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INTRODUCTION

First, may I thank you all for your invitation and kind introduction.

I have never lectured to mathematicians before and, not being of that 

discipline, it is both a little worrying and interesting. As you know, 

engineers are not mathematicians, but in general, they must possess a 

working knowledge of particular aspects of mathematics. Indeed, history 

has shown that in the field of aeronautics, many mathematicians have become 

engineers and many engineers mathematicians.

In the next half hour or so I hope to describe one of my department's 

current interests, that of modelling the flow past an aerofoil at angles of 

attack where upper surface trailing edge separation is present. The

salient features of such a flow are as shown.
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The important features to note in the diagram are that on the top 

surface the flow, after separation, does not follow the aerofoil contour 

and associated with this is a highly turbulent region, termed a wake, in 

which the surface pressure is observed to be a constant.

Before considering the mathematical details of method of modelling 

used at Glasgow, I would like to give you a very brief and incomplete 

history of the initial developments in aerofoil theory. These, of course, 

were uniquely related to the quest for powered flight by the early 

aviators. It was at the beginning of the nineteenth century that the 

first of many gifted men (Sir George Cayley) succinctly articulated the 

problem of mechanical flight in a statement still valid today. It was, 

he said, "that of making a surface support a weight by the application of 

power to counterbalance the resistance of air".

That surface, of which he talked, was, of course, the aerofoil. He 

further recognised that, when an aerofoil was immersed in a moving fluid, 

the resultant force on it could be decomposed into a force transverse to 

the direction of flow called the LIFT and an in-line force called the DRAG,

(lift)
i I
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The drag force is particularly important for in the field of classical 

hydrodynamics where the viscous nature of the fluid is ignored, no such 

force exists. This was not as observed and the rather awkward conflict



is termed D'alemberts paradox. Moreover, the early theories of lift 

were also in very poor agreement with the observations, as can be seen 

from the diagram.
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It is therefore hardly surprising that the early aviators relied and 

developed an empirically based discipline (hydraulics) to design fluid 

dynamic machines and aircraft. Indeed, the first powered flight of an 

aircraft was made in December 1903 by the Wright brothers at Kill Devil 

Hills, two years before the modern theory of lift (based on classical 

hydrodynamics) was first published. It was also three years before the 

conflict between classical hydrodynamics and hydraulics was resolved by 

introducing the concept of boundary layers which were used to explain the 

drag force and the phenomenon of flow separation.

Since those early days of powered flight, a mere eighty years or so 

ago, there has been a staggering pace of development.

The Kitty Hawk's (the Wright's plane) first flight was at around 

30 mph at a height of 10 feet and a duration of 54 seconds. Today we 

have exceeded the speed of sound and reached altitudes far beyond the 

bounds of aerodynamic flight. All of this development has been based on



an exquisite blend of speculation, empiricism and theory.

Even although such advances have been made we are still unable to 

accurately predict the characteristics of an arbitary aerofoil. High 

speed digital processors have, however, made possible the treatment of 

some interesting cases. Typical of th^ese flows is that of aji^a^ofoil 

prone to trailing edge separation and the statically measured

characteristics of these foils are, in general, as indicated.

It may be seen that as the angle of attack (a) increases, the measured data 

deviates from the classical theory and although these departures are 

initially small there is an obvious breakdown of agreement for angles 

in excess of around 14°. Corresponding to the obvious limit of the 

lift there is a steep rise in the amount of drag. These limits are 

normally Referred to as stall and the curves drawn are typical of turbulent 

stall. The generally accepted view on the flow development during such 

a stall is that, as shown above, the flow on the upper surface breaks 

away progressively from the trailing edge towards the leading edge.

A fully stalled condition arises when the entire upper surface lies 

within the separated region.



This, then, is the flow for which the model I now wish to describe 

has been developed.

DESCRIPTION OF THE MODEL

In the fully attached case of aerofoil flow the breakthrough in 

predicting the lift arrived when Kutta suggested that the flow should 

leave the trailing edge smoothly. This is now termed the Kutta 

condition and is generally stated, that when an aerofoil is placed in 

a moving stream, it will generate around itself sufficient circulation 

to place the near stagnation point on the trailing edge.

Pictorially this is as shown :
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This then sets a unique value on the circulation (K) and, 

independent of the aerofoil shape, the lift is simply given as

L = pUK

with the circulation being defined as

K,= f Vds (V is the tangential velocity)

It is the viscous nature of the flow which generates the 

circulation but when the value is known then the classical hydrodynamic 

theory may be used.



6 e

For the aerofoil with trailing edge separation, this condition no 

longer applies and an alternative method of determining the circulation 

must be used. It is now common to accept that the vorticity shed at 

the trailing edge and the separation point be equal in magnitude but 

opposite in sign.

5£Pfi>^A-riQt^

This is very similar to the classical Kutta condition and is often 

referred to as the modified Kutta condition. The difference is simply that 

the classical Kutta condition refers to the limit when the separation 

point and the trailing edge co-incide. It may therefore be considered 

that it is the location of the separation point that determines the 

circulation and hence lift. The main difficulty here is that 

separation is exceedingly difficult to predict and so, for the purposes 

of describing the model, it will be treated as an empirical input.

For the fully attached case the mathematical description of problem 

is to calculate the potential flow in a region R exterior to a simple 

impermeable contour C, i.e..

R



The fluid velocity at any point is given by

V = V + V
00

where V is the incident uniform flow and v the perturbation velocity 
00

due to the presence of C.

» For such a flow

V = grad $

and v2$ = 0

where $ is some potential function.

and finally on the contour

S'® j ^ ^— = grad $*n an ^ = V-fi = 0

(Neumann boundary condition)

One method of satisfying the above is to replace the contour C by a

vortex sheet of variable unknown strength (y ) as shown.s



It is in the nature of vortex sheets that the induced velocity 6v at

point P due to an element S is given bys

YsSs
Sv = 1'n

and hence = J 2n|r| r d s n

and so the total velocity at P is

V = V

hence the normal velocity to the contour at 1 may be obtained from

V*fi

and since the contour is impermeable

Vn = 0

For an exact solution, the above equation must be satisfied at all 

points on the contour and as described there is no unique solution unless 

an additional condition is imposed. That condition is the Kutta condition 

and simply means that the net vorticity at the trailing edge is zero, 

i.e.,

Ya = Yb

If the function Yg is obtainable then the surface velocity may be 

obtained from

V = Y,



Analytically this is very difficult to solve and a numerical procedure 

is normally adopted in which the continuous vortex sheet is represented 

by a finite number of straight segments (called panels) with a linear 

distribution of sheet strength as shown.

At the centre of each panel is a control point at which the Neumann 

boundary condition is to be satisfied.

Now the jth panel will induce a velocity at the i th control point 

given by

L.

''i. = \ Ys ds. Ci .
J - I J. JJ 2n r.

O 1j

and so the induced normal velocity is simply

v„ = V. • ni
ri • 1jJ J

Each panel contributes to normal velocity at the i th control point 

and so

N
Vr, = ^ V
ni ni .

J=1 J



which may be written in the form

N

Vn. = In 1
_____ C. Y .
j=l 1j J

where C. are termed the influence coefficients. 
1.J

Thus for each control point

_1_
2n J=1

C.1. J
Y . + VJ n.1 = 0

This represents N linear equations with N + 1 unknowns and the final 

equation follows from the Jutta condition expressed as

Yi + yn + 1 = 0

The extension of the method to that of partially separated flow is to 

assume that the separated region is bounded by two vortex sheets of 

equal but opposite strength, i.e.,

the condition of zero normal velocity on the aerofoil contour is preserved 

so that the sheet strength distribution is as follows :
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In the separated region the pressure is assumed constant and its 

boundary is initially unknown. This necessitates some starting 

profile which, of course, will not necessarily lie along streamlines 

since the boundary condition is not explicitly satisfied of the profile.

To fulfil the requirement that the bounding sheets lie on streamlines, 

it is necessary to adjust the region in an itterative manner until a 

suitable boundary is obtained.

On the face of it, this seems a minor extension to the fully attached 

case but numerical and programming difficulties were much greater than 

expected. In particular, the handling of the panel on which separation 

occurs and in the itterative method for the separated region.

The final test of any predictive procedure, however, is, of course, 

how well it predicts an accepted test case. As may be seen from the 

following figures, it is very satisfactory. The agreement with the 

measured data is good and very much better than the method based on fully 

attached flow. The overall predicted lift curve slope shows the same 

quality of agreement with the data and it is a most gratifying result.

It would be quite wrong, however, to assume that all aerofoil data 

may be predicted to the same accuracy. The results presented were simply 

checks on the method, given that the location of the separation point is 

known. Separation is a most difficult phenomenon to predict and even the 

best methods may be out by as much as twenty to thirty percent.

I trust that this rather hurried talk in which I have covered a lot 

of ground has satisfactorily illustrated some of the current methods for 

predicting the flow past aerofoils and I have not abused your discipline 

too much.
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EXPERIMENT 
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--------POTENTIAL FLOW
—X—MODEL OF REF. 4. 
------- PRESENT ALGORITHM

x-x-x-

06. DEGREES

COMPARISON OF EXPERIMENTAL AND JHEORETICAL
AERODYNAMIC COEFFICIENTS
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