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Summary

Uncertainties in the macroscopic response of heterogeneous materials result from two sources: the natural variability in the

microstructure’s geometry and the lack of sufficient knowledge regarding the microstructure. The first type of uncertainty is

denoted aleatoric uncertainty and may be characterized by aknown probability density function. The second type of

uncertainty is denoted epistemic uncertainty. This kind ofuncertainty cannot be described using probabilistic methods. Models

considering both sources of uncertainties are called polymorphic. In the case of polymorphic uncertainties some combination

of stochastic methods and fuzzy arithmetic should be used. Thus in the current work we examine a fuzzy-stochastic

FEM-based homogenization framework for materials with random inclusion sizes. We analyze an experimental radii

distribution of inclusions and develop a stochastic representative volume element (RVE). SFEM is used to obtain the material

response in the case of random inclusion radii. Due to unavoidable noise in experimental data, insufficient number of samples

and limited accuracy of the fitting procedure the radii distribution density cannot be obtained exactly, thus it is described in

terms of fuzzy location and scale parameters. The influence of fuzzy input on the homogenized stress measures is analyzed.

Keywords: Stochastic FEM, Stochastic local basis, Fuzzy numbers, Computational Homogenization, Geometrical uncertainties

1 Introduction

The effective macroscopic properties of heterogeneous materials are estimated from the response of the underlying microstruc-

ture by homogenization. Homogenization techniques proposed in the literature can be classified based on the considered

physical model (deterministic or uncertain) or based on theapplied homogenization method (analytical or computational).
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Some examples of analytical homogenization of deterministic media can be found in (3, 4). Interesting results in computa-

tional homogenization of deterministic media are presented in (14, 34–36, 47, 54, 78). For an overview of existing deterministic

homogenization techniques we refer to (70).

Real heterogeneous materials always possess either uncertain material properties, or some kind of geometrical uncertainties

in the microstructure, or both types. In many cases the influence of these uncertainties cannot be neglected without someloss

of accuracy.

The uncertainties in the microstructure result from two different sources. Aleatoric uncertainty originates from thenatural

variability of the microstructure. It may be described using the concept of probability. The required probabilistic measures of

the model’s input like, e.g., probability density functions, correlation functions, and probabilistic parameters can be estimated

statistically from experimental data. Epistemic uncertainty derives from insufficient knowledge regarding the microstructure

and parameter distribution, imperfection of the analytical models, and the experimental limitations. In this case we cannot assign

probability measures to the model’s input data (8, 76), instead the possibilistic approach is involved (89). This is an alternative

to the probability operating not with random variables but with fuzzy numbers. Analogously to the probability density function

the possibility density function is introduced (89), whichis equivalent to the membership function. Axiomatic formulation of

the possibility theory and its comparison with probabilitytheory are presented in (56). The possibilistic approach isbased on the

concept of fuzzy sets introduced for the first time in (90). Later it was modified and applied to engineering problems involving

epistemic uncertainty (27–29, 31, 32, 41, 42). For an overview of existing techniques we refer to (53). If the uncertainties result

from both sources, the term polymorphic uncertainty is used.

As already mentioned, it is well appreciated that there are two different types of uncertainties possessing different nature. The

aim of this paper is not to compare probabilistic and possibilistic approaches but to demonstrate by an example of real materials

these two sources of uncertainties and to include them into the material model suitable for computational homogenization.

Thus the focus of the paper is the development of a mathematical model and fitting this model to the experimental data. We use

different modeling techniques for different types of uncertainties, thus we believe that both approaches, stochasticanalysis and

fuzzy analysis, are in general not concurrent but complementary (section 3.1).

In many studies dedicated to homogenization of heterogeneous materials with uncertainties in the microstructure only

aleatoric uncertainty is considered, thus these techniques are called stochastic homogenization methods.

A number of results in analytical stochastic homogenization were obtained in (5, 13, 23, 71). Here we would like to highlight

also the rapidly developing general perturbation method (37). Nowadays the perturbation method is one of the most popular

stochastic techniques. Very promising results are obtained by combining perturbation method with smoothed FEM (48), with

multiscale FEM (12), etc. Recently the general perturbation method was also successfully applied to the problem with geo-

metrical uncertainties (39) in a setting very close to the one studied in this paper. The idea of classical perturbation methods is
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close to the Taylor series expansion thus inheriting its convergence properties. However, nowadays the more general setting is

presented.

Different aspects and applications of stochastic computational homogenization were reported in (2, 15–17, 19, 22, 46,49–51,

74, 79, 80, 82, 86, 88).

The two most universal stochastic methods (within the fullycomputational approach) are the Monte-Carlo simulation (MC)

and the stochastic FEM (SFEM). Under SFEM we here understandthe stochastic Galerkin based technique initially proposed

in (25). Further modifications of these techniques were reported, e.g., in (1, 7, 9–11, 18, 26, 33, 44, 45, 52, 55, 57–62, 68, 72,

85). The main attraction of SFEM is the fact that it solves theproblem only once, providing immediately the solution for the

whole continuum of different realizations of the stochastic process (25). SFEM was already successfully applied to problems

involving diffusion, stochastic nanomechanics, stochastic plasticity, and thermo-mechanics (21, 43, 66, 67, 83). For an overview

of the existing applications and modifications we refer to (81) and (6).

It is clear that uncertainties in the microstructure are in most cases polymorphic, thus some combination of the fuzzy approach

and the stochastic approach should be established. In this work we carefully analyze the experimental data and scanningelectron

microscopy pictures of heterogeneous materials (section 4) and demonstrate the sources of aleatoric and epistemic uncertainties

(section 4.1 and 4.2). A combined fuzzy-stochastic FEM approach is used to perform simulations of fuzzy-stochastic represen-

tative volume elements (section 3). Aleatoric uncertaintyis treated using stochastic FEM. In the present study we choose the

SFEM formulation involving local finite element approximations of the physical and stochastic domains, which was foundto

be most accurate for the problem considered (65). Fuzzy parameters are treated using the general transformation methodfor

fuzzy numbers. Based on the obtained results (section 5 and 6) we estimate the influence of the epistemic uncertainty on the

homogenized quantities and obtain the lower and the upper bounds of the stress curves. Finally, section 7 concludes the paper.

2 Notation

In this work we distinguish between deterministic and random variables, vectors and tensors, matrices and operators. We use

the following notation:

� Second order tensors and vectors are denoted by bold (e.g.F) and bold italic (e.g.x ) scripts, respectively.

� Random variables, second order tensors and vectors are represented (63, 77) as functions of the elementary eventω, e.g.

g(ω), F(ω), θ(ω).

� A random field is any function of the spatial coordinatesx and the elementary eventω (e.g.G(x , ω)).

� Fuzzy numbers, vectors, and matrices are denoted by a tilde,like, e.g.,m̃r andσ̃r .

� Capital calligraphic letters are used for the domains of functions and sets (e.g.D, S, F ).
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� Bold calligraphic letters denote function spaces like e.g.the Hilbert spaceH.

� Differential operators are denoted by capital upright letters, e.g.D(x , ω).

� In particularDiv and Grad denote divergence and gradient operators applied in the reference configuration of a

geometrically nonlinear continuous body.

3 Fuzzy-stochastic finite element analysis

3.1 Interval, stochastic and fuzzy analysis

The discussion in which cases a stochastic (or fuzzy) approach is more advantageous is beyond the scope of this paper. However

we should mention that stochastic analysis and fuzzy analysis arealternativein the sense that both may be applied under some

assumptions to the same problem,but not equivalent, not concurrent and not competing. These techniques are based on different

assumptions, require different input data and provide different output quantities.

In general the stochastic problem description appears naturally for aleatoric uncertainties representing experimentally

observed process variability. Aleatoric uncertainties are non-reducible by increasing the experimental effort. No further exper-

imental study will reduce the variation range. The necessary input data is the probability density function. If it is unknown, it

may be constructed based on the maximum entropy principle (which is just a convenient assumption) and iteratively improved

using, e.g., Bayesian updates.

In contrast epistemic uncertainties are reducible, they result from insufficient knowledge, inaccurate measurements, or round-

off errors. More precise measurements and exact arithmeticcould strongly reduce epistemic uncertainty, however, this is not

always reasonable. One example where epistemic uncertainty appears and where the probabilistic treatment is not appropriate

is error propagation through some algorithm. In this case the researcher is not interested in probabilistic quantitieslike expec-

tations, but in the interval of confidence only. The task is tofind the min and max bounds of the output if the input is defined as

interval variable. Obviously interval analysis is the appropriate tool here.

Another example of epistemic uncertainty is considered in this paper. Let us consider some nonlinear physical process,which

is studied experimentally. In order to use empirical data insimulations it is fitted with some function. Usually we want to keep

the fitting function as simple as possible, we want to avoid overfitting, and further investments in experiments (in orderto reduce

noise) are not reasonable. Due to the fact that the fitting curve never coincides with experimental data, we want to know, how

the changes in the function parameters (different fits) may influence the results. In this case we consider iteratively increasing

intervals of confidence for the fitting parameters. The smallest interval of confidence is just a point — the crisp or main value

obtained from fitting. The largest interval of confidence (support) is the smallest interval covering all experimental data. The

set of nested and ordered intervals results naturally in a fuzzy description. Thus the differences from aleatoric uncertainty in

this case are the following: there is no probability distribution and there is no reasoning for its construction; the quantity of
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interest are the intervals of confidence for the output values, but not the expectations; stochastic analysis is highly accurate

for averaged values (expectations) but not for the upper andlower bounds estimation — the "worst case scenario"; a fuzzy

description appears naturally from the problem formulation.

A third example of epistemic uncertainty, where fuzziness appears, is the case of linguistic variables and approximate

reasoning — a common subject in the fuzzy logic community.

Stochastic and fuzzy approaches can be combined for stochastic problems with lack of sufficient input data, thus creating

epistemic uncertainty in an otherwise aleatoric setting.

Thus the choice of the approach towards uncertainty is usually dictated by the available information.

Fuzzy and stochastic descriptions are not equivalent. Since the classical work of Zadeh (89) fuzziness is usually interpreted

as an application of the possibility theory. The discussionregarding the relation between two approaches is still open. In some

cases a fuzzy problem setting may be applied for a stochasticproblem as upper and lower bound estimations (84). Possibilities

are sometimes interpreted as upper probabilities (20). Or one may just simply replace the pdf by a possibility density ofthe

same form. All these approaches yield different results, also different compared to the stochastic solution. Similarly a fuzzy

problem may be replaced by a stochastic problem by assuming some pdf, which is missing in the original setting. Based on the

assumed pdf the solution provided will differ strongly.

Furthermore, nowadays there is no unified opinion how to construct and how to understand the possibility density function.

In this paper we also address this question and propose one possible interpretation.

3.2 Stochastic finite element method

In contrast to usual deterministic FEM the stochastic version works with random parameters thus requiring some preliminary

definitions. Let the Euclidean spaceE represents the physical space with coordinatesxi assembled in the vectorx . SFEM

requires in addition the definition of the stochastic spaceS (25). This is the space of random variables with the vector ofbasic

RVs θ. For convenience we choose the basic random variables in form of truncated Gaussian RVs with zero mean and unit

variance parameter. The implementation of the truncated Gaussian RVs instead of normal Gaussian RV is motivated by the

natural limitations of physical processes (e.g. particle radii cannot tend to infinity in engineering applications) and also for

reasons of numerical integration stability (64).

All random variables can be described as a nonlinear mappingof the basic set (63, 77). Thus we can visualize the stochastic

spaceS similar to the physical spaceE with coordinatesθi (10, 11, 18, 65). Thus all other random variables are some functions

in S. Please note that the basic RVs are independent, thus their joint probability density functionfΘ represents the product of

all individual pdfs from the basic set.

By this definition stochastic FEM may be viewed as normal deterministic FEM, however, inn-dimensional physical-

stochastic product space (10, 11, 18, 65).
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Galerkin-type FEM as considered in the present work is basedon the concept of a Hilbert space of functions. Let us define

the physical domainD ⊂ E, the stochastic domainS ⊂ S, and the tensor product domainV = D × S. Following (25) we

introduce the physical Hilbert spaceH of functions defined over the domainD, the stochastic Hilbert spaceQ of functions

defined over the domainS, and the tensor product Hilbert spaceW = H×Q of functions defined over the domainV . Physical,

stochastic, and product spaces with corresponding domainsare depicted in fig. 1.

Figure 1: Physical, stochastic, and product function spacesH, Q, andW with corresponding physical, stochastic, and product
domainsD, S, andV .

SFEM shape functions belong to the spaceW , thus integration is performed over the domainV .

In this work we use the stochastic local FEM (SL-FEM) approach, which requires unified treatment of physical and stochastic

dimensions. Thereby local quadraticn-dimensional serendipity-type shape functions (65) are used for the discretization of the

domainV .

Let 〈 〉 denote the inner product in the physical-stochastic product space.

〈g1(x , ω)g2(x , ω)〉 :=

∫

D

∫

S

g1(x , θ)g2(x , θ)dxfΘdθ. (1)

Next we consider a random differential operatorD(x , ω) such that

D(x , ω)y(x , ω) = f(x , ω). (2)

wheref(x , ω) is the random loading andy(x , ω) is the unknown function.



Dmytro PivovarovET AL 7

Thus, Galerkin projections of the differential operatorD(x , ω) and the unknown functiony(x , ω) onto the basisϕ(x , ω)

yield

y(x , ω) =

∞∑

i=1

y iϕi(x , ω), (3)

〈[D(x , ω)y(x , ω)− f(x , ω)]ϕi(x , ω)〉 = 0,

∀i = 1, ... , N.

(4)

whereN is the number of basis functions.

For a nonlinear mechanical problem the differential operator in (2) reads

D(x , ω)y(x , ω) := −DivP
(
F(x , ω)

)
,

F = Grady(x , ω),

f(x , ω) := f (x , ω),

(5)

wherey(x , ω) corresponds to the random deformation map describing the position of material points in the actual configura-

tion, f (x , ω) denotes the random body forces,P andF represent the Piola stress tensor and the deformation gradient tensor,

respectively. Please note that theGrad andDiv operators involve differentiation only with respect to thephysical coordinates

x in the material configuration.

For the sake of demonstration the Piola stress tensorP
(
F(x , ω)

)
is given as the first derivative of the Neo-Hookean energy

potentialΨ(F).

Ψ(F) =
1

2
Λ [F : F− 3− 2lnJ ] +

1

2
λln2J (6)

∂Ψ

∂F
= P = ΛF+ λ0F

−t, (7)

whereΛ andλ are Lamé parameters, withΛ the shear modulus andλ is related to Poisson’s ratioν = λ
2[λ+Λ] ; λ0 = [λlnJ−Λ];

C
−1 is the inverse of the right Cauchy-Green tensorC = F

t · F; J = detF is the Jacobian determinant;Ft denotes the

transpose ofF andF−t denotes the transposed inverse ofF.
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Thus, the expressions (4) and (5) after integration by partsread

R = F ext − F int → 0 ,

F int
i =

〈
P ·Gradϕi(x , ω)

〉
,

F ext
i =

〈
f (x , ω)ϕi(x , ω)

〉
,

(8)

whereR is the residual and〈 〉 is the inner product inW . Here for simplicity of exposition only the Dirichlet problem is

considered.

Newton iterations are used in order to find the solution.

Rk(Y ) +
∂Rk

∂Y

∣∣∣∣∣
Y

· dY k → 0 ,

K
k := −

∂Rk

∂Y

∣∣∣∣∣
Y

,

(9)

dY k =
[
K

k
]−1

Rk, (10)

Y k+1 = Y k + dY k.

HereY is a vector of coefficients in the finite approximation of (3)

Y =




y1

y2

...

yn




, y i =




yi1

yi2

...




,

whereyij represents thej-th component of the solution field projected onto thei-th basis function.

The explicit expression for the stiffness matrixK reads

Kij =

〈
∂P

∂F
: [Gradϕi(x , ω)⊗Gradϕj(x , ω)]

〉
, (11)
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with

∂P

∂F
=

∂2Ψ

∂F2 = λF−t ⊗ F
−t − λ0F

−t⊗F
−1 + ΛI⊗I, (12)

whereI is the identity tensor;: denotes the non-standard double contraction of a fourth order tensorA and a second order tensor

B represented component-wise by
[
A:B

]
ik

=
[
A
]
ijkl

[
B
]
jl

; the symbols⊗ and⊗ denote the non-standard tensor products

of two second order tensorsA andB represented component-wise as follows:[A⊗B]ijkl = [A]ik[B]jl and [A⊗B]ijkl =

[A]il[B]jk.

Please note that the gradients of the basis functions are derived in then-dimensional product space with coordinates

{x , θ(ω)}, whereas the position vector has only three elements corresponding to the physical coordinatesx . Observe that the

model exhibits no deformation in stochastic directions.

3.3 Fuzzy finite element analysis

In many cases the system parameters cannot be obtained exactly due to many reasons: lack of knowledge regarding the

microstructure, limited accuracy of the fitting procedure,imperfection of the model, which can be fitted to the experimental

data but never coincides with them, noisy experimental data, insufficient number of experimental samples, etc. In thesecases

no statistical data for system parameters is provided. Thusthe probabilistic description of the unknown parameters isgetting

problematic. In this case a highly efficient tool for the forward propagation of epistemic uncertainty is fuzzy arithmetic (30).

Here, the uncertain parameters are represented not in termsof random variables but in terms of fuzzy numbers.

The history of fuzzy number began in 1965 with the introduction of fuzzy sets (90), which are an extension of the classical

set theory based on the notion of different grades of membership. In the case of a fuzzy set̃X the grade of membership ofx is

defined by the membership functionµ
X̃
(x) ∈ [0, 1]. Hereµ

X̃
(x) = 1 means that the elementx entirely belongs to the set̃X ,

µ
X̃
(x) = 0 means thatx is definitely not a member of the set̃X . In the case of a conventional setX the membership function

of some elementx may have only two valuesµX (x) ∈ {0, 1}, i.e. the element can only entirely belong to or not belong tothe

setX .

For practical applications a few very important types of fuzzy sets are fuzzy numbers, fuzzy intervals, crisp numbers, and

crisp intervals. A fuzzy number̃a is the convex fuzzy set over the universal setR with the membership functionµã(x) ∈ [0, 1],

whereµã(x) = 1 only for one single value ofx = ā called the modal value. The fuzzy intervalÃ is the convex fuzzy set defined

similarly to the fuzzy number, however with the difference thatµÃ(x) = 1 holds for some interval called modal intervalĀ. A

crisp intervalA can be considered as the fuzzy set of points such thatµA(x) = 1, if x ∈ A, andµA(x) = 0 otherwise. The crisp

numbera is then the fuzzy set with the membership function given by the Kronecker delta functionµa(x) = δ(x, a). Fig. 2

represents from left to right: crisp numberx = 1, crisp interval[2, 3], symmetric triangular fuzzy number with̄x = 4.5, fuzzy
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interval with the modal intervalx ∈ [6.5, 7.5], and the arbitrary non-convex subnormal fuzzy set with nonzero membership

function on the intervalx ∈ [9, 11].

Figure 2: Membership function plotted for (from left to right): crisp number, crisp interval, symmetric triangular fuzzy number,
fuzzy interval, and the arbitrary non-convex subnormal fuzzy set.

Zadeh’s extension principle is used to perform unary and binary arithmetical operations of fuzzy numbers. For any arbitrary

functionf applied to the pair of fuzzy numbers̃a and b̃ the membership function of the resulting fuzzy numberc̃ = f(ã, b̃)

reads

µc̃(z) = sup
z=f(x,y)

min{µã(x), µb̃(y)}. (13)

Due to the high complexity of calculations performed using the extension principle an alternative approach was proposed

in the literature. The fuzzy numbers are reduced to sets of intervals for different degrees of membership, i.e.α-cuts. These

intervals are also called intervals of confidence (30). Thusfor everyα-cut interval arithmetic can be applied. Fig. 3 represents

a triangular fuzzy number decomposed into sixα-cuts. Forα-cutµ(x) = 1 the problem is reduced to a simple deterministic

one. For all otherα-cuts the interval problem is considered. In practical application the interval problem is reduced to two

optimization problems (globalmin andmax on interval) at eachα-level to obtain the correct bounds of the output interval. The

goal function here is the quantity of interest. The uncertain parameters are the design variables.

However, if the evaluation of the system is costly, the optimization approach becomes too expensive. As an alternative one

may use the extended transformation method (30). Thus we obtain an approximate solution using a limited predefined number

of samples, which may be generated using full grid or sparse grid techniques. In this work we focus on the standard full grid

approach due to its stability and accuracy.

The structure of the proposed fuzzy-stochastic homogenization framework is as follows. Based on the experimental data

we design a stochastic RVE. Parametrized distributions like, e.g., truncated Gaussian or truncated log-normal, are used to fit
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Figure 3: Triangular fuzzy number with modal valuemx decomposed into 6α-cuts.

Figure 4: Structure of the fuzzy-stochastic FEM based homogenization framework.

statistical data. The distribution parameters cannot be estimated exactly thus becoming fuzzy numbers. Full grid sampling is

used. Thus every sample is resolved using the isoparametricstochastic local FEM with unified discretization in the physical

and the stochastic domains. The SFEM output is then analyzedin order to construct the response surfaces for every quantity of

interest, e.g. for the homogenized stress mean value. Response surfaces are used to extractmin andmax values of the quantities

of interest for everyα-cut. Finally fuzzy response curves are plotted representing upper and lower bounds for everyα-cut. The

block-scheme of the presented algorithm is depicted in fig. 4.

3.4 Random variable transformation

Any random variable inQ can be represented as some function of the basic random variables. For the application of the

SFEM technique we need representation of all random variables in terms of basic RVs. For some standard RV models like,

e.g., log-normal, the representation in terms of Gaussian RV is well-known. For other RVs, especially for those, which describe
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experimental data or simulation output, this kind of representation should be defined. Moreover we use this mapping to generate

random samples with arbitrary distribution.

In the case of random inclusion radii the spaceS is one-dimensional with only one basic RVθ(ω), which is chosen in the

form of a truncated Gaussian RV. This truncation is discussed and motivated in (64, 65).

Thus any random radiusr(ω) with pdf fr(r(ω)) can be presented as a functionr(ω) = r(θ(ω)). This mapping may be

nonlinear and non-unique. Thus the computation of the function r(θ(ω)) becomes non-trivial (63, 77). However, if we consider

a monotonically increasing functionr(θ(ω)), the following relation holds (63)

dr fr(r) = dθ fθ(θ). (14)

Thereby we introduce a unique mapping of the points in the support of θ(ω) into the points in the support ofr(ω). Relation

(14) states that the probability mass at every point stays unchanged during this mapping, which is in fact the probability mass

conservation law.

The mapping function is computed as the solution of the differential equation

dr

dθ
=

fθ(θ)

fr(r)
. (15)

Thereby the pdfs should satisfy the following requirements:

� all pdfs should be at leastC0-continuous,

� all RVs should posses finite support,

� fr(r) > 0 for all r in the support.

Mapping of a random variable with infinite support into a RV with finite support and vice versa is also possible, however

the mapping function should be singular at the ends of the interval thus increasing the problem’s complexity. The ODE (15) is

complemented with two boundary conditions stating that themax andmin values of one RV are mapped one-to-one into the

max andmin values of another RV, respectively. The second boundary condition may be used for accuracy control.

Due to the fact thatfθ andfr are close to zero at the ends of the interval, numerical solution of (15) may be inaccurate or

unstable. Moreover the obtained curves may be close to singular. Thus we transform the problem to the form

dt

dr
= fr(r),

dt

dθ
= fθ(θ),

∀t ∈ [0, 1] : ft(t) = 1.

(16)
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Both equations can be solved using the Runge-Kutta method. The solutions obtained are tabulated functionst(r) andt(θ)

which can be transformed tor(t) andθ(t) just by swapping columns. Thereby we obtain the curver(θ) in parametric form.

This method is also suitable for almost singular curves.

Expression (14) is also often used to obtain the unknown function fr(r), if fθ(θ) andr(θ) are given:

fr(r(θ)) = fθ(θ)

[
dr

dθ
(θ)

]−1

(17)

4 Stochastic representative volume element

Homogenization considers typically two separate scales: the macro scale and the micro scale. Thereby macroscopic material

properties are obtained from the simulation of the microscopic model. In the case of random material microstructures the

microscopic model should be large enough to exhibit all macroscopic properties, thus resulting in extremely high computational

costs. Thus the ergodic assumption is often used, which states that the averaging over one large sample is equivalent to the

averaging over the ensemble of small samples. Thereby time and computer power demanding simulations can be replaced by

the analysis of one small stochastic RVE, however, including statistical information about the microstructural variability.

We base our RVE design on the experimental data and scanning electron microscopy (SEM) pictures of iron particle filled

elastomers established at the Chair of Applied Mechanics, University of Erlangen-Nuremberg (fig. 5).

Figure 5: Scanning electron microscopy of an iron particle filled elastomer (Courtesy of Bastian Walter, Chair of Applied
Mechanics, University of Erlangen-Nuremberg)

Following our previous works we consider a rectangular RVE with the size2a, wherea = 1, with one circular inclusion

possessing random radiusr(ω). Due to the periodic boundary conditions the inclusions position inside the RVE does not

influence the homogenized stress values, thus for the sake ofsimplicity we consider only the model with the inclusion in the

center of the RVE.
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The stochastic RVE can be imagined for the simplest case (twophysical and one stochastic coordinates) as a stack of thin

sheets with deterministic 2D RVEs in each of them, i.e. everyhorizontal slice of the stochastic RVE corresponds to some

deterministic model. Thus the vertical dimension demonstrates the evolution of the microstructure by varying the random

parameter (fig. 6).

Figure 6: The stochastic representative volume element fora 2D problem considering the random inclusion’s radius.

We model an inclusion as a jump in elastic properties (C−1-continuity), whereby the displacements areC0-continuous. We

assume for simplicity a constant Poisson’s ratioν = 0.3. In the general case the Poisson’s ratio is also a random field. An

interesting analysis for the case of fluctuating Poisson’s ratio is presented, e.g. in (38).

Thus only the shear modulus is a random field and is given as

G(χ) = Gm +
1

2
[Gi −Gm]

[
1− signz

(
x , ω

)]
, (18)

whereGm andGi are the shear moduli of the matrix and the inclusion, respectively; z
(
x , ω

)
is a cone-like level-set function

(64), which indicates whether the material point with coordinatesx belongs to the matrix or to the inclusion (z < 0: inclusion,

z > 0: matrix).

z
(
x , ω

)
= r(ω)

[√
x2
1

r(ω)2
+

x2
2

r(ω)2
− 1

]
. (19)

The random radiusr(ω) should be represented as the mapping of the basic random variableθ(ω). Determination of the

experimentally motivated models ofr(θ(ω)) are presented in the sequel. In this work we propose two models describing the
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random radius of the inclusion. The first model is motivated by the experimental study of the inclusions’ radii. The second

model uses also the information about the inclusions’ distribution to determine the size of the RVE.

In order to verify our model, we use the values of material parameters from (34):Gm = 8, Gi = 80.

All simulation were performed with periodic boundary conditions applied to the boundaries of the RVE. The macroscopic

loading is presented by the macroscopic deformation gradient F̄ describing a 10% uniaxial stretch:

F̄ =̂




1.1 0 0

0 1 0

0 0 1




.

4.1 Stochastic RVE with fixed cell size

The first model of the particle radii distribution considersa fixed size of the RVE. This model is motivated by the experimental

study of the inclusions’ radii presented in fig. 7. The experimentally obtained radii distribution exhibits a behavior very close

to log-normal. Typically the log-normal random parametersare represented as a nonlinear mapping of the basic GaussianRV.

r(θ(ω)) = exp(mr + σrθ(ω)), (20)

wheremr andσr are location and scale parameters of the log-normal distribution, respectively.

The least square fitting procedure is used to evaluate the parameters of the log-normal distribution. Thereby we fit the

cumulative distribution function (cdf) provided in fig. 7. Note that the histogram presenting the pdf of the radii distribution is

not suitable for the parameter fitting due to the lack of information about the bins width. Moreover, while evaluating thecdf,

the influence of the noise on measurements is partially compensated by the averaging procedure. Thus the experimental cdf is

usually more accurate compared to the experimental pdf.

In order to perform parameter fitting, we normalize the radius values in the experimental curve thus changing to some

dimensionless radiusrn which represents the ratio of the radius to the RVE size. In this work we consider the size of the RVE

a = 10µm. Thus the RVE witha = 10µm is large enough to contain more than 99.7% of all considered inclusions radii. Note

that fig. 7 demonstrates the cdf plotted versus the diameter thus the inclusion with diameter 20µm (purple vertical line in fig.

7) completely fits into the RVE with sizea = 10µm.
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Figure 7: Histogram of inclusion diameter distribution andthe obtained cumulative probability density (Courtesy of Bastian
Walter, Chair of Applied Mechanics, University of Erlangen-Nuremberg).

The fitting problem is formulated as follows:

{m̄r, σ̄r} = arg min
m, σ

‖F(m,σ)(rn)− Fexp(rn)‖L2 ,

σr > 0,

(21)

where‖ · ‖L2 is theL2-norm,Fexp(rn) andF(m,σ)(rn) are the experimental cdf and the log-normal cdf with parametersm and

σ, respectively.

The inclusions’ volume fractionv is evaluated for the considered cell size through the obtained log-normal pdf:

v =
π

4

1∫

0

r2nf(m̄r,σ̄r)(rn)drn,

f(m̄r,σ̄r)(rn) =
dF(m̄r ,σ̄r)

drn
(rn).

(22)

For the cell sizea = 10µm the volume fraction is justv = 3.64%.

Fig. 8 demonstrates the fitting curve plotted over experimental data. Note the slight disagreement between the log-normal

distribution and the empirical curve. Due to the fact that exact fitting of the experimental data is impossible, the modelparam-

eters obtained cannot be considered as exact values, but rather represent fuzzy numbers̃mr andσ̃r. Correspondingly the fuzzy

log-normal cdfF(m̃,σ̃)(rn) is introduced. Black dashed lines in fig. 8 represent upper and lower bounds of the fuzzy log-normal

distribution containing the entire experimental data.

The procedure of reconstructing the fuzzy model parametersbased on experimental data is as follows:

� The obtained parameter valuesm̄r andσ̄r representing the best fit in the sense of least squares are considered to be the

fuzzy parameter’s modal values.
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� Some variations of the parameter’s values∆m1, ∆m2, ∆σ1, and∆σ2 are introduced into the model.

� Due to the parameter variations the log-normal cdf is represented not by a single curve but rather by upper and lower

boundsFmin(r) andFmax(r).

� The experimental data exceeding the region betweenFmin(r) andFmax(r) is denoted as residual.

� The optimization problem is solved, wherein the∆m1, ∆m2, ∆σ1, and∆σ2 are design variables, the residual is the goal

function to be minimized.

� Based on the modal values̄mr andσ̄r and the obtained variations∆m1,∆m2,∆σ1, and∆σ2 we reconstruct asymmetric

triangular fuzzy parameters̃mr andσ̃r .

Figure 8: Log-normal fitting of the experimental curve representing the cdf of the inclusions radii.

In order to estimate upper and lower bounds for the given variations ofmr andσr we introduce the following triplets.

mr ∈ {m̄r, m̄r −∆m1, m̄r +∆m2},

σr ∈ {σ̄r, σ̄r −∆σ1, σ̄r +∆σ2},

(23)

Thus we obtain nine pairs of parametersmr and σr representing nine curvesrij(θ(ω)) = exp(mri + σrjθ(ω)) with

corresponding cumulative distribution functionsFij(rn).

Upper and lower bounds are defined as

Fmax(rn) = max
ij

(
Fij(rn)

)
,

Fmin(rn) = min
ij

(
Fij(rn)

)
.

(24)



18 Dmytro PivovarovET AL

For the given upper and lower bounds the residual curve represents the experimental data exceeding the region between

Fmin(r) andFmax(r) schematically shown in fig. 9.

R(rn) = Rmax(rn) +Rmin(rn),

Rmax(rn) = max
{
Fexp(rn)− Fmax(rn), 0

}
,

Rmin(rn) = min
{
Fmin(rn)− Fexp(rn), 0

}
.

(25)

Figure 9: Experimental cdf (Fexp), upper (Fmax) and lower (Fmin) bounds of the theoretical cdf and the residual curve (R)
obtained according to (25).

Lower and upper bounds are obtained as solution of the optimization problem with four design variables, i.e. parameter

variations∆ = [∆m1,∆m2,∆σ1,∆σ2]. The optimization problem is defined as

∆ = argmin
∆

(
W1‖∆‖L2 +W2‖R(rn,∆)‖L2

)
,

W1 = [m̄2
r + σ̄2

r ]
−1,

W2 = ‖F(m̄r,σ̄r)(rn)− Fexp(rn)‖
−1
L2 ,

∆i > 0.

(26)

Thus we minimize the length of the vector∆ containing positive parameter variations together with the penalty term for

experimental data exceeding the theoretical boundaries. The vector of design variables and the penalty term are normalized

with respect to the parameter’s modal values (21) and square-norm of the difference between the experimental curve and the

log-normal cdf, respectively.

Thus for both uncertain parameters we obtain left and right bounds. Accordingly we introduce two asymmetric triangular

fuzzy numbers:̃mr with modal valuem̄r = −1.8475 defined in the range[−1.8565, − 1.7745] and σ̃r with modal value

σ̄r = 0.5466 defined in the range[0.5206, 0.5495].

Due to the fuzzy-random nature of the radiusrn the elastic properties of matrix and inclusion (18) are represented as fuzzy-

random fields necessitating the use of the fuzzy-stochasticfinite element method.
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4.2 Stochastic RVE with variable cell size

An attempt to describe the inclusions’ positions in terms ofRVs results in a large and complex system of RVs with strongly

nonlinear dependencies between them. Therefore some alternative approach should be established. So, e.g., in (24) theauthors

used the probabilistic description of the interparticle distances, which was assumed known. Thereby the authors consider only

one particle (center) surrounded by an infinite set of particles with random distances to the center. The disadvantage ofthis

approach is that the interparticle distances between the surrounding particles are not considered. Moreover the introduction of

any restrictions on the distances between the surrounding particles require the use of three-, four-, five-, andn-point distribution

density functions thus resulting in a system of the same complexity as the model with random positions.

Alternatively one may focus instead of interparticle distances on the free area around the inclusion associated with this

inclusion, thus, creating an RVE with variable size. Thereby we propose to use a statistically similar representative volume

element (75). The idea is to provide some substitute or surrogate model, which possesses some statistical properties ofthe

original model, specifically the relation between the inclusion’s radius and the area around the inclusion. The statistically similar

stochastic model is simple and contains only one inclusion.By varying the inclusion’s radii distribution in a one-inclusion

model we may control not only the average stress, but also themaximum and minimum stress and the stress standard deviation

in the stochastic system.

Please note that we seek for an equivalence not between two deterministic models but between a deterministic model with

randomly distributed inclusions and a stochastic model with one single inclusion. Thus we utilize the ergodicity concept (23,

24). The idea is to develop a stochastic model (statistically similar, simple, and optionally periodic) whereby the average over

ensembles is assumed equivalent to the average over the volume of the deterministic model with randomly distributed inclusions

(fig. 10).

The use of periodic boundary conditions for the statistically similar (substitute) model is motivated by a number of stud-

ies demonstrating that the periodic boundary conditions are the most reliable and converge faster than Dirichlet and Neumann

boundary conditions (69, 70, 87). They are often used even ifthe model is not periodic (70, 87), because Dirichlet and Neumann

boundary conditions give always overestimation and underestimation for the stress (69, 70, 73, 87) in computational homoge-

nization. Moreover the simple comparison of the homogenized stresses in periodic composites modeled with only one inclusion

in the unite cell and composites with random microstructure, performed in (87), demonstrated close homogenized stressvalues

in both models. Thus, one of the conclusions made in (87) is that one unit cell with only one centered inclusion and periodic

boundary conditions is already a good approximation for themodel with randomly distributed particles at least in engineering

applications.

All necessary statistical information concerning the freearea distribution may be estimated statistically from the experimental

data.

The design of an RVE with variable cell size includes the following steps:
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� Real materials possess randomly distributed non-overlapping inclusions. One may divide microscopic material samples

into cells wherein every cell represents the set of materialpoints that are closer in some sense to the associated inclusion

than to any other.

� The cell area distribution can be estimated statistically based on the analysis of microscopic samples.

� We consider a rectangular RVE with size parametera and total areaA = 4a2. The area of the RVE is considered to

exhibit the same distribution density function as the areasof the cells.

� The influence of the cell’s shape is not considered.

� The influence of the particle position within the RVE is neglected by using periodic boundary conditions.

� The number of model parameters is reduced by introducing thenormalized (reduced) radiusrn = r/a. Thus all statistical

information regarding the radius variation and cell area distribution is included in the probability density functionof the

normalized radiusrn.

In our previous work we already considered RVEs with variable size. To this end we studied the distribution of the Voronoi

cells area associated with corresponding inclusions. The Voronoi cell of an inclusion with center(xc
1, x

c
2) is the set of points

which are closer to(xc
1, x

c
2) than to the center of any other inclusion.

Due to the small amount of real samples and lack of experimental data we generated virtual samples with completely ran-

domly distributed inclusions and performed Voronoi analysis of these samples. The experimental distribution densityfunction

of the characteristic cell sizea(ω) =
√
A(ω)/2 was fitted with the log-normal rule.

The disadvantage of the scheme presented earlier is that Voronoi tessellation does not use any information about the inclu-

sions’ radii. On the one hand this fact strongly simplified the model. The area distribution was completely independent from the

radii distribution. Both random variablesr(ω) anda(ω) were uncorrelated, both distributions were fitted with the log-normal

rule, thus simplifying a change of variables

rn(ω) =
r(ω)

a(ω)
,

wherern(ω) is log-normal too. On the other hand this model is very coarse. Due to the fact that we loose correlation between

the inclusions’ radii and the corresponding cell areas the area of some Voronoi cells can become smaller than the area of

the corresponding inclusions. Moreover the Voronoi cell edges may intersect the inclusions boundaries (fig. 11a). Thusin the

present work we propose an improved model void of these disadvantages.

In the present study we use instead of the Voronoi diagram theso-called Apollonius diagram (additively weighted Voronoi

diagram), its dual is the Apollonius graph also sometimes called the Delaunay graph of disks (fig. 11b). The computation of the
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Apollonius graph is a non-trivial problem due to the highly complex predicates and curvilinear edges of the Apollonius diagram.

In the general case edges are hyperbolic curves. We used a specialized package of the Computational Geometry Algorithms

Library (40) in order to compute the Apollonius diagrams.

Thus we generated 100 000 inclusions with random radius according to the given experimental cumulative distribution func-

tion. We generated firstly the 100 000 random numbers possessing Gaussian distribution using the standard random generator

in Matlab. Then we replaced the samples laying outside the support of the truncated Gaussian distribution thus performing trun-

cation. After that we compute the mapping of the truncated Gaussian distribution into the given experimental distribution (16).

Using the obtained function we mapped the set of Gaussian random numbers into the set of random numbers with experimental

distribution.

Figure 10: Virtual sample with randomly distributed particles (left) and the statistically similar stochastic periodic model (right).
Ergodicity assumption: the average over ensembles is assumed equivalent to the average over the volume of the deterministic
model with randomly distributed particles. Statistical similarity: probability density of the ratio between particle size and cell
area, and the averaged volume fraction are the same in both models.

The size of the virtual material sample is chosen based on thevolume fractionv which is the relation of the total area of all

inclusions to the area of the sample. Thus the area of the sampleAsample is given as

Asample = v−1
1e5∑

i=1

πr2i .

Note that here we can specify the volume fraction in contrastto the model with fixed RVE size.

The generated inclusions were distributed inside the sample without overlapping. Periodicity was considered, thus the over-

lapping of the inclusions on opposite sides of the sample is also avoided. Figs. 10 and 11 demonstrate only a very small part of

the obtained virtual random sample.
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(a) (b)

Figure 11: Part of the virtual sample with non-overlapping inclusions divided into divided into Voronoi cells (a) and Apollonius
cells (b). Note Voronoi edges intersecting inclusions’ boundaries.

For the generated virtual sample of material we calculate the Apollonius diagram with periodic boundary conditions. A part

of the Apollonius diagram is depicted in fig. 11b. The areasAcell
i of the non-convex curvilinear Apollonius cells are computed

numerically. The characteristic size of the cella is evaluated asai =
√
Acell

i /2.

Due to the fact that the variable size of the RVE is inconvenient for the evaluation of the homogenized properties we introduce

the reduced radiusrn i = ri/ai similar to the model proposed in (65). Thereby we keep the size of the RVE fixed and compress

two random parameters into one thus strongly reducing the computational effort.

The weight of every single realization ofrn is the total area of all cells possessing correspondingr/a-ratio. Fig. 12 demon-

strates the statistical area distribution plotted versus the reduced radiusrn. The dashed area in the right part of the figure

denotes physically impossible values ofrn. If rn ≥
√

π
4 the area of the inclusion is bigger than the area of the Apollonius cell,

thus impossible for the non-overlapping inclusions. However this is the case for Voronoi tessellation. Two vertical blue lines

rn = 0.9 andrn = 0.09 are limits covering 99.92% of entire sample area. Cells lying outside these limits are depicted by blue

color. Only the cells inside these limits are used for the evaluation of the statistical cdf.

The interval betweenrn = 0.9 and rn = 0.09 is divided into 200 subintervalsdrn i. The total area of all cells in the

intervaldrn i (fig. 12) divided by the area of the material sample represents the probability mass function over this interval. The

cumulative sum of all mass functions approximate the cumulative distribution function ofrn(ω). Note that here we do not use

the statisticalrn i but the probabilisticrn(ω). The experimental cdf of thern(ω) is depicted in fig. 13.

The obtained cdf is much closer to the truncated Gaussian distribution than to the log-normal distribution. However thefitting

with the truncated Gaussian distribution fails. The purpledashed line in fig. 13 demonstrates the probability density function

of the experimental distribution obtained by simple differentiation of the experimental cdf. The experimental pdf is asymmetric
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Figure 12: Area of the Apollonius cellsAcell plotted versusrn = r/a. The dashed area in the right part of the picture denotes
physically impossible values ofrn.

Figure 13: Experimental cumulative distribution functionand probability density function of the reduced radiusrn(ω).

and exhibits no tails typical for Gaussian distribution. Anattempt to fit the experimental cdf with Gaussian distribution (fig. 14)

results in negative minimum radius value and an extremely wide range of radii variation. Thus the reduced radiusrn(ω) should

be represented as nonlinear mapping of the truncated Gaussian basis RV.

The mapping curvern(θ(ω)) : θ(ω) → R is computed from expression (16). The obtained function exhibits a shape very

similar to a cubic polynomial (fig. 15). This curve represents an exact expression for the random radius in terms of the basic

random variable. However, for the application within the SFEM the parametrized function is preferred, thus we should fit
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Figure 14: Fitting of the experimental curvern(ω) with truncated Gaussian variable. Obtained maximum and minimum radii
contradict with physical limitations.

the tabulated curvern(θ(ω)) using some analytical model. To this end we introduce a new random variable which is a cubic

polynomial of the truncated Gaussian variableθ(ω).

pn(ω) =

4∑

i=1

aihi(θ(ω)),

h1(θ(ω)) = [1 + 2θ(ω)][1− θ(ω)]2,

h2(θ(ω)) = θ(ω)[1− θ(ω)]2,

h3(θ(ω)) = θ(ω)2[3− 2θ(ω)],

h4(θ(ω)) = θ(ω)2[θ(ω)− 1],

(27)

wherehi are cubic Hermite splines.

This model includes 4 parametersai. The convenience of the Hermite representation is that two parameters, namelya1 and

a3 are immediately evaluated from the tabulated data — they correspond to the function values at the ends of the interval.

Thereby only parametersa2 anda4 should be fitted from the tabulated data. The necessary requirement

dpn
dθ

> 0

is satisfied for the here considered curve ifa2 > 0 anda4 > 0, also due to the convenient form of the Hermite representation.

The fitting procedure is the same as that used to fit the experimental cdf.
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Fig. 15 demonstrates the original curvern(θ(ω)), the fitted Hermite spline, and the upper and lower bounds. Note the very

good agreement between the original curve and the cubic polynomial. Fig. 16 demonstrates the original experimental cdf, the

cdf of the cubic RV, and the corresponding bounds.

Figure 15: Fitting of the experimental curvern(θ(ω)) with the cubic polynomial of the truncated Gaussian variablepn(θ(ω)).

Figure 16: Experimental cumulative distribution functionof the reduced radiusrn(ω) and cdf of the polynomial RVpn(θ(ω)).

Based on the results of curve fitting we design two triangularfuzzy numbers:̃a2 with modal valuēa2 = 0.0729 defined

in the range[0.0108, 0.1340] andã4 with modal valuēa4 = 0.2542 defined in the range[0.2328, 0.2892]. Two crisp model

parameters area1 = 0.0920 anda3 = 0.8980.

Thereby the inclusions radius in (19) is described as cubic random variable with two fixed and two fuzzy parameters thus

requiring the application of the fuzzy-stochastic FEM framework.
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5 Simulation results for the RVE with fixed cell size

The most accurate evaluation of the fuzzy system output for the general nonlinear non-monotonic dependence is obtained

by using the optimization method. Due to the large number of samples required, this approach is costly. Thus the general

transformation method (29, 30) is often applied in order to obtain an approximate response surface. However in some cases the

number of samples required may be strongly reduced. E.g., inthe case when the output function is monotonic only the corner

points of each interval should be considered thus yielding the well-known full factorial design pattern (vertex method).

Due to the fact that we don’t know a priori whether the output is monotonic (however we expect this), we can not use the

vertex method immediately. Thus we perform first a relative simple simulation using the general transformation method in order

to prove that the output is monotonic. After that, if the output demonstrates monotonic response, the vertex method is applied

to the original and all further problems.

The transformation method is highly efficient in the case of symmetric triangular fuzzy numbers, otherwise the number of

samples required increases. Thus we perform firstly a simulation with symmetric fuzzy numbers. Thereby we extend the support

of the fuzzy numbers to the left and to the top (compare supports in figs. 17 and 18). Fig. 17 illustrates sampling with the general

transformation method for the case of fiveα-cuts. Black lines denote the edges of the membership function, which represents

for the case of two triangular fuzzy numbers a pyramid in the space(mr, σr , µmσ). The sampling of two asymmetric fuzzy

numbers with the vertex method is depicted in fig. 18. Empty circles denote optional samples. In the case of a linear output

function or in the case when the reconstruction of the fuzzy output is not required, these additional samples are not necessary.

Figure 17: Sampling for the case of the general transformation method applied to the pair of symmetric fuzzy numbers.

The aim of this simulation is to study the influence of the fuzzy distribution parameters, obtained from the experiment, on

the homogenized stress values. Thus the fuzzy output represents here the homogenized stress plotted versus the basic random

variable. Every fuzzy sample is resolved using the isoparametric SL-FEM with quadratic finite elements, whose accuracy
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Figure 18: Sampling of two fuzzy numbers using the vertex method. Empty circles denote samples, which are not necessary,if,
e.g., the output is a linear function of the model parameters.

and convergence for the considered problem was studied in (65). For the homogenized stress quantities the SL-FEM exhibits

exponential convergence already starting from the four element layers in the stochastic dimension.

In the present study the physical-stochastic product domainV is discretized using 16 element layers in the stochastic dimen-

sion thus yielding very high accuracy for the homogenized stress quantities. The finite element mesh is generated from the

same pattern for every sample, thus the number of elements stays unchanged. The mesh generated for the modal values of fuzzy

parameters is depicted in fig. 19. Lilac is used to denote inclusion, orange corresponds to the elastomer matrix.

Figure 19: Finite element discretization of the physical-stochastic domainV . Model with fixed RVE size. Lilac denotes
inclusion, orange corresponds to the elastomer matrix.

The fuzzy response curves for the case of symmetric fuzzy numbers are presented in fig. 20 for the entire support of the

basic RVθ(ω) ∈ [−3, 3] and in fig. 21 for the subinterval of the most probable valuesθ(ω) ∈ [−1, 1]. Different curve colors

correspond to the samples in fig. 17. The analysis of the presented curves demonstrates that the output function is monotonic
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with respect to both fuzzy parametersm̃r andσ̃r however their influence on the system behavior is different.The variation of

mr moves the entire curve up and down, while the variation ofσr "rotates" the curve around the center pointθ(ω) = 0. Thereby

maximum and minimum values of the fuzzy output are reached inthe corner points of the interval. Fig. 22 represents the stress

curves corresponding to themin andmax values of the fuzzy output.

Figure 20: Stochastic homogenized stress curves plotted versus basic RVθ(ω) ∈ [−3, 3]. Different curve colors correspond to
the samples in fig. 17. Model with fixed RVE size.

Figure 21: Stochastic homogenized stress curves plotted versus basic RVθ(ω) ∈ [−1, 1]. Different curve colors correspond to
the samples in fig. 17. Model with fixed RVE size.

Fig. 23 demonstrates the homogenized stress mean value and STD for different samples. Both the mean value and the

STD reach their maximum and minimum values in the corner points. Therefore all three quantities of interest (stochastic
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homogenized stress, homogenized stress mean value, and homogenized stress STD) demonstrate monotonic behavior thus

allowing the use of the vertex method for further simulations.

Figure 22: Stress curves corresponding to themin andmax values of the fuzzy output. Model with fixed RVE size.

Figure 23: Homogenized stress mean value and STD plotted in the sample space(m̃r, σ̃r). Model with fixed RVE size.

Fig. 24 demonstrate the stochastic homogenized stress curves obtained using the vertex method (fig. 18). The curve’s shape

is close to exponential. This is expected due to the log-normal rule of the radii distribution. Note the strong influence of the

parameter variation on the homogenized stresses. The maximum homogenized stress value increases, e.g., by 50%, However

the variation of the distribution parameters was around 5–10%.

Note also that the homogenized stress STD (fig. 23) differs 2.5 times for different samples. Thus the model is highly sensitive

to the input variations, therefore the accuracy of the modelpredictions depend strongly on the accuracy of the experimental

data and statistical estimations.
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Figure 24: Stress curves corresponding to themin andmax values of the fuzzy output. Solution for the non-symmetric fuzzy
number was obtained using the vertex method. Model with fixedRVE size.

6 Simulation results for the RVE with variable cell size

For the here considered problem it is difficult to define a priori whether the system output is monotonic with respect to the

fuzzy parameter variations. Thus the vertex method cannot be applied. Due to the fact that both fuzzy parameters are almost

symmetric, the general transformation method is preferred. The sampling of the parameter space is depicted in fig. 25.

Figure 25: Sampling strategy for the model involving a cubicrandom variable with two triangular fuzzy parameters.

The simulations presented in this section were performed using 12 element layers in the stochastic dimensions due to the

smaller radius variation and also smaller rate of radius increase. The mesh generated for the modal values of fuzzy parameters

is depicted in fig. 26. Lilac is used to denote inclusion, orange corresponds to the elastomer matrix.

The obtained stochastic homogenized stress curves (fig. 27)demonstrate higher average stress values, which is expected due

to the higher volume fraction in this model (20% versus 3% in the model with fixed RVE size). The obtained curves demonstrate

also a smaller spread compared to the log-normal distribution, which may be considered as a very important computational
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Figure 26: Finite element discretization of the physical-stochastic domainV . Model with variable RVE size. Lilac denotes
inclusion, orange corresponds to the elastomer matrix.

advantage of the model with variable RVE size. In order to analyze the boundaries of the stress curves, we plot also the stresses

subtracting the modal valuesσ11 − σ̄11 = σ11(a2, a4)− σ11(ā2, ā4) (fig. 28).

Figure 27: Stochastic homogenized stress curves plotted versus basis RVθ(ω) ∈ [−3, 3]. Different curve colors correspond to
the samples in fig. 25. Model with variable RVE size.

Themax andmin stress values for everyα-cut are presented in fig. 29. Note that themax andmin curves coincide with

the samples located in the vertices of theα-cut, thus demonstrating monotonic dependence of the homogenized stresses on the

distribution parameters̃a2 andã4.

Homogenized stress mean value and STD are depicted in fig. 30.The model response demonstrates the monotonic behavior

with respect to parametersã2 andã4. Note also the small variation of the stress STD, which states that the model with variable

RVE size is less sensitive to the variation of the input parameters. Interesting is the fact that the stress mean value increased
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Figure 28: Deviation of the homogenized stresses from the modal valuesσ11 − σ̄11 = σ11(a2, a4)− σ11(ā2, ā4) plotted versus
the basic random variableθ(ω). Model with variable RVE size.

Figure 29: Stress boundaries for eachα-cut plotted in form of deviation from the modal valuesup{σα
11} − σ̄11 andinf{σα

11}−

σ̄11. Model with variable RVE size.

approximately 1.25 times compared to the model with fixed size of the RVE, however the volume fraction increased from 3%

to 20%.

7 Summary and conclusions

In the present work we established a combined fuzzy-stochastic FEM and implemented the proposed technique into computa-

tional homogenization. Based on the analysis of experimental evidence we specified two different sources of uncertainty in the

materials’ microstructure requiring different solution strategies.
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Figure 30: Homogenized stress mean value and STD plotted in the sample space(ã2, ã4). Model with variable RVE size.

The randomness in the geometry of the microstructure resulted from the variability of inclusions’ radii and random inclu-

sions’ distribution. This aleatoric uncertainty requiresprobabilistic descriptions. The distribution parameterswere estimated

statistically directly from the experimental data.

The particle distribution was assumed to be completely random, thus the probabilistic description in terms of probability

density function, random variables, etc is highly complicated. An attempt to describe the inclusions’ positions in terms of RVs

results in a large and highly complicated system of dependent RVs completely useless for engineering applications. Thus we

proposed some alternative description of the inclusions’ position distribution based on the concept of Voronoi cells —the region

of the matrix material which is closer to the inclusion associated with it than to any other inclusion. If the inclusions radius

is considered, the Apollonius diagram is used. Based on the analysis of virtual material samples we estimated statistically the

relation between the inclusion’s radius and the corresponding Apollonius cell area distribution and used this information to

design the stochastic RVE with variable size.

In this work we analyzed two models — with fixed RVE size and with variable RVE size. For both models of the stochastic

RVE we demonstrated the sources of epistemic uncertainty. Due to the idealized and simplified character of parametric proba-

bility distribution functions the fitting of the experimental curves results in the distribution parameters’ values lying within some

interval of confidence. The natural way to describe epistemic uncertainty is fuzzy arithmetic operating rather with possibilities

than with probabilities.

Thus the choice of fuzzy-stochastic solution strategies ismotivated empirically.

Fuzzy output was presented by scattered response surface plots (figs. 23 and 30) and boundary curves (figs. 24 and 29)

demonstrating the output’s variation for every consideredα-cut. Thus the fuzzy response curves allow to estimate the interval

of confidence for quantities of interest if the input is epistemic. They demonstrate also how the interval of confidence could

change if more effort would be invested into the experiment in order to reduce the epistemic uncertainty (chapter 3.1) and

also how the consideration of different fits (obtained usingdifferent fitting algorithms or weights) affects the outputquantities.

Information provided allowed complete analysis of the effect of epistemic uncertainty on the stochastic output.



34 REFERENCES

Based on the performed simulations we conclude that the influence of the input’s fuzziness on the simulation results is large.

The maximum homogenized stresses may change by 50% with only5% input parameters’ variation. For the model with fixed

RVE size the homogenized stress STD may change more than two times. The model with variable RVE size is more stable and

demonstrates a stress change comparable to the variation ofinput parameters.

For both RVE models studied the system’s response demonstrated monotonic dependence on the input parameters thus allow-

ing later application of the vertex method. However this fact is related only to the proposed models and cannot be generalized

to other RVEs.

From the comparison of the RVE with fixed size and the RVE with variable size we conclude that the RVE with variable

size is less sensitive to the variation of fuzzy parameters,produces stress curves with smaller spread, gives control over the

inclusion’s volume fraction, captures more statistical and experimental information related to the microstructure,however the

design of the stochastic RVE based on the experimental data becomes more sophisticated and requires additional calculations.

Both methods, the stochastic FEM technique and the general transformation method for fuzzy numbers, are computationally

expensive thus motivating the future incorporation of reduced order techniques into the SFEM framework

Also the development of advanced sampling techniques for fuzzy numbers may be used in order to accelerate the solution of

the combined fuzzy-stochastic problem.
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