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Summary

Uncertainties in the macroscopic response of heterogesmaaterials result from two sources: the natural variahitithe
microstructure’s geometry and the lack of sufficient knalgle regarding the microstructure. The first type of uncetyas
denoted aleatoric uncertainty and may be characterizeckngwn probability density function. The second type of
uncertainty is denoted epistemic uncertainty. This kindrofertainty cannot be described using probabilistic nathiodels
considering both sources of uncertainties are called potphic. In the case of polymorphic uncertainties some coatinn
of stochastic methods and fuzzy arithmetic should be udeds in the current work we examine a fuzzy-stochastic
FEM-based homogenization framework for materials wittdan inclusion sizes. We analyze an experimental radii
distribution of inclusions and develop a stochastic regmétive volume element (RVE). SFEM is used to obtain theeredt
response in the case of random inclusion radii. Due to udabd¢ noise in experimental data, insufficient number offdam
and limited accuracy of the fitting procedure the radii disttion density cannot be obtained exactly, thus it is dbsckin

terms of fuzzy location and scale parameters. The influehftezpy input on the homogenized stress measures is analyzed

Keywords: Stochastic FEM, Stochastic local basis, Fuzzy numbers,pDtational Homogenization, Geometrical uncertainties

1 Introduction

The effective macroscopic properties of heterogeneousnmaég are estimated from the response of the underlyingostiaic-
ture by homogenization. Homogenization techniques pregas the literature can be classified based on the considered

physical model (deterministic or uncertain) or based orafhyglied homogenization method (analytical or computatijpn
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Some examples of analytical homogenization of deterniinisedia can be found in(B] 4). Interesting results in cormput
tional homogenization of deterministic media are presim¢14, 34-36, 47, 54, 78). For an overview of existing deiaistic
homogenization techniques we refer[tol(70).

Real heterogeneous materials always possess eitheraingagterial properties, or some kind of geometrical urzieties
in the microstructure, or both types. In many cases the infla®f these uncertainties cannot be neglected without susae
of accuracy.

The uncertainties in the microstructure result from twdettént sources. Aleatoric uncertainty originates fromriaéural
variability of the microstructure. It may be described gsihe concept of probability. The required probabilisticaseres of
the model’s input like, e.g., probability density functgrorrelation functions, and probabilistic parameterstwa estimated
statistically from experimental data. Epistemic unceattaderives from insufficient knowledge regarding the métracture
and parameter distribution, imperfection of the analyticadels, and the experimental limitations. In this case areot assign
probability measures to the model’s input date (8, 76)emdtthe possibilistic approach is involved|(89). This is likeraative
to the probability operating not with random variables bithiuzzy numbers. Analogously to the probability densiipdtion
the possibility density function is introduced {89), whishequivalent to the membership function. Axiomatic foratidn of
the possibility theory and its comparison with probabiliigory are presented in (56). The possibilistic approabhsed on the
concept of fuzzy sets introduced for the first timelin| (90)terdt was modified and applied to engineering problems wingl
epistemic uncertainty (27=29,131,/82] 41, 42). For an oeandf existing techniques we refer {o (53). If the unceriasitesult
from both sources, the term polymorphic uncertainty is used

As already mentioned, it is well appreciated that therevaoedifferent types of uncertainties possessing differattre. The
aim of this paper is not to compare probabilistic and poBstlm approaches but to demonstrate by an example of rei@riats
these two sources of uncertainties and to include them hreariaterial model suitable for computational homogerozati
Thus the focus of the paper is the development of a matheahaiimdel and fitting this model to the experimental data. Ve us
different modeling techniques for different types of urtaities, thus we believe that both approaches, stochasaiysis and
fuzzy analysis, are in general not concurrent but compléangiisection 3]1).

In many studies dedicated to homogenization of heterogenematerials with uncertainties in the microstructure only
aleatoric uncertainty is considered, thus these techrigrecalled stochastic homogenization methods.

A number of results in analytical stochastic homogenizatiere obtained iri (%, 13, 23,171). Here we would like to higfhti
also the rapidly developing general perturbation methd@. (Rowadays the perturbation method is one of the most popul
stochastic techniques. Very promising results are obddityecombining perturbation method with smoothed FEM (48)hw
multiscale FEM[(1R), etc. Recently the general perturlmatiethod was also successfully applied to the problem with ge

metrical uncertainties (39) in a setting very close to the stadied in this paper. The idea of classical perturbatiethods is
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close to the Taylor series expansion thus inheriting itsyeggence properties. However, nowadays the more gendtiabsis
presented.

Different aspects and applications of stochastic comfmrtathomogenization were reported(ini(2} 15-+17] 19|, 2748651,
74,7980/ 84, 86, 88).

The two most universal stochastic methods (within the fodynputational approach) are the Monte-Carlo simulatio@YM
and the stochastic FEM (SFEM). Under SFEM we here understenstochastic Galerkin based technique initially propgose
in (25). Further modifications of these techniques werentepoe.g., in[(1], [7.19=11, 18, 26,133,/ 44] 45,52 [55[ 57-67788
85). The main attraction of SFEM is the fact that it solvesgheblem only once, providing immediately the solution foet
whole continuum of different realizations of the stochagtiocess/ (25). SFEM was already successfully applied tol@mnos
involving diffusion, stochastic nanomechanics, stodbhgmasticity, and thermo-mechanics(21]43,[66/67, 83) armverview
of the existing applications and modifications we refef th) @nd [(6).

Itis clear that uncertainties in the microstructure are ashtases polymorphic, thus some combination of the fuzpyogzh
and the stochastic approach should be established. Indhiswe carefully analyze the experimental data and scareléajron
microscopy pictures of heterogeneous materials (sedjianddemonstrate the sources of aleatoric and episteméctaitties
(sectiof4.ll and 412). A combined fuzzy-stochastic FEM apgh is used to perform simulations of fuzzy-stochasticasgn-
tative volume elements (sectibh 3). Aleatoric uncertaistyeated using stochastic FEM. In the present study we sshtie
SFEM formulation involving local finite element approxirats of the physical and stochastic domains, which was faand
be most accurate for the problem considefed (65). Fuzzyeteas are treated using the general transformation métinod
fuzzy numbers. Based on the obtained results (seCtion S)awe @stimate the influence of the epistemic uncertainty en th

homogenized quantities and obtain the lower and the upperdsoof the stress curves. Finally, secfibn 7 concludesaperp

2 Notation

In this work we distinguish between deterministic and rand@riables, vectors and tensors, matrices and operatersisé/

the following notation:
. Second order tensors and vectors are denoted by bold{eagnd bold italic (e.gx) scripts, respectively.

. Random variables, second order tensors and vectors aesegped (63, 77) as functions of the elementary eveatg.

9(w), F(w), O(w).
. Arandom field is any function of the spatial coordinaieand the elementary event(e.g.G(z,w)).
. Fuzzy numbers, vectors, and matrices are denoted by alikdee.g.,m, andg,..

. Capital calligraphic letters are used for the domains otfiams and sets (e.@, S, F).
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. Bold calligraphic letters denote function spaces like thg.Hilbert spacé-.
. Differential operators are denoted by capital uprightlette.gD(z,w).

. In particular Div and Grad denote divergence and gradient operators applied in trererede configuration of a

geometrically nonlinear continuous body.

3 Fuzzy-stochastic finite element analysis

3.1 Interval, stochastic and fuzzy analysis

The discussion in which cases a stochastic (or fuzzy) aphrisanore advantageous is beyond the scope of this papeeéow
we should mention that stochastic analysis and fuzzy aisedysalternativein the sense that both may be applied under some
assumptions to the same probldmt not equivalent, not concurrent and not competifigese techniques are based on different
assumptions, require different input data and providediffit output quantities.

In general the stochastic problem description appearsraiBtufor aleatoric uncertainties representing experitaty
observed process variability. Aleatoric uncertaintiesraon-reducible by increasing the experimental effort. ithier exper-
imental study will reduce the variation range. The necesisgrut data is the probability density function. If it is umbwn, it
may be constructed based on the maximum entropy princiglefws just a convenient assumption) and iteratively imprb
using, e.g., Bayesian updates.

In contrast epistemic uncertainties are reducible, theyltérom insufficient knowledge, inaccurate measurement®und-
off errors. More precise measurements and exact arithroetild strongly reduce epistemic uncertainty, howeves, ihinot
always reasonable. One example where epistemic uncertgipears and where the probabilistic treatment is not qpjate
is error propagation through some algorithm. In this casadsearcher is not interested in probabilistic quantitiesexpec-
tations, but in the interval of confidence only. The task ifirtd the min and max bounds of the output if the input is defired a
interval variable. Obviously interval analysis is the agyiate tool here.

Another example of epistemic uncertainty is consideretimgaper. Let us consider some nonlinear physical proedssh
is studied experimentally. In order to use empirical datsinmulations it is fitted with some function. Usually we wanteep
the fitting function as simple as possible, we want to avogtfitting, and further investments in experiments (in otdeeduce
noise) are not reasonable. Due to the fact that the fittingecuever coincides with experimental data, we want to knaw h
the changes in the function parameters (different fits) méyénce the results. In this case we consider iterativalseimsing
intervals of confidence for the fitting parameters. The sesaihterval of confidence is just a point — the crisp or mailiea
obtained from fitting. The largest interval of confidencepf@ort) is the smallest interval covering all experimentztad The
set of nested and ordered intervals results naturally ireayfdescription. Thus the differences from aleatoric utadety in

this case are the following: there is no probability digitibn and there is no reasoning for its construction; thentjtyaof
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interest are the intervals of confidence for the output \&lbet not the expectations; stochastic analysis is higbtyiate
for averaged values (expectations) but not for the upper@mdr bounds estimation — the "worst case scenario”; a fuzzy
description appears naturally from the problem formutatio

A third example of epistemic uncertainty, where fuzzinegpears, is the case of linguistic variables and approximate
reasoning — a common subject in the fuzzy logic community.

Stochastic and fuzzy approaches can be combined for stizpasblems with lack of sufficient input data, thus cregtin
epistemic uncertainty in an otherwise aleatoric setting.

Thus the choice of the approach towards uncertainty is lystdiatated by the available information.

Fuzzy and stochastic descriptions are not equivalenteShme classical work of Zadeh (89) fuzziness is usually preted
as an application of the possibility theory. The discussegarding the relation between two approaches is still olpesome
cases a fuzzy problem setting may be applied for a stochastitem as upper and lower bound estimations (84). Poiisibil
are sometimes interpreted as upper probabilities (20).n@rmay just simply replace the pdf by a possibility densityhef
same form. All these approaches yield different resuls) different compared to the stochastic solution. Sinyilarfuzzy
problem may be replaced by a stochastic problem by assurming pdf, which is missing in the original setting. Based an th
assumed pdf the solution provided will differ strongly.

Furthermore, nowadays there is no unified opinion how totroasand how to understand the possibility density functio

In this paper we also address this question and propose @séfminterpretation.

3.2 Stochastic finite element method

In contrast to usual deterministic FEM the stochastic wersvorks with random parameters thus requiring some preényi
definitions. Let the Euclidean spaBerepresents the physical space with coordinateassembled in the vectar. SFEM
requires in addition the definition of the stochastic sga¢25). This is the space of random variables with the vectdrasic
RVs 6. For convenience we choose the basic random variablesiim dbitruncated Gaussian RVs with zero mean and unit
variance parameter. The implementation of the truncatags§an RVs instead of normal Gaussian RV is motivated by the
natural limitations of physical processes (e.g. partiel@iircannot tend to infinity in engineering applicationsylaiso for
reasons of numerical integration stability (64).

All random variables can be described as a nonlinear maitige basic set (63, 77). Thus we can visualize the stochasti
spaceS similar to the physical spadéwith coordinate®; (10,1118 65). Thus all other random variables are sometifurs
in S. Please note that the basic RVs are independent, thus éiipyobability density functiorfe represents the product of
all individual pdfs from the basic set.

By this definition stochastic FEM may be viewed as normal mei@stic FEM, however, inn-dimensional physical-

stochastic product space (10 11} (18, 65).
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Galerkin-type FEM as considered in the present work is basettie concept of a Hilbert space of functions. Let us define
the physical domai® C E, the stochastic domai§ C S, and the tensor product domaih= D x S. Following (25) we
introduce the physical Hilbert spa@¢ of functions defined over the domaip, the stochastic Hilbert spa@ of functions
defined over the domaifi, and the tensor product Hilbert spade = H x Q of functions defined over the domalih Physical,

stochastic, and product spaces with corresponding doraegndepicted in fid.]1.

. @b
Q O LD

f( ):D—R f(ﬂ) S—R Wf(w,ﬂ):V%R

Z1

Figure 1: Physical, stochastic, and product function spateQ, andV with corresponding physical, stochastic, and product
domainsD, S, andV.

SFEM shape functions belong to the sp3tk thus integration is performed over the domgin

In this work we use the stochastic local FEM (SL-FEM) apphoadich requires unified treatment of physical and stoéhast
dimensions. Thereby local quadratiecdimensional serendipity-type shape functions (65) aegl disr the discretization of the
domainV.

Let ( ) denote the inner product in the physical-stochastic proshece.
(g1(z,w)g2(z,w) //91 z, 0)g2(x, 0)dz fodb. @
Next we consider a random differential operdiee, w) such that
D(z,w)y(z,w) = f(z,w). )

wheref(x,w) is the random loading angl(z, w) is the unknown function.
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Thus, Galerkin projections of the differential operafz,w) and the unknown functiog(xz,w) onto the basig(z,w)

yield

y(CD,OJ) = Zyi(}oi(a:7w)7 (3)
i=1

([D(m,w)y(a},w) - f(mvw)] @i(mvw» =0,

4)
Vi=1, ..., N.
whereN is the number of basis functions.
For a nonlinear mechanical problem the differential operiat (2) reads
D(z,w)y(z,w) := — DivP(F(z,w)),
F = Grad y(z,w), (5)

fla,w) = f(z,w),

wherey(x,w) corresponds to the random deformation map describing thigiquo of material points in the actual configura-
tion, f (z,w) denotes the random body forcd andF represent the Piola stress tensor and the deformationegateinsor,
respectively. Please note that tBead andDiv operators involve differentiation only with respect to fiiteysical coordinates

x in the material configuration.

For the sake of demonstration the Piola stress teB$d¥(z,w)) is given as the first derivative of the Neo-Hookean energy

potential¥ (F).

1 1
U(F) = SA[F:F -3 2mnJ] + 5Mn?J (6)
ov i
a—F_P_AFJr)\OF , @)
whereA and) are Lamé parameters, withthe shear modulus andis related to Poisson’s ratio= Q[QM} i Ao = [Alnd — AJ;

C~! is the inverse of the right Cauchy-Green tenébr= F' - F; J = detF is the Jacobian determinar®! denotes the

transpose oF andF " denotes the transposed inverséof
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Thus, the expressioris (4) afd (5) after integration by pastd

R— Fext _ _l,"int — 0,
F;nt _ <P - Grad <pi(fl57w)>’ X

F& = (f(z,w)pi(2,)),

whereR is the residual and ) is the inner product ilV. Here for simplicity of exposition only the Dirichlet pradh is

considered.

Newton iterations are used in order to find the solution.

ORF

k —_—
R*(Y)+ 7Y

-dY* >0,

Y 9
oR* ©)

k._ _
K" := 7Y

)
Y

Yk = {Kﬂ R, (10)

Yyl = vk L qy”.

HereY is a vector of coefficients in the finite approximation[df (3)

Yi1
Yo
Yi2 |’

Yn

wherey;; represents thg-th component of the solution field projected onto itk basis function.

The explicit expression for the stiffness matkxreads

Kij<

oP
a—FT [Grad g;(z,w) ® Grad ¢;(x, w)]> , (11)
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with
oP  0*U _
= = AF '@ F " -\ F '@F ! + AIRI 12
oF ~ 972 ® o '® + All, (12)
wherel is the identity tensor;,denotes the non-standard double contraction of a fourééréethsorA and a second order tensor

B represented component-wise pf°'B|,, = [A] [B]jl; the symbols® and® denote the non-standard tensor products

ijkl
of two second order tensors andB represented component-wise as follo\&®B];;. = [Al];x[Blj and[A®B]iju =
[A]i[B]jk.

Please note that the gradients of the basis functions areedein the n-dimensional product space with coordinates

{x, 0(w)}, whereas the position vector has only three elements gmmneking to the physical coordinates Observe that the

model exhibits no deformation in stochastic directions.

3.3 Fuzzy finite element analysis

In many cases the system parameters cannot be obtainedyexaetto many reasons: lack of knowledge regarding the
microstructure, limited accuracy of the fitting proceduneperfection of the model, which can be fitted to the expentak
data but never coincides with them, noisy experimental,dasafficient number of experimental samples, etc. In tloeses

no statistical data for system parameters is provided. Theiprobabilistic description of the unknown parameteigeting
problematic. In this case a highly efficient tool for the fang propagation of epistemic uncertainty is fuzzy aritHo@&ad).

Here, the uncertain parameters are represented not in témasdom variables but in terms of fuzzy numbers.

The history of fuzzy number began in 1965 with the introducibf fuzzy sets (90), which are an extension of the classical
set theory based on the notion of different grades of merhigeris the case of a fuzzy sét the grade of membership ofis
defined by the membership functign; (z) € [0, 1]. Hereu 3 (z) = 1 means that the elemententirely belongs to the seX,

15 (z) = 0 means that is definitely not a member of the s&t In the case of a conventional sétthe membership function
of some element may have only two valuesx (z) € {0, 1}, i.e. the element can only entirely belong to or not belontdé&
setX.

For practical applications a few very important types ofzipzets are fuzzy numbers, fuzzy intervals, crisp numbeid, a
crisp intervals. A fuzzy number is the convex fuzzy set over the universalRetith the membership functiom; (z) € [0, 1],
whereu; (x) = 1 only for one single value of = a called the modal value. The fuzzy intervalis the convex fuzzy set defined
similarly to the fuzzy number, however with the differenbati. ;(z) = 1 holds for some interval called modal intervél A
crisp intervalA can be considered as the fuzzy set of points suchihat) = 1, if x € A, andu 4 (z) = 0 otherwise. The crisp
numbera is then the fuzzy set with the membership function given leyKinonecker delta functiop, (z) = é(x,a). Fig.[2

represents from left to right: crisp number= 1, crisp interval2, 3], symmetric triangular fuzzy number with= 4.5, fuzzy
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interval with the modal intervat € [6.5, 7.5], and the arbitrary non-convex subnormal fuzzy set with eomamembership

function on the intervat € [9, 11].

0.8+ 1

0.6F 1

it

0.2F 1

o 1 2 3 4 5 6 7 8 9 10 11 12

Figure 2: Membership function plotted for (from left to rigghcrisp number, crisp interval, symmetric triangularZynumber,
fuzzy interval, and the arbitrary non-convex subnormakfuzet.

Zadeh's extension principle is used to perform unary andryiarithmetical operations of fuzzy numbers. For any eabjt
function f applied to the pair of fuzzy numbeiisandb the membership function of the resulting fuzzy numbes f(a, b)

reads

pa(z) = sup min{pa(z), pg(y)}- (13)
z=f(z,y)

Due to the high complexity of calculations performed using éxtension principle an alternative approach was prapose
in the literature. The fuzzy numbers are reduced to setstefvals for different degrees of membership, hecuts. These
intervals are also called intervals of confiderice (30). Thougverya-cut interval arithmetic can be applied. Hig. 3 represents
a triangular fuzzy number decomposed into sieuts. Fora-cut u(z) = 1 the problem is reduced to a simple deterministic
one. For all othen-cuts the interval problem is considered. In practical egapion the interval problem is reduced to two
optimization problems (globahin andmax on interval) at each-level to obtain the correct bounds of the output intervae T
goal function here is the quantity of interest. The uncarntgrameters are the design variables.

However, if the evaluation of the system is costly, the optation approach becomes too expensive. As an alternatiee o
may use the extended transformation method (30). Thus vegrosn approximate solution using a limited predefined numbe
of samples, which may be generated using full grid or sparisktgchniques. In this work we focus on the standard fultigri
approach due to its stability and accuracy.

The structure of the proposed fuzzy-stochastic homog#goizéramework is as follows. Based on the experimental data

we design a stochastic RVE. Parametrized distributiores kkg., truncated Gaussian or truncated log-normal, ae tasfit
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. /N\

0.6
0.4

0.2 S/ N

‘ Fuzzy arnthmeta N
bounds [in sampimg
Max

Figure 4: Structure of the fuzzy-stochastic FEM based hamigtion framework.

statistical data. The distribution parameters cannot bmated exactly thus becoming fuzzy numbers. Full grid damggs
used. Thus every sample is resolved using the isoparanséticbastic local FEM with unified discretization in the picgs
and the stochastic domains. The SFEM output is then analgzeder to construct the response surfaces for every gyaniti
interest, e.g. for the homogenized stress mean value. Respgarfaces are used to extna¢h andmax values of the quantities
of interest for everyy-cut. Finally fuzzy response curves are plotted represgntpper and lower bounds for everycut. The

block-scheme of the presented algorithm is depicted infig. 4

3.4 Random variable transformation

Any random variable inQ can be represented as some function of the basic randonblearid-or the application of the
SFEM technique we need representation of all random vasahbl terms of basic RVs. For some standard RV models like,

e.g., log-normal, the representation in terms of Gaussi&is Rell-known. For other RVs, especially for those, whigksdribe
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experimental data or simulation output, this kind of repreation should be defined. Moreover we use this mappingtergée
random samples with arbitrary distribution.

In the case of random inclusion radii the sp&cis one-dimensional with only one basic RNw), which is chosen in the
form of a truncated Gaussian RV. This truncation is disadissel motivated in (64, 65).

Thus any random radiugw) with pdf f,.(r(w)) can be presented as a functiofw) = r(f(w)). This mapping may be
nonlinear and non-unique. Thus the computation of the fane{6(w)) becomes non-trivial (63, 77). However, if we consider

a monotonically increasing functiorif(w)), the following relation holds (63)
dr f,(r) = d6 f(6). (14)

Thereby we introduce a unique mapping of the points in th@srpfd(w) into the points in the support e{w). Relation
(I4) states that the probability mass at every point staghamged during this mapping, which is in fact the probapitiass
conservation law.

The mapping function is computed as the solution of the iifiéal equation

dr - fg(e)
AT (15)

Thereby the pdfs should satisfy the following requirements
. all pdfs should be at leagt’-continuous,
. all RVs should posses finite support,
. fr(r) > 0 forall r in the support.

Mapping of a random variable with infinite support into a Ruiwifinite support and vice versa is also possible, however
the mapping function should be singular at the ends of tregvat thus increasing the problem’s complexity. The ODE) (45
complemented with two boundary conditions stating thatithh& andmin values of one RV are mapped one-to-one into the
max andmin values of another RV, respectively. The second boundargtiion may be used for accuracy control.

Due to the fact thafy and f, are close to zero at the ends of the interval, numericalisolutf (I3) may be inaccurate or

unstable. Moreover the obtained curves may be close tolsindinus we transform the problem to the form

dt

5 :fr(r)a

dt

- — 6

Vte [0, 1]: fi(t) = 1.
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Both equations can be solved using the Runge-Kutta methuel sBlutions obtained are tabulated functiofg and¢(9)
which can be transformed tgt) andd(t) just by swapping columns. Thereby we obtain the cutié in parametric form.
This method is also suitable for almost singular curves.

Expression[(14) is also often used to obtain the unknowntfomd,.(r), if fo(6) andr(6) are given:

1 00) = 50| G0)| a7)

4 Stochastic representative volume element

Homogenization considers typically two separate scahesntacro scale and the micro scale. Thereby macroscopiciatate
properties are obtained from the simulation of the micrpgzonodel. In the case of random material microstructures th
microscopic model should be large enough to exhibit all msawpic properties, thus resulting in extremely high cotational
costs. Thus the ergodic assumption is often used, whichssthat the averaging over one large sample is equivaleheto t
averaging over the ensemble of small samples. Thereby timeamputer power demanding simulations can be replaced by
the analysis of one small stochastic RVE, however, inclg@iatistical information about the microstructural vhiiidy.

We base our RVE design on the experimental data and scanleictgom microscopy (SEM) pictures of iron particle filled

elastomers established at the Chair of Applied Mechanio#edsity of Erlangen-Nuremberg (figl. 5).

Figure 5: Scanning electron microscopy of an iron partidledielastomer (Courtesy of Bastian Walter, Chair of Apglie
Mechanics, University of Erlangen-Nuremberg)

Following our previous works we consider a rectangular RVEhthe size2a, wherea = 1, with one circular inclusion
possessing random radiuéw). Due to the periodic boundary conditions the inclusionsitimrs inside the RVE does not
influence the homogenized stress values, thus for the sadkienpficity we consider only the model with the inclusion hret

center of the RVE.
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The stochastic RVE can be imagined for the simplest casefftwsical and one stochastic coordinates) as a stack of thin
sheets with deterministic 2D RVEs in each of them, i.e. evargizontal slice of the stochastic RVE corresponds to some
deterministic model. Thus the vertical dimension demaues the evolution of the microstructure by varying the cand

parameter (fid.16).

Figure 6: The stochastic representative volume elemerat & problem considering the random inclusion’s radius.

We model an inclusion as a jump in elastic propert&s {-continuity), whereby the displacements &ré-continuous. We
assume for simplicity a constant Poisson’s ratie= 0.3. In the general case the Poisson’s ratio is also a random field
interesting analysis for the case of fluctuating Poissatle s presented, e.g. in (38).

Thus only the shear modulus is a random field and is given as
1 .
G(x) =Gm + E[Gi — G [1 — signz (a:,w)], (18)

whereG,,, andG; are the shear moduli of the matrix and the inclusion, re$gsgt z(m,w) is a cone-like level-set function
(64), which indicates whether the material point with caoatesz belongs to the matrix or to the inclusion € 0: inclusion,

z > 0: matrix).

2
L1

z(z,w) = r(w) l ()’ + T(af)2 - 1] . (19)

The random radius(w) should be represented as the mapping of the basic randoablef{w). Determination of the

experimentally motivated models off(w)) are presented in the sequel. In this work we propose two raaticribing the
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random radius of the inclusion. The first model is motivatgdhe experimental study of the inclusions’ radii. The seton
model uses also the information about the inclusions’itistion to determine the size of the RVE.

In order to verify our model, we use the values of materiahpseters from (34)&,, = 8, G; = 80.

All simulation were performed with periodic boundary caiahs applied to the boundaries of the RVE. The macroscopic

loading is presented by the macroscopic deformation gnafii@lescribing a 10% uniaxial stretch:

11 0 0
F=1o 1 o0
0 0 1

4.1 Stochastic RVE with fixed cell size

The first model of the particle radii distribution considarfixed size of the RVE. This model is motivated by the expenitalke
study of the inclusions’ radii presented in fig. 7. The expemtally obtained radii distribution exhibits a behaviery close

to log-normal. Typically the log-normal random parameteesrepresented as a nonlinear mapping of the basic Gal®géian

r(0(w)) = exp(m, + 0,-0(w)), (20)

wherem,. ando,. are location and scale parameters of the log-normal digioib, respectively.

The least square fitting procedure is used to evaluate treneders of the log-normal distribution. Thereby we fit the
cumulative distribution function (cdf) provided in figl. 7 oké that the histogram presenting the pdf of the radii digtion is
not suitable for the parameter fitting due to the lack of infation about the bins width. Moreover, while evaluating ¢bé
the influence of the noise on measurements is partially cosgied by the averaging procedure. Thus the experimerites cd
usually more accurate compared to the experimental pdf.

In order to perform parameter fitting, we normalize the radmalues in the experimental curve thus changing to some
dimensionless radius, which represents the ratio of the radius to the RVE size.igwlork we consider the size of the RVE
a = 10pum. Thus the RVE withu = 10pm is large enough to contain more than 99.7% of all considereldsions radii. Note
that fig.[.7 demonstrates the cdf plotted versus the diamatisrthe inclusion with diameter 28n (purple vertical line in fig.

[7) completely fits into the RVE with size = 10um.
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Figure 7: Histogram of inclusion diameter distribution ahd obtained cumulative probability density (Courtesy akfan
Walter, Chair of Applied Mechanics, University of ErlangBiaremberg).

The fitting problem is formulated as follows:

{m, o,} = arg gug HF(m,a)(Tn) = Feap(rn)l L2,
’ (21)

or >0,

where|| - || 22 is the L2-norm, F,,, () andF{,, » (rn) are the experimental cdf and the log-normal cdf with paranset and
o, respectively.

The inclusions’ volume fraction is evaluated for the considered cell size through the obthiog-normal pdf:

1

’/T
v = Z /Tif('r?br,@-)(rn)drna
0 (22)
dF m 7‘75-7‘
Fime ) (1) = == T2 ().

n

For the cell sizex = 10um the volume fraction is just = 3.64%.

Fig.[8 demonstrates the fitting curve plotted over expertalatata. Note the slight disagreement between the log-alorm
distribution and the empirical curve. Due to the fact thatefitting of the experimental data is impossible, the moaebm-
eters obtained cannot be considered as exact values, bet rapresent fuzzy numbefs. anda,.. Correspondingly the fuzzy
log-normal cdfF|; 5)(ry) is introduced. Black dashed lines in fig. 8 represent uppei@mer bounds of the fuzzy log-normal
distribution containing the entire experimental data.

The procedure of reconstructing the fuzzy model parambgessd on experimental data is as follows:

. The obtained parameter valugs. anda, representing the best fit in the sense of least squares as@&leosd to be the

fuzzy parameter’s modal values.
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. Some variations of the parameter’s valdes:;, Ams, Aoy, andAos are introduced into the model.

. Due to the parameter variations the log-normal cdf is regresd not by a single curve but rather by upper and lower

boundsFiin (1) and Fipax (7).
. The experimental data exceeding the region betwegn(r) and F,.x () is denoted as residual.

. The optimization problem is solved, wherein then;, Ams, Aoy, andAoy are design variables, the residual is the goal

function to be minimized.

. Based on the modal values. anda,. and the obtained variatiodsm,, Ams, Aoy, andAoy we reconstruct asymmetric

triangular fuzzy parametefs,. ands,.
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Figure 8: Log-normal fitting of the experimental curve regeneting the cdf of the inclusions radii.

In order to estimate upper and lower bounds for the giveratiaris ofm,. ando,- we introduce the following triplets.

my € {my, M, — Amy, m, + Ama},
(23)

or € {5'7“7 or — Ao, 0p + AUQ}v

Thus we obtain nine pairs of parameters. and o, representing nine curves;(f(w)) = exp(my; + o,;0(w)) with
corresponding cumulative distribution functiofg (r,, ).

Upper and lower bounds are defined as

Fmax (rn) = II?;&X (Fij (Tn)),
’ (24)

Fmin(rn) = 11’11;11 (FZ] (T’ﬂ))
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For the given upper and lower bounds the residual curve septs the experimental data exceeding the region between

Fin(r) and Fiax (1) schematically shown in fig] 9.

R(rn) = Rmax(rn) + Rmin(rn)7
Rmax(rn) = maX{Fexp(Tn) - Fmax(rn); 0}; (25)

Rmin(rn) = min{Fmin(Tn) - Fezp(rn)v 0}

Figure 9: Experimental cdfA,,,), upper q.) and lower §,,;,) bounds of the theoretical cdf and the residual cui (
obtained according to (25).

Lower and upper bounds are obtained as solution of the agdtioh problem with four design variables, i.e. parameter

variationsA = [Amy, Ama, Aoy, Aos]. The optimization problem is defined as

A = argmAin (Wh|| Al 2 + Wa||R(rn, A) || 12),

Wi = [m}+67] 7,
(26)
Wa = || Fin,.00) (Tn) = Feap(rn)ll 72

A; > 0.

Thus we minimize the length of the vectdr containing positive parameter variations together with grenalty term for
experimental data exceeding the theoretical boundartes.vEctor of design variables and the penalty term are narethl
with respect to the parameter’s modal valles (21) and senmma of the difference between the experimental curve had t
log-normal cdf, respectively.

Thus for both uncertain parameters we obtain left and rigioinlds. Accordingly we introduce two asymmetric triangular
fuzzy numbersm,. with modal valuem,, = —1.8475 defined in the rangé-1.8565, — 1.7745] and&, with modal value
g, = 0.5466 defined in the rang@.5206, 0.5495].

Due to the fuzzy-random nature of the radiysthe elastic properties of matrix and inclusignl(18) areespnted as fuzzy-

random fields necessitating the use of the fuzzy-stochfasite element method.
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4.2 Stochastic RVE with variable cell size

An attempt to describe the inclusions’ positions in term&dE results in a large and complex system of RVs with strongly
nonlinear dependencies between them. Therefore someatiter approach should be established. So, e.d., In (24uthers
used the probabilistic description of the interparticlgta@nces, which was assumed known. Thereby the authorsleoasily
one particle (center) surrounded by an infinite set of pladigvith random distances to the center. The disadvantatfesof
approach is that the interparticle distances between thewsuding particles are not considered. Moreover the thiotion of
any restrictions on the distances between the surroundirigies require the use of three-, four-, five-, angdoint distribution
density functions thus resulting in a system of the same ¢exitp as the model with random positions.

Alternatively one may focus instead of interparticle digtas on the free area around the inclusion associated wih th
inclusion, thus, creating an RVE with variable size. Thgrele propose to use a statistically similar representatolanie
element((75). The idea is to provide some substitute or gateomodel, which possesses some statistical propertitge of
original model, specifically the relation between the isan’s radius and the area around the inclusion. The statiigtsimilar
stochastic model is simple and contains only one includBynvarying the inclusion’s radii distribution in a one-insion
model we may control not only the average stress, but alsmthémum and minimum stress and the stress standard deviatio
in the stochastic system.

Please note that we seek for an equivalence not between tenrdeistic models but between a deterministic model with
randomly distributed inclusions and a stochastic modéi wite single inclusion. Thus we utilize the ergodicity cqitd@3,
24). The idea is to develop a stochastic model (statisyicathilar, simple, and optionally periodic) whereby the i@age over
ensembles is assumed equivalent to the average over thraerofithe deterministic model with randomly distributedirsions
(fig.[10).

The use of periodic boundary conditions for the statistjcaimilar (substitute) model is motivated by a number ofdstu
ies demonstrating that the periodic boundary conditioegla most reliable and converge faster than Dirichlet anghiNen
boundary conditions (69, 70,87). They are often used evbe ifnodel is not periodi€ (70, 87), because Dirichlet andreon
boundary conditions give always overestimation and ursdienation for the stres$ (69, [70,/73/87) in computationahbge-
nization. Moreover the simple comparison of the homogeahsteesses in periodic composites modeled with only onediah
in the unite cell and composites with random microstructpegformed in[(8]7), demonstrated close homogenized stedges
in both models. Thus, one of the conclusions madeé_in (87)asdhe unit cell with only one centered inclusion and pedodi
boundary conditions is already a good approximation fomtleglel with randomly distributed particles at least in elegirng
applications.

All necessary statistical information concerning the fiesa distribution may be estimated statistically from tkgegimental
data.

The design of an RVE with variable cell size includes thedielhg steps:
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. Real materials possess randomly distributed non-overnigppclusions. One may divide microscopic material sammple
into cells wherein every cell represents the set of matpaaits that are closer in some sense to the associatediortius

than to any other.
. The cell area distribution can be estimated statisticalgelnl on the analysis of microscopic samples.

. We consider a rectangular RVE with size paramatand total aread = 4a>. The area of the RVE is considered to

exhibit the same distribution density function as the acddie cells.
. The influence of the cell's shape is not considered.
. The influence of the particle position within the RVE is nedésl by using periodic boundary conditions.

. The number of model parameters is reduced by introducingdh®alized (reduced) radiutg = r/a. Thus all statistical
information regarding the radius variation and cell arestritiution is included in the probability density functiohthe

normalized radius,,.

In our previous work we already considered RVEs with vagaiite. To this end we studied the distribution of the Voronoi
cells area associated with corresponding inclusions. Trenoi cell of an inclusion with centdr:$, z5) is the set of points
which are closer tdz§, z5) than to the center of any other inclusion.

Due to the small amount of real samples and lack of experiaheiata we generated virtual samples with completely ran-
domly distributed inclusions and performed Voronoi analys these samples. The experimental distribution deffisitgtion
of the characteristic cell sizgw) = /A(w)/2 was fitted with the log-normal rule.

The disadvantage of the scheme presented earlier is thahdbtessellation does not use any information about thiginc
sions’ radii. On the one hand this fact strongly simplified thodel. The area distribution was completely independent the
radii distribution. Both random variable$w) anda(w) were uncorrelated, both distributions were fitted with thg-hormal

rule, thus simplifying a change of variables

r(w)

a(w)

)

rn(w) =

wherer, (w) is log-normal too. On the other hand this model is very cadbse to the fact that we loose correlation between
the inclusions’ radii and the corresponding cell areas tiea @f some Voronoi cells can become smaller than the area of
the corresponding inclusions. Moreover the Voronoi cefjesdimay intersect the inclusions boundaries [(fi§j. 11a). Thtre
present work we propose an improved model void of these disadges.

In the present study we use instead of the Voronoi diagramnsdhealled Apollonius diagram (additively weighted Voréno

diagram), its dual is the Apollonius graph also sometiméied#he Delaunay graph of disks (fig.]J11b). The computaticthe
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Apollonius graph is a non-trivial problem due to the hightymplex predicates and curvilinear edges of the Apolloniagmm.
In the general case edges are hyperbolic curves. We usectialigsal package of the Computational Geometry Algorithms
Library (40) in order to compute the Apollonius diagrams.

Thus we generated 100 000 inclusions with random radiug-ditgpto the given experimental cumulative distributiondu
tion. We generated firstly the 100 000 random numbers pdegeGsussian distribution using the standard random gémera
in Matlab. Then we replaced the samples laying outside thpatiof the truncated Gaussian distribution thus perfogiiun-
cation. After that we compute the mapping of the truncatedsSian distribution into the given experimental distribnt(18).

Using the obtained function we mapped the set of Gaussia@loramumbers into the set of random numbers with experimental

distribution.
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Figure 10: Virtual sample with randomly distributed pdag(left) and the statistically similar stochastic peraadodel (right).
Ergodicity assumption: the average over ensembles is asbenuivalent to the average over the volume of the detestigni
model with randomly distributed particles. Statisticah#arity: probability density of the ratio between parédize and cell
area, and the averaged volume fraction are the same in bathlsmo

The size of the virtual material sample is chosen based ondluene fractionv which is the relation of the total area of all

inclusions to the area of the sample. Thus the area of thelsatrify"?' is given as

leb
Asample _ 1)71 E ’/TT,L-2.
i=1

Note that here we can specify the volume fraction in contaie model with fixed RVE size.
The generated inclusions were distributed inside the samphout overlapping. Periodicity was considered, thesater-

lapping of the inclusions on opposite sides of the sampls@avoided. Figs. 10 aid111 demonstrate only a very smalbpar

the obtained virtual random sample.
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Figure 11: Part of the virtual sample with non-overlappimgusions divided into divided into Voronoi cells (a) anddlpnius
cells (b). Note Voronoi edges intersecting inclusions’ thdearies.

For the generated virtual sample of material we calculaebollonius diagram with periodic boundary conditions. &tp
of the Apollonius diagram is depicted in flg.]11b. The ardg¥! of the non-convex curvilinear Apollonius cells are comjlte
numerically. The characteristic size of the aelt evaluated as; = /A5 /2.

Due to the fact that the variable size of the RVE is inconwvetfigr the evaluation of the homogenized properties we thice
the reduced radius, ; = r;/a; similar to the model proposed in (65). Thereby we keep theaithe RVE fixed and compress
two random parameters into one thus strongly reducing thepatational effort.

The weight of every single realization of is the total area of all cells possessing correspondjigratio. Fig.[12 demon-
strates the statistical area distribution plotted versesreduced radius,. The dashed area in the right part of the figure
denotes physically impossible valuesf If r,, > \/§ the area of the inclusion is bigger than the area of the Apal®cell,
thus impossible for the non-overlapping inclusions. Hosvethis is the case for Voronoi tessellation. Two verticaleblines
r, = 0.9 andr,, = 0.09 are limits covering 99.92% of entire sample area. Cellsgyntside these limits are depicted by blue
color. Only the cells inside these limits are used for thduatéon of the statistical cdf.

The interval betweem,, = 0.9 andr,, = 0.09 is divided into 200 subintervalgr,, ;. The total area of all cells in the
intervaldr,, ; (fig.[I2) divided by the area of the material sample represéetprobability mass function over this interval. The
cumulative sum of all mass functions approximate the cutivel@istribution function of-, (w). Note that here we do not use
the statistical, ; but the probabilistie;, (w). The experimental cdf of the, (w) is depicted in figl_113.

The obtained cdf is much closer to the truncated Gaussi#iibdion than to the log-normal distribution. However fitgng
with the truncated Gaussian distribution fails. The pugsashed line in fig_113 demonstrates the probability densitgtion

of the experimental distribution obtained by simple diéfetiation of the experimental cdf. The experimental pdiignametric
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Figure 12: Area of the Apollonius cellg**! plotted versus,, = r/a. The dashed area in the right part of the picture denotes
physically impossible values of,.
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Figure 13: Experimental cumulative distribution functemd probability density function of the reduced radiyéw).

and exhibits no tails typical for Gaussian distribution. &tempt to fit the experimental cdf with Gaussian distrimuiifig.[14)

be represented as nonlinear mapping of the truncated Gausssis RV.

results in negative minimum radius value and an extremediewéange of radii variation. Thus the reduced radiygss) should
The mapping curve,,(6(w)) :

6(w) — R is computed from expression {16). The obtained functioriletsha shape very
similar to a cubic polynomial (fig._15). This curve represeam exact expression for the random radius in terms of thie bas

random variable. However, for the application within theES~the parametrized function is preferred, thus we should fit
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Figure 14: Fitting of the experimental curvg(w) with truncated Gaussian variable. Obtained maximum andhnoim radii
contradict with physical limitations.

the tabulated curve, (0(w)) using some analytical model. To this end we introduce a nedam variable which is a cubic

polynomial of the truncated Gaussian variaf)e).

4
paw) = 3 ahi(6(w),
B (0(w)) = [1+20(@)][1 — 0(w)]2,
ha (0(w)) = B(@)[1 — 0(w)]?, @7)
hs (0(w)) = 0(w)?[3 - 20(w)),

ha(0(w)) = 0(w)?[0(w) — 1],

whereh,; are cubic Hermite splines.
This model includes 4 parameters The convenience of the Hermite representation is that mvameters, namely; and
az are immediately evaluated from the tabulated data — thegespond to the function values at the ends of the interval.

Thereby only parametets anda, should be fitted from the tabulated data. The necessaryresgant

dpn

19 >0

is satisfied for the here considered curvedf> 0 anday > 0, also due to the convenient form of the Hermite representati

The fitting procedure is the same as that used to fit the expatahcdf.
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Fig.[I8 demonstrates the original cumg#(w)), the fitted Hermite spline, and the upper and lower boundse e very
good agreement between the original curve and the cubiapodial. Fig[ 16 demonstrates the original experimenta) idf

cdf of the cubic RV, and the corresponding bounds.
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Figure 15: Fitting of the experimental curvg(f(w)) with the cubic polynomial of the truncated Gaussian vagahl6(w)).
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Figure 16: Experimental cumulative distribution functioiithe reduced radius, (w) and cdf of the polynomial R,,(6(w)).

Based on the results of curve fitting we design two triangfuazy numberséa, with modal valueas = 0.0729 defined
in the rangd0.0108, 0.1340] anda4 with modal valuez, = 0.2542 defined in the rangf.2328, 0.2892]. Two crisp model
parameters ar@, = 0.0920 andaz = 0.8980.

Thereby the inclusions radius ih_{19) is described as cuidom variable with two fixed and two fuzzy parameters thus

requiring the application of the fuzzy-stochastic FEM feamork.
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5 Simulation results for the RVE with fixed cell size

The most accurate evaluation of the fuzzy system outputhfergeneral nonlinear non-monotonic dependence is obtained
by using the optimization method. Due to the large humberaofigles required, this approach is costly. Thus the general
transformation method (29, B0) is often applied in orderditam an approximate response surface. However in some ttese
number of samples required may be strongly reduced. E.theisase when the output function is monotonic only the aorne
points of each interval should be considered thus yieldiegxell-known full factorial design pattern (vertex method

Due to the fact that we don’t know a priori whether the outpgutionotonic (however we expect this), we can not use the
vertex method immediately. Thus we perform first a relativgde simulation using the general transformation metinaatder
to prove that the output is monotonic. After that, if the autdemonstrates monotonic response, the vertex methogledp
to the original and all further problems.

The transformation method is highly efficient in the caseyofimetric triangular fuzzy numbers, otherwise the number of
samples required increases. Thus we perform firstly a stinalaith symmetric fuzzy numbers. Thereby we extend thesup
of the fuzzy numbers to the left and to the top (compare supfrofigs[1T anf18). Fig. 17 illustrates sampling with theayal
transformation method for the case of fivecuts. Black lines denote the edges of the membership famotthich represents
for the case of two triangular fuzzy numbers a pyramid in th&ce(m,., 0., mo ). The sampling of two asymmetric fuzzy
numbers with the vertex method is depicted inffigh 18. Emptgles denote optional samples. In the case of a linear output

function or in the case when the reconstruction of the fuzagyut is not required, these additional samples are notssacg
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Figure 17: Sampling for the case of the general transfoonatiethod applied to the pair of symmetric fuzzy numbers.

The aim of this simulation is to study the influence of the fudistribution parameters, obtained from the experimemt, o
the homogenized stress values. Thus the fuzzy output mmelere the homogenized stress plotted versus the badizma

variable. Every fuzzy sample is resolved using the isopatamSL-FEM with quadratic finite elements, whose accuracy
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Figure 18: Sampling of two fuzzy numbers using the vertexhm@t Empty circles denote samples, which are not necestary,
e.g., the output is a linear function of the model parameters

and convergence for the considered problem was studiéd®)n Fér the homogenized stress quantities the SL-FEM eshibi
exponential convergence already starting from the founelg layers in the stochastic dimension.

In the present study the physical-stochastic product doiés discretized using 16 element layers in the stochastiedim
sion thus yielding very high accuracy for the homogenizeesst quantities. The finite element mesh is generated frem th
same pattern for every sample, thus the number of elemeyts shchanged. The mesh generated for the modal valueszgf fuz

parameters is depicted in f[g.]19. Lilac is used to denoteisich, orange corresponds to the elastomer matrix.

Figure 19: Finite element discretization of the physidakbastic domairy. Model with fixed RVE size. Lilac denotes
inclusion, orange corresponds to the elastomer matrix.

The fuzzy response curves for the case of symmetric fuzzybeusnare presented in fig.]20 for the entire support of the
basic RVf(w) € [-3, 3] and in fig[2Z1 for the subinterval of the most probable valifes € [—1, 1]. Different curve colors

correspond to the samples in fig] 17. The analysis of the ptedeurves demonstrates that the output function is maioto
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with respect to both fuzzy parametets andas, however their influence on the system behavior is differéhé variation of
m, moves the entire curve up and down, while the variation dfotates" the curve around the center pdifit) = 0. Thereby
maximum and minimum values of the fuzzy output are reach#idrcorner points of the interval. FIg.122 represents thesstr

curves corresponding to thein andmax values of the fuzzy output.
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Figure 20: Stochastic homogenized stress curves plottastis®asic R\WW(w) € [—3, 3]. Different curve colors correspond to
the samples in fig._17. Model with fixed RVE size.

Figure 21: Stochastic homogenized stress curves plottstis®asic R\VW(w) € [-1, 1]. Different curve colors correspond to
the samples in fig._17. Model with fixed RVE size.

Fig.[23 demonstrates the homogenized stress mean valueTandos different samples. Both the mean value and the

STD reach their maximum and minimum values in the cornertpoifiherefore all three quantities of interest (stochastic
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homogenized stress, homogenized stress mean value, armhépired stress STD) demonstrate monotonic behavior thus

allowing the use of the vertex method for further simulasion
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Figure 22: Stress curves corresponding tortie andmax values of the fuzzy output. Model with fixed RVE size.
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Figure 23: Homogenized stress mean value and STD plottéetisample spaden,., &..). Model with fixed RVE size.

Fig.[24 demonstrate the stochastic homogenized stresssabtained using the vertex method (fig. 18). The curve’pesha
is close to exponential. This is expected due to the log-abraie of the radii distribution. Note the strong influendette
parameter variation on the homogenized stresses. The rmaximomogenized stress value increases, e.g., by 50%, Howeve
the variation of the distribution parameters was around%6-1

Note also that the homogenized stress STDI[(fiy. 23) diffé&rsi@es for different samples. Thus the model is highly demsi
to the input variations, therefore the accuracy of the mpdetlictions depend strongly on the accuracy of the expertahe

data and statistical estimations.
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Figure 24: Stress curves corresponding toitfie andmax values of the fuzzy output. Solution for the non-symmetuizzy
number was obtained using the vertex method. Model with fiReH size.

6 Simulation results for the RVE with variable cell size

For the here considered problem it is difficult to define a gprichether the system output is monotonic with respect to the
fuzzy parameter variations. Thus the vertex method canaeigplied. Due to the fact that both fuzzy parameters arestiimo

symmetric, the general transformation method is prefeifad sampling of the parameter space is depicted ifLfig. 25.
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Figure 25: Sampling strategy for the model involving a cubitdom variable with two triangular fuzzy parameters.

The simulations presented in this section were performetjul? element layers in the stochastic dimensions due to the
smaller radius variation and also smaller rate of radiuseiase. The mesh generated for the modal values of fuzzy péeesn
is depicted in figl_2Z6. Lilac is used to denote inclusion, geoorresponds to the elastomer matrix.

The obtained stochastic homogenized stress curveb (figle2@pnstrate higher average stress values, which is exjeate
to the higher volume fraction in this model (20% versus 3% @rnodel with fixed RVE size). The obtained curves demorestrat

also a smaller spread compared to the log-normal distdbutvhich may be considered as a very important computdtiona
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Figure 26: Finite element discretization of the physidakhastic domairy. Model with variable RVE size. Lilac denotes
inclusion, orange corresponds to the elastomer matrix.

advantage of the model with variable RVE size. In order tdyaathe boundaries of the stress curves, we plot also thesis

subtracting the modal values; — 11 = 011 (az, as) — o11(ae, aq) (fig.[28).

Figure 27: Stochastic homogenized stress curves plottstis®asis RW(w) € [—3, 3]. Different curve colors correspond to
the samples in fig.25. Model with variable RVE size.

The max andmin stress values for every-cut are presented in fif. 9. Note that thex andmin curves coincide with
the samples located in the vertices of theut, thus demonstrating monotonic dependence of the heniped stresses on the
distribution parameter®, anday.

Homogenized stress mean value and STD are depicted [nfigh&model response demonstrates the monotonic behavior
with respect to parametedis anda,. Note also the small variation of the stress STD, which sttitat the model with variable

RVE size is less sensitive to the variation of the input past@ms. Interesting is the fact that the stress mean valuedsed



32 Dmytro PivovaroveT AL

0.06
0.04
0.02

0

7y — 0

-0.02

-0.04

-0.06 -

-008 | | 1 1 | ]
-3 3 E

Figure 28: Deviation of the homogenized stresses from theain@luesr;; — 511 = 011 (ag, a4) — 011(a2, a4) plotted versus
the basic random variabiw). Model with variable RVE size.
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Figure 29: Stress boundaries for eaclut plotted in form of deviation from the modal valsep{c$, } — 511 andinf{o, } —
o11. Model with variable RVE size.

approximately 1.25 times compared to the model with fixed sizthe RVE, however the volume fraction increased from 3%

to 20%.

7 Summary and conclusions

In the present work we established a combined fuzzy-stéictelsM and implemented the proposed technique into computa
tional homogenization. Based on the analysis of experisientdence we specified two different sources of uncestaimthe

materials’ microstructure requiring different solutidnegegies.
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Figure 30: Homogenized stress mean value and STD plottéwtisgmple spadg@:, a4). Model with variable RVE size.

The randomness in the geometry of the microstructure egsfifom the variability of inclusions’ radii and random inel
sions’ distribution. This aleatoric uncertainty requipgsbabilistic descriptions. The distribution parametgese estimated
statistically directly from the experimental data.

The particle distribution was assumed to be completely sgemdhus the probabilistic description in terms of probigpil
density function, random variables, etc is highly compbca An attempt to describe the inclusions’ positions imgof RVs
results in a large and highly complicated system of deperi@ea completely useless for engineering applications.sTha
proposed some alternative description of the inclusioasitpn distribution based on the concept of Voronoi cellsie-region
of the matrix material which is closer to the inclusion asatea with it than to any other inclusion. If the inclusioraglius
is considered, the Apollonius diagram is used. Based onrthlysis of virtual material samples we estimated statififiche
relation between the inclusion’s radius and the correspgnépollonius cell area distribution and used this infotioa to
design the stochastic RVE with variable size.

In this work we analyzed two models — with fixed RVE size andhwiariable RVE size. For both models of the stochastic
RVE we demonstrated the sources of epistemic uncertainty.tBthe idealized and simplified character of parametobar
bility distribution functions the fitting of the experimeturves results in the distribution parameters’ valugglyithin some
interval of confidence. The natural way to describe epistamcertainty is fuzzy arithmetic operating rather with gibsities
than with probabilities.

Thus the choice of fuzzy-stochastic solution strategiesdtivated empirically.

Fuzzy output was presented by scattered response surfatse(fijs.[ 28 and_30) and boundary curves (figs. 24[and 29)
demonstrating the output’s variation for every consideremit. Thus the fuzzy response curves allow to estimate tieevial
of confidence for quantities of interest if the input is epmic. They demonstrate also how the interval of confidencédco
change if more effort would be invested into the experimantrider to reduce the epistemic uncertainty (chapidr 3.d) an
also how the consideration of different fits (obtained udgiffgrent fitting algorithms or weights) affects the outpuiantities.

Information provided allowed complete analysis of the eiff#f epistemic uncertainty on the stochastic output.
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Based on the performed simulations we conclude that thesindle of the input’s fuzziness on the simulation resultsrigda
The maximum homogenized stresses may change by 50% wittb®tipput parameters’ variation. For the model with fixed
RVE size the homogenized stress STD may change more thamtes. {The model with variable RVE size is more stable and
demonstrates a stress change comparable to the variaiigputfparameters.

For both RVE models studied the system’s response demtetstranotonic dependence on the input parameters thus-allow
ing later application of the vertex method. However thid facelated only to the proposed models and cannot be gérextal
to other RVEs.

From the comparison of the RVE with fixed size and the RVE wihiable size we conclude that the RVE with variable
size is less sensitive to the variation of fuzzy paramefaluces stress curves with smaller spread, gives conteslthe
inclusion’s volume fraction, captures more statistical axperimental information related to the microstructhi@yever the
design of the stochastic RVE based on the experimental @atanties more sophisticated and requires additional céilmusa

Both methods, the stochastic FEM technique and the gemaredformation method for fuzzy numbers, are computatignal
expensive thus motivating the future incorporation of itiorder techniques into the SFEM framework

Also the development of advanced sampling techniques fmyfaumbers may be used in order to accelerate the solution of

the combined fuzzy-stochastic problem.
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