 30]. Thereby,
one enables the use of a standard quadrature rule for the exact domain integration. On the con-
trary, an exact domain integration can also be realized by the use of a separate intra-element
sub-triangulation that is used for integration purposes only [12, 31].
The present contribution is concerned with the formulation and implementation of a method
for structural shape optimization in an embedding domain setting. The method relies on an
explicit geometry description and all investigations are limited to a linear elastic regime in two-
dimensional space. An adjoint formulation is used for the derivation of design sensitivities in the
continuous setting, in which we follow the material derivative concept from continuum mechan-
ics. We consider different numerical examples in which we assess the applicability of different
selective domain integration procedures for the use in structural shape optimization. This in-
cludes the evaluation of their computational efficiency, ease of implementation, and the expected
increase in complexity when considering an extension to a three-dimensional setting.
As opposed to existing contributions in the literature that rely on an explicit but parametric design
description [12, 13, 14], we allow for a completely free modification of the evolving shape design
by a direct and independent manipulation of all contour vertices available. This is to allow for
a large design space to choose optimal solutions from. However, due to the increasing number
of design variables and the independent movement of all vertices we still need to counteract the
above-mentioned development of impracticable zig-zag patterns at the evolving contour curve.
We address this issue by two mechanisms. First, we consider a hierarchic design description in
which we use a relatively coarse contour curve with few design variables to allow for the largest
and most characteristic design changes at early design stages. At later design iterations, the con-
tour curve is then provided with additional vertices to allow for the formation of finer scale details
within the optimal shape design. As a second mechanism, we consider a descent algorithm for
the update process in which we do not rely exclusively on the steepest descent direction obtained
from shape sensitivity analysis, but rather a feasible descent direction that results in smoother
updates of the contour curve. Thereby, the feasible descent direction comprises a linear com-
bination of the steepest descent direction as well as a local vertex averaging that moves every
vertex towards the central point being defined by its adjacent vertices.
As opposed to existing contributions in the literature that rely on an implicit design parametriza-
tion [15, 16, 19, 30], typically a level-set function, the present method does not require the so-
lution of an additional boundary value problem (e.g. the Hamilton-Jacobi equation) to obtain an
overall design velocity field to update the evolving shape design, but allows for a direct and inde-
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pendent manipulation of all contour vertices. This facilitates the identification and consideration
of specific geometric features for the course of the optimization through coupling a subset of the
contour vertices, a demand that may arise from certain geometric and manufacturing constraints
[32]. One may also think of pre-defined geometric features as part of the optimization process,
for instance inclusions of fixed size and orientation but variable positioning, or a fixed number
of holes of varying radius. In this perspective, the inherent versatility of the implicit approach
to allow for splitting and merging operations of existing holes may not be practicable in certain
engineering or industrial close-to-production design scenarios.
In contrast to [33, 34], the present explicit approach involves a strict and straightforward separa-
tion of the evolving shape design and the embedding domain mesh since the former is stand-alone
and not obtained indirectly from the nodal points of the unstructured analysis mesh. Thereby,
refinements of the analysis mesh do not change the parametrization and thus the geometric ver-
satility of the contour curve, and refinements of the contour curve do not alter the result (or
accuracy) of the analysis mesh. In fact, the analysis mesh may be equipped with an independent
a posteriori FE solution-based refinement scheme to render equally accurate results throughout
the course of the optimization.

2. Embedding domain technique - continuum formulation

We consider an elastic body B occupying a bounded open domain B ⊂ R2 that comprises of
continuum points X and to which we attribute homogeneous and isotropic material characteris-
tics. More specifically, we assume that the structural response of the elastic body due to external
loading is determined by a linear Hookean material parametrization using Lamé parameters λ
and µ, such that the Cauchy stress tensor is in the format

σ(ε) = λ[trε]I + 2µε, (1)

where ε = ∇symu using the symmetric gradient operator ∇sym{•} = 1/2[∇{•}] + 1/2[∇{•}]T , and I
denotes the second-order identity tensor.
The boundary Γ of B consists of two disjoint portions ΓN and ΓD, such that

ΓN ∪ ΓD = Γ, ΓN ∩ ΓD = ∅. (2)

The body B is subject to volume forces b being specified per unit volume in B and traction forces
t acting on ΓN , whereas ΓD is equipped with prescribed displacements u.
Spatial equilibrium is then obtained for the displacement function u that fulfils the Euler-Lagrange
equations in the format

divσ + b = 0 in B
σ · n = t on ΓN

u = u on ΓD,
(3)

where n denotes the outward unit normal to ΓN .
In order to establish a variational formulation, we consider an admissible virtual displacement
function δu2 and integrate the localized force balance in Eq. (3) over B to render the principle of
virtual work ∫

B

σ : δε dA =

∫
B

b · δu dA +

∫
ΓN

t · δu dS, (4)

2δu = 0 on ΓD.
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Figure 1: Conceptual design and finite element modelling of the embedding domain approach. a An elastic body B
occupying a bounded open set B ⊂ R2 with boundary Γ is embedded within a regularly-shaped domain Ω. b For
simplification, we consider a polygonal representation Γh of the physical boundary Γ in the sequel. c Upon discretization
of the embedding domain Ω, three sets of finite elements are identified based on their relative positioning against Γh:
exterior (white), interior (blue), and elements intersected by Γh (orange).

where δε = ∇symδu.
At this point, let us consider B to be a subset of a regularly-shaped embedding domain Ω,
cf. Fig. 1a. Then, introducing a characteristic function χ such that

χ(X) =

1 if X ∈ B
0 if X ∈ Ω \ B,

(5)

the virtual work statement in Eq. (4) is equally expressed through∫
Ω

χ σ : δε dA =

∫
Ω

χ b · δu dA +

∫
ΓN

t · δu dS, (6)

where we consider the extension of the primary solution variable u = 0 for X ∈ Ω \ B.
The benefit of the virtual work formulation in Eq. (6) as opposed to the unaltered formulation
in Eq. (4) is a change of the domain for integration, which circumvents the need to provide a
boundary conforming finite element discretization Bh of B.
For ease of notation, let us formally refer to the virtual work expression (6) via

Wχ(u, δu) = aχ(u, δu) − lχ(δu) = 0, (7)

where aχ and lχ denote the (energy) bilinear and the (load) linear form, respectively

aχ(u, δu) =
∫

Ω
χ σ : δε dA,

lχ(δu) =
∫

Ω
χ b · δu dA +

∫
ΓN t · δu dS.

(8)

3. Finite element modelling

For the approximate solution of the virtual work statement in Eq. (7) within a finite element
setting, we consider a collection of ne (regular square) finite elements Ωe to establish a discrete
domain representation Ωh of Ω

Ω ≈ Ωh =

ne⋃
e=1

Ωe. (9)
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The corresponding elementwise placement Xe and the elementwise displacement function ue are
given in terms of the corresponding nodal point values X(i), u(i) and polynomial shape functions
N(i)(ξ) parametrized by isoparametric coordinates ξ ∈ [−1, 1]2

Xe(ξ) =

nen∑
i=1

N(i)(ξ)X(i), ue(ξ) =

nen∑
i=1

N(i)(ξ)u(i), (10)

where nen denotes the number of nodal points per element.
In the sequel, we allow for a geometric simplification in which we consider B to be bound by
a polygonal approximation Γh of Γ using piecewise linear interpolation between its nv vertices
v(k), cf. Fig. 1b. Further, we denote by Γs the respective adjoining ns line segments3 such that
Γh =

⋃ns
s=1 Γs. As a result, we distinguish three sets of finite elements to which individual

elements Ωe are assigned based on their relative positioning as compared to Γh, cf. Fig. 1c.
Specifically, we denote by {Ω}int the set that comprises all Ωe interior Γh, and we denote by {Ω}ext

the set that comprises all Ωe exterior Γh. The remaining elements Ωe are intersected by Γh and
are identified within {Ω}bnd.
Moreover, we do not rely on a uniform discretization Ωh for the embedding domain, but rather
aim to resolve the physical boundary Γh more closely. To this extent, starting from a coarse-
level discretization Ωh, we invoke a tracking mechanism for the domain boundary Γh based on
adaptive (or hierarchical) mesh refinement. Thereby, we seek to narrow the layer of elements
identified within {Ω}bnd until a user-specified threshold value γ that is relating the area of {Ω}bnd

and the length of Γh is met
area

(
{Ω}bnd

)
/ length

(
Γh

)
≤ γ. (11)

As a consequence of this tracking procedure, hanging node (or multi-point) constraints are
to be considered between neighbouring finite elements showing different levels of refinement,
cf. Fig. 2.
In order to account for the remaining geometric mismatch between the physical boundary Γh and
its embedding domain approximation via {Ω}bnd, we consider two distinct approaches.
First, within the staircase scheme, we rely on an oversupply of integration points to allow for a
more detailed intra-element consideration of Γh within {Ω}bnd. Thereby, considering all domain
integrals involving elements within {Ω}bnd, each integration point is checked to be interior or
exterior to Γh. A detailed account on the specifics of this approach is given in Sec. 3.1.
By contrast, following the reorientation scheme, we invoke a rearrangement procedure for all
nodal points being adjacent to elements within {Ω}bnd in order to obtain a (nearly) conforming
boundary layer within Ωh, which then enables the use of a standard numerical integration proce-
dure. The specifics of this approach are outlined in Sec. 3.2.

3.1. Staircase scheme

Upon discretization of the virtual work statement in Eq. (7), we obtain a matrix system of
equations for the finite element solution vector uh in the format

Kuh = f, (12)

3For closed polygons, we obtain ns ≡ nv.
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Figure 2: Embedding domain tracking mechanism via adaptive (or hierarchical) mesh refinement. Elements within
{Ω}bnd are marked for refinement until a user-specified criterion γ that is relating the respective extent of {Ω}bnd and Γh

is met, cf. Eq. (11).

where K and f denote the system stiffness matrix and the external load vector, respectively. The
system stiffness matrix K consists of dual nodal point contributions of the type

K(IJ) =

ne

A
e=1

∫
Ωe

χ ∇N(i) · E · ∇N( j) dA, (13)

where capital letters (I) and (J) are used to denote global (or overall) node numbering and small
letters (i) and ( j) are used to identify local (or elementwise) node numbers. Consequently, the
assembly operator4 A spans over all elements Ωe for which (I) ∈ Ωe and (J) ∈ Ωe. The fourth-
order elasticity tensor E in Eq. (13) is expressed in terms of the Lamé parameters

E = λI ⊗ I + µI ⊗ I + µI ⊗ I, (14)

where ⊗ and ⊗ denote non-standard5 dyadic products.
The characteristic function χ in Eq. (13) equals zero for all domain integrals considering ele-
ments within {Ω}ext. Hence, no degrees of freedom are assigned to {Ω}ext and we can exclude the
respective elements from the assembly routine. By contrast, since χ = 1 for all elements within
{Ω}int, a standard numerical integration procedure is used to establish the respective single el-
ement contributions in Eq. (13). Therefore, it remains to determine the integral contributions
considering all elements within {Ω}bnd. The numerical evaluation of the respective domain inte-
grals via integration point oversampling is outlined in Sec. 3.1.1.
The external load vector f in Eq. (12) consists of nodal point contributions of the type

f(I) =

ne

A
e=1

∫
Ωe

χ N(i)b dA +

ne

A
e=1

∫
ΓN

N(i)t dS. (15)

Again, the respective domain integrals involving the characteristic function χ are discarded for
elements within {Ω}ext, and allow for a standard evaluation considering elements within {Ω}int.

4The assembly operator A is a formal representation to account for the consideration and summation of local (elemen-
twise) matrices at their appropriate locations within the corresponding global (system) matrices. For a detailed account
on the formulation and implementation of finite element assembly routines we refer to [35].

5[I ⊗ I]i jkl = δikδ jl, [I ⊗ I]i jkl = δilδ jk .
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Figure 3: Evaluation of domain integrals via integration point oversampling: For all elements within {Ωe}
bnd we supply

nintp integration points, each of which is then checked to be interior or exterior to Γh. Typically, nintp is within the
range [25, 100]. All remaining domain integrals considering elements Ωe ∈ {Ωe}

int are evaluated by means of a standard
quadrature rule.

The numerical treatment of the domain integrals considering elements within {Ωe}
bnd are taken

into account via integration point oversampling as outlined in Sec. 3.1.1.
The remaining line integral contributions holding the natural (traction) boundary condition in
Eq. (15) do only involve elements within {Ω}bnd and are examined within Sec. 3.1.2.

3.1.1. Domain integrals
All domain integrals involving elements within {Ω}bnd are characterized by a sharp intra-

element discontinuity for the characteristic function χ across the physical domain boundary Γh.
For the approximate numerical integration of the respective domain integrals in Eqs. (13) and
(15), we rely on an oversupply of nintp integration points considering all Ωe ∈ {Ω}

bnd, cf. Fig. 3.
Each integration point is then checked to be interior or exterior to Γh and the numerical integration
is in the format ∫

Ωe

χ(ξ) f (ξ) dA ≈
nintp∑
k=1

χi/e(ξk) f (ξk)wk, (16)

where ξk and wk denote the isoparametric position of the k-th integration point and its respective
integration weight6. In Eq. (16), χi/e = 1 for all ξk interior Γh and χi/e = 10−5 for all ξk exterior
Γh. The non-vanishing contribution from integration points exterior Γh is a precaution to avoid
the formation of a singular system stiffness matrix as a result of the assembly routine when only
a small fraction of an intersected element lies within Γh. For the numerical examples within this
contribution, we choose nintp ∈ [25, 100].

3.1.2. Natural boundary conditions
For the numerical consideration of the natural (traction) boundary condition in Eq. (15), we

need to evaluate the corresponding line integral along ΓN in a sequential manner involving all
elements Ωe ∈ {Ω}

bnd, cf. Figs. 4a-b.

6In Eq. (16), we assume the integration weight wk to contain the respective local Jacobian determinant to account for
the transformation to the isoparametric reference domain already.
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a

v(k)

w(k)

b

(i)

Figure 4: Sequential evaluation of line integrals considering natural and essential boundary conditions. a The individual
line segments for elements Ωe ∈ {Ω}

bnd are specified by the boundary vertices v(k) defining Γh and the intersection vertices
w(k) that result from the intersection of Γh and the element boundaries ∂Ωe ∈ {Ω}

bnd. b The individual sub-integrals are
then evaluated by use of a standard one-dimensional quadrature rule and assigning the respective contributions to the
local nodal points (i).

To this extent, we need not only consider the individual boundary segments Γs ∈ ΓN bound by its
respective vertices v(k), but also the intersection points w(k) being specified by the intersection of
ΓN and the individual element boundaries ∂Ωe ∈ {Ωe}

bnd. The line integral along ΓN is then ob-
tained as a sum over all elements Ωe ∈ {Ω}

bnd that contribute at least one line segment [v(k),w(k)]
to ΓN ∫

ΓN
N(i)t dS =

∑
k

{w(k)}∫
{v(k)}

N(i)t dS, (17)

where a standard one-dimensional quadrature rule is used to evaluate the individual line (sub-)
integrals [v(k),w(k)] and i ∈ [1, nen].

3.1.3. Essential boundary conditions
In order to complete the Euler-Lagrange equations in (3), a set of essential boundary condi-

tions u for the unknown displacement function is specified on ΓD. Since no degrees of freedom
are assigned directly to Γh within the embedded domain setting, we employ a penalty method to
fulfil the essential boundary condition in a weak (or integral) sense. Specifically, we employ the
penalty formulation outlined in [36]. Other methods to enforce essential boundary conditions in
fictitious domain or mesh-free formulations include the use of Lagrange multipliers [31, 37], and
the Nitsche method [38, 39].
For the penalty approach, the weak formulation of the boundary value problem in Eq. (6) is
augmented by a penalty term considering the essential boundary condition on ΓD

W p
χ (u, δu) = Wχ(u, δu) + β

∫
ΓD

(u − u)δu dS = 0, (18)

where β, typically in the range β ∈ [108, 1010], is the penalty parameter.
Upon discretization, we obtain a modified version of the matrix system of equations in (12)
which is in the format

[K + βL]uh = f + βl. (19)
9



In Eq. (19) the penalty matrix L consists of dual nodal point contributions of the type

L(IJ) =

ne

A
e=1

∫
ΓD

N(i)N( j)S dS, (20)

where the assembly operator spans over all elements within {Ω}bnd that include segments Γs ⊂

ΓD. The component matrix S in (20), which enables to differentiate among all available degrees
of freedom for a specific nodal point combination (IJ), is in the format

S =

[
S x 0
0 S y

]
. (21)

Correspondingly, S x = 1 or S y = 1 if the respective displacement component ux or uy is pre-
scribed along ΓD, and S x/y = 0 otherwise.
The penalty vector l in Eq. (19) consists of nodal point contributions of the type

l(I) =

ne

A
e=1

∫
ΓD

N(i)Suh dS, (22)

where the vector uh
= [ux, uy]T holds the prescribed displacement components along ΓD.

The line integrals in Eqs. (20) and (22) are evaluated in the same sequential manner as outlined
for the natural boundary condition in Eq. (17) and by use of a standard one-dimensional quadra-
ture rule.

3.2. Reorientation scheme
The staircase scheme outlined in Sec. 3.1 accounts for the geometric mismatch between the

physical boundary Γh and its embedding domain representation {Ω}bnd by use of selective do-
main integration. For the reorientation scheme, we aim to relocate a set of nodal points in order
to establish a layer of reoriented elements, the boundary of which then conforms to Γh.
In other words, we aim to overcome the presence of {Ω}bnd by reorienting its elements Ωe and
assigning them either to {Ω}int or {Ω}ext. Thereby, starting from the previously established regular
mesh in Fig. 5a, the relocation procedure first entails the mapping of the respective closest nodal
point (I) ∈ {Ω}bnd onto each individual v(k) ∈ Γh. Subsequently, we consider an elementwise
decisive closest point projection of remaining nodal points onto Γh. All elements affected by this
relocation procedure are then assigned to {Ωe}

int or {Ωe}
ext, based on their relative positioning

against the physical domain boundary Γh.
However, in order to avoid poorly shaped or even inverted quadrilateral elements as a conse-
quence of this relocation strategy, certain segments of Γh may not be aligned with reoriented
element boundaries, but rather intersect a quadrilateral diagonally, cf. Fig. 5b. In this case, the
respective domain integral contributions of the triangular sub-domain interior Γh are taken into
account by use of a tailored quadrature rule for triangular domains, cf. Figs. 6a-b.
In order to compensate for the resulting disparity concerning mesh quality measures between
(non-modified) regular-shaped elements interior Γh and elements that are affected by the relo-
cation procedure, we allow for a sequence of mesh smoothing operations. This involves the
in-plane movement of previously mapped nodal points alongside Γh, as well as the relocation of
nodal points in the proximity of Γh towards their particular barycentre that is defined by adjoin-
ing element edges. For the present contribution, element quality is measured through a scaled
Jacobian quantity j ∈ [−1, 1], where j = 1 for regularly-shaped quadrilaterals irrespective of
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their geometric extent, and j ≤ 0 for inverted quadrilaterals [40]. For the numerical examples in
this contribution, we set the acceptable range for the element quality to j ∈ [0.5, 1].
Due to this nodal relocation strategy, a special treatment for the evaluation of the domain inte-
grals within the assembly procedure of the stiffness matrix K is only necessary for elements that
are intersected diagonally by the physical domain boundary Γh. All other quadrilaterals allow
for an exact domain integration by use of a standard quadrature rule, or can be fully discarded in
case of elements exterior Γh.
Considering quadrilaterals that are intersected diagonally by Γh, the domain integration allows
for a geometric separation in the format∫

Ωe

χ(ξ) f (ξ) dA =

∫
4int{Ωe}

χ(ξ) f (ξ) dA +

∫
4ext{Ωe}

χ(ξ) f (ξ) dA, (23)

where 4int{Ωe} and 4ext{Ωe} denote the respective triangular sub-domain interior and exterior
Γh. Therefore, the sharp intra-element discontinuity of the characteristic function χ across the
physical domain boundary Γh is taken into account through an equivalent subdivision of the
respective element domain integral.
Now, since χ = 0 ∀ X ∈ Ω \ B, the domain integral contribution from 4ext{Ωe} can be fully
discarded, and we arrive at∫

Ωe

χ(ξ) f (ξ) dA =

∫
4int{Ωe}

f (ξ) dA =

nintp∑
k=1

f (ξ̂k)ŵk. (24)

In Eq. (24), ξ̂k and ŵk denote the isoparametric position of the k−th integration point and its re-
spective integration weight considering an adequate quadrature rule for triangular (sub-)domains
[41, 42]. Similarly, considering the evaluation of line integrals for natural and essential boundary
conditions, a non-standard treatment is only necessary for elements that are intersected diago-
nally by Γh. All other (interior) elements in the proximity of Γh are aligned with the physical
domain boundary and hence allow for a standard consideration of boundary conditions.
Natural boundary conditions for intersected elements are assembled as outlined for the staircase
scheme in Sec. 3.1.2, except that the contributions to the load vector f stemming from the de-
grees of freedom at the respective exterior nodal point are equally assigned to the adjacent nodal
points lying on Γh. Essential boundary conditions for intersected elements are taken into account
by assigning the prescribed displacements along ΓD to the respective degrees of freedom at the
exterior nodal point as well as the nodal points mapped onto Γh.

4. Shape optimization

Throughout this contribution, we aim to solve numerically a sequence of shape optimization
problems in the general format

min
B ∈ Uad

ψ = ψ(B,u(B)) (25)

through a variation of the configuration B within the class of admissible shapes Uad. In the
sequel, we consider Uad to comprise all possible configurations of the evolving shape B within
the bounds of the embedding domain Ω.
Moreover, we assume the objective function ψ to depend explicitly on the shape B as well as
implicitly through the solution u of the state equation in (3). As a prerequisite for the efficient
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a b

Figure 5: Outline of the nodal relocation strategy to obtain a layer of elements within Ωh that is aligned with the physical
domain boundary Γh. Starting from the adaptively refined regular mesh in a, we obtain a locally reoriented mesh in b that
includes elements aligned with Γh, and elements that are intersected diagonally by Γh leading to triangular sub-domains
on both sides of Γh.

a b

Figure 6: Evaluation of domain integrals within the reorientation scheme. In order to take into account the remaining
geometric mismatch that is observed for quadrilateral elements that are intersected diagonally by Γh in a, a selective
domain integration is achieved employing a quadrature rule considering triangular (sub-)domains. b Thereby, the domain
integration is restricted to the interior triangular sub-domain, whereas integral contributions from the exterior triangular
sub-domain are discarded.
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numerical solution of (25), we need to derive the design sensitivity expression for the objective
function ψ, which characterizes the change in ψ for a design perturbation δX in B normal to Γ.
In principle, the design sensitivity expression can either be derived for the continuous setting in
Eq. (3) or for the discrete setting in Eq. (12), where we choose the former option since it allows
for a more general derivation in the present context7. However, since the evaluation of the result-
ing design sensitivity expression is again realised within the discrete embedding domain setting
outlined in Sec. 3, this approach is not free from mesh dependency effects.
Technically, domain variations of B are realised through a direct modification of vertex coordi-
nates v(k) ∈ Γh, and not altering the boundary connectivity that is given in terms of Γs ⊂ Γh. For
every vertex v(k) the local outward unit normal n(k) is obtained by averaging the outward normal
vectors of its adjacent boundary segments Γs.
In a way similar to the subdivision of the boundary Γ into ΓD and ΓN when specifying the state
equation in (3), we consider Γh to be subdivided in the course of the optimization. Thereby, we
denote by ΓV the boundary portion that is to be varied during the course of optimization and by
ΓP the prescribed or non-variable portion of Γh. However, if not stated otherwise, we still allow
for the in-plane (or tangential) movement of vertices v(k) alongside ΓP. In fact, this mechanism
is a technical requirement to avoid the premature termination of the optimization procedure due
to a self-intersection of Γh.

4.1. Design sensitivity analysis

As a mathematical framework to account for general shape variations of the continuum body
B, we consider a family of one-to-one domain perturbations T that maps continuum points from
their reference position X onto their current placement xτ

T : X 7→ xτ(X), (26)

where τ is a time-like parameter τ ∈ [0, t] and we denote by Bτ and Γτ the perturbed domain and
its boundary, respectively

Bτ = T (B, τ), Γτ = T (Γ, τ). (27)

Using a linear Taylor’s expansion at τ = 0, the placement xτ is in the format

xτ = T (X, τ) = X + τθ(X), (28)

where θ denotes the design velocity field [43, 44]. The formal representation in (28), the so-
called Hadamard boundary variation method [45], allows for the evaluation of the material (or
total) derivative ˙{•} = D{•}/Dτ of scalar and vector-valued field variables a = a(xτ, τ) and
a = a(xτ, τ) in the direction of θ

ȧ = a′ + ∇a · θ
ȧ = a′ + [∇a]θ. (29)

The material derivative formulae in Eq. (29) both consist from a spatial derivative {•}′ = ∂{•}/∂τ
and a convective derivative ∇{•} · θ in terms of the design velocity field θ.

7Strictly speaking, the result of the continuous sensitivity analysis is general in the sense that it is not tailored to the
specifics of a certain numerical analysis scheme. The resulting shape sensitivity expression may be used for optimization
algorithms that rely on conforming finite element methods, embedding domain techniques, or boundary element methods.
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At this point, let us consider an objective functional ψ that comprises from volume and surface
integral contributions of the general type

ψτ =

∫
Bτ

G dA +

∫
Γτ

g dS, (30)

where G = G(u), g = g(u, t) on ΓN , and g = g(u, t0) on ΓD with reaction forces t0.
The material derivative of ψ at τ = 0 is obtained through use of the Reynolds’ transport theorem
and using the material derivative formula (29) for the integrands G and g

ψ̇ =
∫
B

[
Ġ + G ∇ · θ

]
dA +

∫
Γ

[
ġ + gH[θ · n]

]
dS

=
∫
B

G′ dA +
∫
Γ

G[θ · n] dS +
∫
Γ

g′ + [∇g · n + gH][θ · n] dS,
(31)

where H = ∇·n denotes the curvature of Γ in R2. Since G′ = G,uu′ and equally g′ = g,uu′+ g,tt′,
it remains to determine the spatial derivatives u′ and t′, or their respective material derivatives
since both are interrelated via Eq. (29).
To this extent, by use of the adjoint variable method for design sensitivity analysis [46, 47, 48],
we first introduce a weak form W = W(u,ua) of the boundary value problem (3), in which the
adjoint state field ua is employed as a test function for the state equation

W(u,ua) = −

∫
B

σ : εa dA +

∫
B

b · ua dA +

∫
ΓN

t · ua dS = 0, (32)

and εa = ∇symua.
Subsequently, the weak form of the state equation in Eq. (32) is added to the objective functional
ψ in (30) to define an augmented objective functional L in the format

L = ψ + W =

∫
B

G dA +

∫
ΓN

g dS +

∫
ΓD

g dS, (33)

where the respective integrands amount to

G = G − σ : εa + b · ua in B
g = g + t · ua on ΓN

g = g on ΓD.

(34)

In fact, W = W(u,ua) in Eq. (33) is employed as an additional constraint to the optimization
problem in (25), where the corresponding Lagrange multiplier ua is determined by the solution
of an adjoint boundary value problem on B.
The setting of this adjoint boundary value problem is a direct result from the requirement that
the (physical) state equation (3) is not only to be fulfilled for the current domain B, but also for
the perturbed domain Bτ. Hence, the augmented objective functional L in (33) is required to be
stationary with respect to variations of the primary state field u and the adjoint state field ua. This
requirement is formally taken into account by considering the time derivative L̇ of the augmented
objective functional, and setting the collection of all terms involving implicit derivatives u′ and
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ua′ equal to zero. Accordingly, by use of Eqs. (33), (34) and (31), we obtain

L̇ =
∫
Γ

G[θ · n] dS +
∫
Γ

[∇g · n + gH][θ · n] dS +

∫
B

b′ · ua dA +
∫

ΓN

[g,t + ua] · t′ dS +
∫

ΓD

g,u · u′ − ua
· t′0 dS +

Q(u′,ua′) ,

(35)

where the prescribed adjoint solution variable ua
= −g,t0 on ΓD and Q in (35) contains all terms

involving implicit derivatives considering the primary and adjoint state fields

Q(u′,ua′) = 0 =

− ∫
B

σ : εa′ dA +
∫
B

b · ua′ dA +
∫

ΓN

t · ua′ dS

 +

− ∫
B

εa : σ′ dA +
∫
B

G,u · u′ dA +
∫

ΓN

g,u · u′
 .

(36)

By inspection, we find that the expression within the first pair of brackets in Eq. (36) vanishes
identically since it represents a weak form of the primary state equation (3) in which ua′ is
employed as a test or virtual displacement function. By use of the stress-strain relation σ′ = E :
ε′, where ε′ = ∇symu′, and considering the major symmetry of the elasticity tensor E, we obtain

εa : σ′ = ε′ : σa. (37)

Then, by use of Eq. (37), and introducing distributed body forces ba as well as surface tractions
ta for the adjoint structure via

ba = G,u in B, ta = g,u on ΓN , (38)

we obtain a weak form Wadj of the adjoint boundary value problem with solution ua

Wadj = Wadj(ua,u′) = −

∫
B

σa : ε′ dA +

∫
B

ba · u′ dA +

∫
ΓN

ta · u′ dS = 0. (39)

Thereby, Eq. (35) reduces to the sought expression for the total derivative of the objective func-
tional ψ in the direction of θ.
For clarification, let us consider a standard compliance functional C in the format

C =

∫
B

b · u dA +

∫
ΓN

t · u dS, (40)

such that G = b · u in B, g = t · u on ΓN , and g = 0 on ΓD in Eq. (30). For the adjoint loads we
obtain

ba = G,u = b, ta = g,u = t, (41)

and hence the problem is self-adjoint in the sense that the adjoint solution variable equals the
primary (or physical) solution variable: ua = u. If we further assume the surface traction t and
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the distributed body force b not to vary with pseudo-time τ, we arrive at the total derivative for
the compliance functional in the direction of θ

Ċ =

∫
ΓN

[2b · u + 2H[t · u] + 2n · ∇[t · u] − σ : ε] [θ · n] dS +

∫
ΓD
σ : ε [θ · n] dS. (42)

Similarly, if we consider a volume-type integral for the current shape B

V =

∫
B

1 dA, (43)

its total derivative in the direction of θ is expressed through

V̇ =

∫
Γ

1 [θ · n] dS. (44)

4.2. Descent directions and geometric regularization

Generally speaking, the total derivative of an objective functional ψ considering a domain
variation in the direction of θ is in the format

ψ̇ =

∫
Γ

ν [θ · n] dS, (45)

where the scalar integrand ν depends on the objective under consideration, cf. Eqs. (42) and (44).
Moreover, the total derivative in Eq. (45) relies only on the normal component of the design
velocity field: [θ · n]. Indeed, this notion goes back to a classical result in shape optimization
theory, cf. also the detailed account in [19] and references therein, or the classic treatment [49].
The most direct approach to obtain a suitable descent direction θ for the use in numerical al-
gorithms of shape optimization is to employ the outward unit normal to Γ times the (negative)
scalar integrand ν

d = −νn. (46)

Then, establishing the design velocity field via θ = d and considering a small (τ → 0) neigh-
bourhood of B, we obtain the relation

ψ(Bτ) = ψ(B) − τ
∫

Γ

ν2 dS + O(τ2), (47)

where O(τ2) contains higher-order terms of τ and limτ→0 O(τ2)/τ = 0. Thereby, we conclude
that ψ(Bτ) < ψ(B) and d in Eq. (46) denotes the steepest descent direction.
However, due to the polygonal representation of the domain boundary Γh, a direct use of the
steepest descent direction for domain variations may easily result in irregular or even self-
intersecting boundaries. This is also true on the condition that the initial domain boundary fulfils
certain smoothness assumptions. One such example is given for a shape B that features a right-
angled corner and is subject to a uniform volume shrinkage alongside its boundary Γh. After
several domain updates of the type (28) and depending on the choice of the step-length param-
eter τ, we observe an intersection among the two boundary segments Γs adjacent to the corner
node v(k), cf. Fig. 7.
There exist several approaches in the literature that aim to avoid such geometric distortion phe-
nomena [50, 51, 52, 53], where the common objective is to obtain from the steepest descent
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direction d in (46) a more regular descent direction d̂, which is then used to alter the domain
boundary via θ = d̂ within a numerical algorithm.
For the present contribution, we resort to a geometrical regularization technique common to ap-
plications in computer graphics, in particular the field of digital image recognition and object
detection, namely the Laplacian averaging technique [54, 55]. In this method, geometric regu-
larity is improved by moving every vertex v(k) towards the central position ṽ(k) that is defined by
averaging the position vectors of its adjacent vertices v(k−1) and v(k+1), cf. Fig. 8.
The nodal regularization vector r(k) is then obtained as the difference between ṽ(k) and v(k)

r(k) = ṽ(k) − v(k) (48)

and we denote by r the respective global vector that contains all individual contributions r(k)

r = [r(0), r(1), . . . , r(nv−1)]T . (49)

Along the same line, we denote by d(k) the nodal steepest descent direction that is obtained from
the evaluation of ν and the outward unit normal n(k)

d(k) = −νn(k). (50)

Correspondingly, we denote by d the global vector that contains all individual contributions d(k)

d = [d(0),d(1), . . . ,d(nv−1)]T . (51)

Now, in order to obtain a more regular descent direction, the main idea is to consider a superpo-
sition of the regularization vector r and the steepest descent direction d in the format

d̂ = (1 − α)d + αr, (52)

where α ∈ (0, 1) is a scalar parameter to weigh the individual contributions. Still, to observe a
descent in the objective functional ψ when employing d̂ as the design velocity field, we require

cos∠(d, d̂) =
d · d̂
|d| |̂d|

≥ η, (53)

where η ∈ (0, 1), cf. the schematic representation in 2−parametric design space in Fig. 9.
From a technical perspective, we employ an adaptive procedure for the choice of the weighting
parameter α and the angular threshold value η throughout the course of optimization. Thereby,
we specify up-front the required sufficient decrease condition in terms of η in Eq. (53). Then,
for every design iteration, we start from a weighting factor α = 1 and reduce it by fractions of
4α = 0.05 until the sufficient decrease condition in (53) is fulfilled by d̂. In doing so, we aim
to establish the most regular descent direction that still fulfils the sufficient decrease condition
in terms of η. In addition, we reserve the mechanism of increasing η to sharpen the sufficient
decrease condition at later design iterations. This is primary a tool to enhance the speed of
convergence in the case that the current shape design B lies in the vicinity of the sought-after
optimal shape design.
After all, in order to allow for (induced) in-plane movements of vertices v(k) alongside Γh, we
propagate the design velocity field d̂ by solving an additional linear system of equations

Hθ = d̂. (54)
17



B

Γh
n(k) θ = −n

Figure 7: An arbitrary shape design B featuring a right-angled corner at v(k) is subject to a uniform volume shrink-
age through θ = −n. Depending on the choice of the step-length parameter τ, a domain update procedure yields an
intersection between adjacent boundary segments Γs ⊂ Γh after several iterations.

B

Γh r(k)
ṽ(k)

Figure 8: Local geometric regularization by use of Laplacian averaging. Vertices v(k) ∈ Γh are shifted towards the central
position ṽ(k) that is obtained by averaging the position vectors of their respective adjacent vertices v(k−1) and v(k+1).

The coefficient matrix H of dimension 2nv × 2nv in (54) consists of dual vertex combinations of
the type

H(KL) =

ns

A
s=1

∫
Γs

h(kl) dS, (55)

where the individual contributions h(kl) from each segment Γs ∈ Γh are in the format

h(kl) =


1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

 . (56)

For the solution of the linear system of equations in (54), both the coefficient matrix H and the
right-hand side vector d̂ are subject to per-vertex constraints that are imposed from the definition
of the non-variable boundary portion ΓP. Then, by construction, the design velocity field θ does
not solely constitute from the non-zero entries of d̂, but also from induced movements of vertices
v(k) due to the solution of (54), cf. the schematic one-dimensional representation given in Fig. 10.

4.3. Algorithmic design for constrained optimization
For the numerical examples in this contribution, we consider general problems of shape op-

timization as outlined in (25), and subject to one inequality constraint g = g(B,u(B))

min
B ∈ Uad

ψ, s.t. g ≤ ḡ, (57)
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v1

v2

d d̂

η = 1

η = 0

ψ = const.

Figure 9: Schematic representation of the sufficient decrease condition (53) in 2-parametric design space. The steepest
descent direction d is oriented normal to the objective isoline ψ = const., and we require the combined descent direction
d̂ to inclose a maximum angle with the steepest descent in terms of a user-controlled variable η.

d̂

θ

Figure 10: One-dimensional representation concerning the distribution of the combined descent direction d̂ among ad-
joining vertices v(k) through solution of the linear system of equations in (54). The resulting design velocity field θ
comprises induced movements of vertices v(k) that circumvent the self-intersection or geometric inversion of neighbour-
ing boundary segments Γs.
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where ḡ is a user-specified upper limit for the constraint function g. In principle, there exist two
classes of numerical algorithms for the solution of the constrained optimization problem in (57).
On the one hand, indirect methods, such as penalty and Lagrange multiplier formulations, com-
bine the objective and constraint function to form one single augmented function [56, 57]. This
augmented function is then subject to a minimization procedure by use of basic descent algo-
rithms considering unconstrained optimization problems [58]. One can show that the solution of
this unconstrained optimization problem is also a solution of (57), and hence the constraint g is
fulfilled for the optimal design arrived at, even though it may be violated during the course of
optimization.
On the contrary, direct methods, such as interior-point or barrier-type algorithms, aim to fulfil the
constraint function at all times during the course of the optimization [59, 60]. This is achieved
by establishing descent directions that do not only lead to a reduction in the objective, but are
also feasible in the sense that they do not violate the constraint.
For the present contribution, we resort to a numerical algorithm within the class of indirect meth-
ods, namely the augmented Lagrangian formulation by Rockafellar [61, 62]. However, when
establishing the descent direction d̂ from the combination of the steepest descent d and the regu-
larization vector r in (52), we effectively adopt one key principle of direct methods, which is the
attempt to project the respective descent direction into the feasible design space region. Thereby,
the regularization technique in use may be regarded as a hidden constraint to the optimization
problem in (57), which however is not strictly (or explicitly) enforced.
The main consideration of the augmented Lagrangian formulation at hand is to transform the
constrained optimization problem (57) into a sequence k = 1, . . . , n of unconstrained minimiza-
tion problems introducing the augmented objective M in the format

Mk = Mk(B,u, ϕ, c) = ψ + [4c]−1[ϑ2 − ϕ], (58)

where c and ϕ denote the penalty parameter and the Lagrange multiplier estimate for the k-th
minimization sub-problem, respectively. The newly introduced function ϑ in (58) is used to
assess the constraint condition for the current shape design

ϑ = max{ϕ − 2cĝ, 0}, (59)

where ĝ = g − ḡ. At this point, it remains to outline a solution procedure for the unconstrained
optimization problem considering Mk in (58), as well as to specify the continuation of the solu-
tion procedure for the constrained optimization problem via Mk+1. The latter is achieved by an
update of the Lagrange multiplier estimate ϕ, and an enforcement of the penalty parameter c for
the definition of Mk+1 via

ϕ← ϑ, c← 2c. (60)

Considering the solution of the k-th unconstrained minimization problem in terms of Mk, we
employ a descent algorithm on the basis of the derivations in Sec. 4.2. Thereby, we first evaluate
separately the shape derivative expressions for the objective ψ and the constraint function g that
are involved in the formulation of Mk in (58). As a result, we can provide the steepest descent
direction d for the augmented objective, and in a subsequent step, we obtain d̂ through the com-
bination of d and the regularization vector r in (52).
By solution of the linear system of equations in (54), we establish a feasible design velocity field
θ for the shape variation of Γh via (28). A basic backtracking line search algorithm is used to de-
termine the first possible step-length parameter τ out of the sequence {1, τ, τ2, τ3, . . .} that fulfils
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a minimum decrease requirement [57] relating Mk(B) and Mk(Bτ), where τ ∈ (0, 1).
Only then, we perform the actual domain update and preset the newly established shape design
Bτ as a starting point for the next iteration: B(i+1) ← B

(i)
τ . The above design update procedure

for the solution of the unconstrained optimization problem is repeated until we meet a termina-
tion criterion in which we assess the relative function decrease in Mk, or we exceed a maximum
number of design iterations i.

5. Numerical examples

At this point, let us examine the capabilities of the optimization algorithm outlined in Sec. 4
by means of three numerical studies. Specifically, we aim to investigate the intrinsic quality of
the optimal shapes arrived at. This is to consider the effect of the regularization vector r on the
shape perturbation, and the choice of the respective embedding domain discretization technique
for the solution of the physical state problem.
The parametrization Γh of the initial guess for each optimal design problem is obtained by posi-
tioning vertices v(k) equidistantly alongside the domain boundary Γ. All numerical examples in
this work are implemented using the deal.ii finite element library [63, 64, 65]. All computations
rely on basic isoparametric linear finite element shape functions. As a consequence of the track-
ing procedure in Eq. (11) hanging node (or multi-point) constraints are to be considered between
neighbouring finite elements showing different levels of refinement.

5.1. L-shape under uniaxial loading

To begin with, we consider the L-shape domain depicted in Fig. 11a. The domain is con-
strained in the x-direction at the left-hand edge, and is equipped with symmetry boundary con-
ditions in the y-direction on the bottom edge. As a loading, we consider a uniform tension in the
positive x-direction that is applied on the bottom right-hand edge. The objective of this study
is to minimize the volume V of the domain while keeping the compliance C constant. From an
engineering point of view, the trivial solution to this optimal design problem is a bar of uniform
cross-section.
For the solution of the physical state problem throughout the course of the optimization, we
employ the reorientation scheme. In order not to profit from an analysis mesh that is aligned
with the shape parametrization in large part, we rotate the embedding domain Ω by 25 degrees
counter-clockwise against Γh, cf. Fig. 11b. For a first visual inspection of the characteristics for
the embedding domain discretization technique, we show in Fig. 12 a comparison of the strain
energy density distribution that is obtained for a standard (conforming) finite element analysis
mesh on the one hand, and the reorientation scheme on the other hand. Both contour plots are
scaled to the same relative (0 − 1) range of values, and we observe a qualitatively similar distri-
bution of the strain energy density.
In a first optimization run, we preclude the influence of the regularization vector r on the com-
bined descent direction by setting the angular threshold value η = 1 in (53). Thereby, the steepest
descent d is employed as a search direction in each design iteration. After very few iterations,
and depending on the number of vertices v(k) that we place alongside Γh, we cannot continue the
design update procedure due to segment intersections among adjacent Γs, cf. Fig. 13a. In fact,
only for the coarsest possible parametrization, in which four vertices v(k) are used to vary ΓV , we
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arrive at the sought-after optimal shape8.
Now, by lowering the angular threshold value η, and hence including the influence of the reg-
ularization vector r on the combined descent direction d̂, we arrive at the sought-after optimal
shape also when using higher-level parametrizations Γh. For the study depicted in Fig. 13b, we
use η = 0.8 for the angular threshold value. We allow for 100 design iterations in total which
required a CPU time of 27 seconds to complete. A convergence history for the objective and
constraint function is given in Figs. 14 and 15, respectively. We observe an increasing violation
of the compliance constraint until design iteration 25. Through a repeated update of the Lagrange
multiplier estimate and the penalty parameter via (60) the constraint is then enforced at later de-
sign iterations. The objective function settles after a reduction of 26 percent of the initial volume.
We found that the higher the level of the parametrization, the more we have to lower the angular
threshold value to avoid the intersection of segments Γs at early design stages. This motivates the
consideration of two basic mechanisms for the speed-up of convergence rates in the presented
optimal shape design approach. First, one may consider an adaptive adjustment of the angular
threshold value η for the course of the optimization. This adaptation process may for instance be
stimulated by vertex-wise curvature measures, or the current decrease in the augmented objective
value in (58). Specifically, this would provide a tool to facilitate the attainment of the optimal
shape design at later design iterations in which the regularization movement of vertices does not
alter the current shape design, cf. Fig. 13b.
Second, one may consider a staggered solution procedure in which one increases the level of the
parametrization Γh as soon as the decrease in the augmented objective function stalls. This may
either take the form of a uniform refinement in which each segment Γs is bisected, or a more
adaptive approach, in which segments are marked for refinement based on local sensitivity or
curvature measures.
The accompanying analysis mesh for the optimal shape design depicted in Fig. 13b is shown in
Fig. 16a along with the distribution of the displacement component in the x-direction. Therein,
the physical domain boundary is represented by both, boundary-conforming elements and ele-
ments that are intersected diagonally by Γh. This is due to the counter-clockwise rotation of Ωh

against Γh for the initial guess in Fig. 11b. In fact, if we set this rotation aside and allow for
another optimization run, the reorientation scheme renders an all conforming analysis mesh for
the optimal design trial, cf. Fig. 16b. Both contour plots in Fig. 16 show a linear increase of
the displacement component in the x-direction from the constrained left-hand edge to the loaded
right-hand edge. Also, we obtain vertical slides within the contour field, i.e. perpendicular to the
direction of force application, as expected from the analytical one-dimensional considerations
for a bar of uniform cross-section.
We obtain the same optimal shape design when using the staircase rather than the reorientation
scheme for the embedding domain discretization. However, if we rely on the same threshold-
value γ for the adaptive mesh refinement within the boundary tracking procedure in (11), the
domain update procedure tends to stall at later design iterations prior to the arrival at the desired
optimal shape design. To circumvent this issue we either need to increase the number of integra-
tion points for the domain integral computations considering intersected elements, or sharpen the
threshold value γ for the tracking procedure. Both mechanisms lead to a higher computational
effort of the staircase scheme as compared to the previously installed reorientation scheme.

8Even though this is only possible since the optimal shape design of a bar with uniform cross-section is within the
accessible design space when using four vertices to represent ΓV .
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a b

Figure 11: L-shape under uniaxial loading. a Setup of the mechanical problem: The bottom right-hand edge is subject to
a uniform tension, whereas the left and bottom edge are constrained in the x- and y-direction, respectively. The variable
portion ΓV of the domain boundary for the course of the optimization is indicated by black marks. b An embedding
domain discretization technique is employed for the solution of the mechanical problem. The contour plot shows the
displacement component in the x-direction.

a b

0

1

Figure 12: L-shape under uniaxial loading. Distribution of the strain energy density for the initial shape design. Both
contour plots are scaled to the same relative (0 − 1) range of values. a Reference solution obtained by a standard finite
element method with conforming mesh. b Solution for the embedding domain discretization technique when using the
reorientation scheme. For the visualization, we mask exterior elements.
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Figure 13: Influence of the regularization vector r on the course of the optimization. a When using the steepest descent
direction d, no convergence is achieved for the L-shape optimal design problem. This is due to the highly non-regular
boundary Γh after very few design iterations that does not allow for a continuation of the domain update procedure. The
vector plot shows the steepest descent direction for the current design trial. b Upon consideration of the regularization
vector, and hence using the combined descent direction d̂, the domain update procedure yields the desired optimal shape
design.
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Figure 14: History of the volume objective function for the L-shape design problem. The volume is sharply reduced at
early design iterations and settles after a reduction of 26 percent as compared to the initial design.
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Figure 15: History of the compliance constraint function for the L-shape design problem. The constraint is increasingly
violated until design iteration 25. Due to the update of the Lagrange multiplier estimate and the penalty parameter
throughout the course of optimization, the constraint is then enforced at later design iterations.
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Figure 16: Distribution of the displacement component in the x-direction for the optimal shape design and using the
reorientation scheme for the solution of the physical state problem within the embedding domain Ω. Both contour plots
are scaled to the same relative (0−1) range of values and we mask exterior elements for ease of visualization. a Analysis
mesh for the case in which the embedding domain is rotated by 25 degrees counter-clockwise against the initial guess Γh.
The domain boundary Γh is represented by both, a set of conforming elements and a set of elements that are intersected
diagonally by Γh. b When using an embedding domain that is not rotated against the initial guess Γh, we obtain an
analysis mesh that comprises conforming elements only.
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5.2. Hook profile under uniaxial loading
As a second example, we consider the hook profile depicted in Fig. 17a. The profile is con-

strained at the top edge, and subject to a pressure-type loading in the lower half of the circular
cut-out. This loading may for instance be introduced through a fitted bolt, which is then pulled in
the negative y-direction. The aim of this study is to minimize the hook volumeV, while keeping
the compliance C constant. The partitioning of the initial design layout into a variable boundary
portion ΓV and a non-variable boundary portion ΓP is depicted in Fig. 17b.
For the solution of the physical state problem throughout the course of the optimization, we rely
on the staircase discretization scheme, where we provide 25 integration points for the selective
domain integration considering elements intersected by Γh. Further, we consider a staggered so-
lution procedure in which we refine uniformly the domain parametrization Γh after a predefined
number of design iterations. This mechanism is accompanied by sharpening the threshold value
γ for the adaptive mesh refinement within the domain tracking procedure in (11).
After two such refinements in the level of the parametrization Γh, and a total number of 300
design iterations, we arrive at the shape design depicted in Fig. 18. The accompanying contour
plot shows the distribution of the strain energy density for the initial and the final design layout,
respectively. We observe that regions that show low strain energy densities and hence do not con-
tribute a large share to the loading capacity of the structure are shrinked, whereas regions of high
strain energy density tend to grow. In other words, a more efficient usage of the available material
is accomplished. A selection of different stages in the evolution of the shape parametrization Γh

is shown in Figs. 19a-d. For the optimal design layout in Fig. 19d, we attain a volume reduction
by 44 percent and observe the same compliance as for the initial design layout in Fig. 19a. The
CPU time to complete the 300 design iterations was 339 seconds.
We obtain a similar result for this numerical study when employing the reorientation rather than
the staircase scheme for the solution of the physical state problem throughout the course of the
optimization. However, we find that for high-level parametrizations Γh, the reorientation scheme
tends to render elements of poor quality in regions of Γh that show acute angles between adjacent
segments Γs. One can partly account for this drawback by lowering the threshold-value γ for the
adaptive mesh refinement within the boundary tracking procedure, so as to keep the character-
istic edge length in {Ω}bnd well below the size of Γs in the respective region. Further, one may
counteract the formation of acute angles during the course of the optimization by lowering the
sufficient decrease condition η, and hence emphasizing the influence of the regularization vector
on the domain update procedure at early design stages.
The first mechanism leads to a higher computational cost for every single design iteration,
whereas the second mechanism requires a greater total number of design iterations to reach the
optimal design layout. Still, both mechanism may not be adequate to avoid local mesh entangle-
ment in regions that feature acute angles in the optimal design layout, as is the case for the tip of
the evolving hook design in Fig 19d. To this extent, we formulate a minimum angle constraint
for the respective region of interest, which was checked after every design iteration.

5.3. Cantilever beam under bending load
For a final numerical study, we consider the cantilever beam depicted in Fig. 20. The beam

contains four rectangular cut-outs and is subject to a centred distributed load at the right-hand
edge, whereas the left-hand edge is constrained. We aim to minimize the volumeV of the struc-
ture, while keeping its compliance C at a constant level. The solution of the physical boundary
problem is obtained by use of the staircase discretization technique. For the course of the op-
timization, we consider a bounding box constraint, such that vertices v(k) cannot go beyond the

26



a b

Figure 17: Hook profile under uniaxial loading. a Setup of the mechanical problem. The top horizontal edge is con-
strained, whereas the lower half of the circular cut-out is subject to pressure-like loading. This loading may for instance
be introduced through a fitted bolt which is then pulled in the negative y-direction. b Subdivision of the domain boundary
Γh into a variable portion ΓV (indicated by black marks) and a non-variable portion ΓP for the course of the optimization.
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1

Figure 18: Hook profile under uniaxial loading. Distribution of the strain energy density for the initial and the optimal
design layout, respectively. Both contour plots are scaled to the same relative (0−1) range of values and we mask exterior
elements for ease of visualization.
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Figure 19: Hook profile under uniaxial loading. Evolution of the shape parametrization Γh throughout the course of
the optimization. a Initial design layout with low-level parametrization Γh,0. b Intermediate design trial after 99 design
iterations and still using the low-level parametrization Γh,0. c Intermediate design trial after 199 design iterations and
using the level one parametrization Γh,1 that is obtained for a uniform refinement of Γh,0. d Optimal design layout arrived
at after 299 design iterations and using the level two parametrization Γh,2.
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outline of the initial design layout. Further, the area of force application at the right-hand edge is
held fixed for the optimization.
Again, we employ a staggered optimization routine in which we increase the level of the parametr-
ization after completion of a fixed number of design iterations. Specifically, we allow for a total
number of 300 design iterations, where we refine uniformly the parametrization Γh after every
100 design iterations. Also, we sharpen the angular threshold value η for the sufficient decrease
condition after every 50 design iterations in order to lessen the influence of the regularization vec-
tor r on the combined descent direction d̂. This is to speed-up convergence towards the optimal
design layout at later design iterations. In the present context, this works against the tendency of
the regularization vector to shrink the internal cut-outs.
In Fig. 21, we show the distribution of the strain energy density for the initial and the optimal
design layout arrived at after 300 design iterations, respectively. The required CPU time for this
numerical study was 259 seconds. A selection of different stages for the design evolution process
is given in Figs. 22a-d. We observe the formation of a triangular-shaped cut-out at the left-hand
edge, and a reorientation of the internal cut-outs to form a truss-like internal layout. For this opti-
mal design layout depicted in Fig. 22d, we attain a volume reduction by 27 percent, and observe
the same compliance as for the initial design layout in Fig. 22a.
We obtain a similar result for this numerical study when employing the reorientation rather than
the staircase scheme for the solution of the physical state problem throughout the course of the
optimization. However, as for the hook design problem outlined above, we need to take the same
precautions to not suffer from mesh entanglements in regions that show acute angles. These
mechanisms result in a higher number of design iterations as well as a higher computational cost
for every single design iteration. Albeit, as opposed to the hook design problem, no acute angles
are present in the optimal design layout such that no minimum angle constraint needs to be spec-
ified.
To this extent, we conclude that the staircase embedding domain technique is a more suitable
tool to assist the design evolution process as compared to the reorientation scheme. This is par-
ticularly true when using a comparatively high-level parametrization Γh for the course of the op-
timization, as well as for the representation of large design changes. Furthermore, the extension
of the present optimization framework to a three-dimensional setting is rather straightforward for
the staircase scheme, but requires a much more involved course of action for the reorientation
scheme. Still, in order to account for the lower accuracy when evaluating domain integrals for in-
tersected elements in the staircase scheme, as it was observed for the introductory L-shape design
problem, it seems promising to replace the integration point oversampling technique by an exact
integration. This may be best accomplished by use of a separate intra-element sub-triangulation
using triangular or tetrahedral elements, respectively.

6. Summary and outlook

We presented a method for structural shape optimization that relies on an embedding domain
discretization technique. Using an explicit boundary description for the course of the optimiza-
tion, the embedding domain is subdivided into interior elements, exterior elements, and elements
intersected by the evolving shape design.
We consider two different techniques to take into account the geometric mismatch between the
structural component and its embedding domain representation. First, in the staircase scheme,
a selective domain integration for intersected elements is achieved by use of integration point
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a b

Figure 20: Cantilever beam under bending load. a Setup of the mechanical problem. The left edge is constrained,
whereas the right edge is equipped with a centred distributed load acting in the negative y-direction. b Subdivision of the
boundary into a variable and a non-variable portion for the course of the optimization. Also, we consider a bounding box
constraint, such that vertices v(k) cannot leave the outline of the initial design layout.

0

1

Figure 21: Cantilever beam under bending load. Distribution of the strain energy density for the initial and the optimal
design layout, respectively. Both contour plots are scaled to the same relative (0−1) range of values and we mask exterior
elements for ease of visualization.
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c d

Figure 22: Cantilever beam under bending load. Evolution of the parametrization Γh throughout the course of the
optimization. a Initial design layout. b/c Design layout after 99 and 199 design iterations, respectively. d Optimal design
layout arrived at after 299 design iterations.

oversampling. Thereby, every integration point is checked to be interior or exterior to the phys-
ical domain boundary, and hence its respective integral contribution is either taken into account
or discarded for the evaluation of the domain integral. On the contrary, using the reorientation
scheme, we aim to reorient intersected elements such as to obtain a layer of conforming elements
within the otherwise uniform embedding domain discretization. This enables the use of a stan-
dard numerical integration procedure for the domain integration of the evolving shape design.
By use of three numerical examples, we found the staircase scheme to be a more suitable tool
to accompany the design evolution process in the two-dimensional setting. Further, its extension
to a three-dimensional setting seems straightforward, whereas the reorientation scheme requires
a complete redefinition of the necessary course of action. In order to enhance the accuracy of
the selective domain integration procedure within the staircase scheme, we reserve the use of a
separate intra-element sub-triangulation for future investigations. Also, it seems promising to
augment the presented shape optimization framework with a topological sensitivity analysis to
trigger topological changes throughout the course of the optimization [66, 67, 68, 69].
As an overall impression, we found that the solution of shape optimal design problems using
an embedding domain discretization technique is advantageous as compared to a classical La-
grangian approach when it comes to the representation of large design changes. Due to the
embedding domain setting, one avoids the need to provide a conforming finite element mesh at
every design iteration, and hence circumvents costly mesh smoothing or re-meshing operations.
Still, through a direct manipulation of boundary vertices for the domain updates, we preserve
an essential characteristic of the Lagrangian approach as we do not limit the admissible design
space for the course of the optimization. Thereby, the adaptive geometric regularization tech-
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nique in use proved effective in avoiding irregular design updates at early design stages, and still
providing feasible descent directions for the course of the optimization.

References

[1] V. Braibant, C. Fleury, Shape optimal design using B-splines, Computer Methods in Applied Mechanics and
Engineering 44 (1984) 247 – 267.

[2] R. T. Haftka, R. V. Grandhi, Structural shape optimization: A survey, Computer Methods in Applied Mechanics
and Engineering 57 (1986) 91 – 106.

[3] Y. Ding, Shape optimization of structures: a literature survey, Computers & Structures 24 (1986) 985 – 1004.
[4] J. Bennett, M. Botkin, Structural shape optimization with geometric description and adaptive mesh refinement,

AIAA journal 23 (1985) 458–464.
[5] K.-H. Chang, K. K. Choi, A geometry-based parameterization method for shape design of elastic solids, Mechanics

of Structures and Machines 20 (1992) 215 – 252.
[6] A. Falk, F. J. Barthold, E. Stein, A hierarchical design concept for shape optimization based on the interaction of

CAGD and FEM, Structural Optimization 18 (1999) 12 – 23.
[7] W. A. Wall, M. A. Frenzel, C. Cyron, Isogeometric structural shape optimization, Computer Methods in Applied

Mechanics and Engineering 197 (2008) 2976 – 2988.
[8] N. Kikuchi, K. Chung, T. Torigaki, J. Taylor, Adaptive finite element methods for shape optimization of linearly

elastic structures, Computer Methods in Applied Mechanics and Engineering 57 (1986) 67 – 89.
[9] T.-M. Yao, K. K. Choi, 3-d shape optimal design and automatic finite element regridding, International Journal for

Numerical Methods in Engineering 28 (1989) 369 – 384.
[10] P. Morin, R. H. Nochetto, M. S. Pauletti, M. Verani, Adaptive finite element method for shape optimization,

ESAIM: COCV 18 (2012) 1122 – 1149.
[11] S. Riehl, P. Steinmann, An integrated approach to shape optimization and mesh adaptivity based on material

residual forces, Computer Methods in Applied Mechanics and Engineering 278 (2014) 640 – 663.
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