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Abstract

A control methodology is presented and applied to the simulation of helicopter 

manoeuvres using an individual blade rotor model. The novelty of constraining an 

individual blade/blade element rotorcraft model is explained with reference to some 

existing manoeuvre simulation techniques. A fully non-linear control algorithm is 

employed which estimates the controls required to maintain a constant flight path by 

minimising the error between the inertial frame flight path states predicted by the 

rotorcraft model, and those demanded by the flight path generator. A simple flight 
path generation model, based on Newtonian kinematics is used. Firstly, the algorithm 

is evaluated in a disturbance rejection role, negating the effect of obstruction-induced 

atmospheric turbulence. Secondly, a flare to hover manoeuvre is simulated and the 

results discussed. The effects of parameter changes within the control algorithm are 

also discussed and the results for changes in tolerance levels and the control 
application interval are presented. Finally an approach to an offshore oil platform, 
landing on the helideck, with the turbulence field included was performed. It is found 

that the control algorithm tracks the required flight path well in both still air and 

turbulence.



Nomenclature.

Control Algorithm Parameters

E(u(tk)) output error vector .
G (.) mapping from input-output space.
J[] Jacobian matrix.
u(t k) input (control) vector at time tk.
X system state vector.
X observer state vector.
y(t k) output vector at time tk.
yoES desired output vector.
STD standard deviation of the ith variable.
CSTD cumulative standard deviation coefficient.
T control application interval.

Rotorcraft Model Parameters.

u,v,w 

u, V, w 

xe,ye,ze

p.qT

00
6is
01c
0tr

translational velocities (body axes), 
body accelerations.
c.g. position in x,y,z-dir.ns (inertial frame). 
Angular rates about the c.g. (body axes). 
Euler angles.
Main rotor collective pitch.
Main rotor longitudinal cyclic pitch.
Main rotor lateral cyclic pitch.
Tail rotor collective pitch.

FPG model parameters.

3x! az 

Ux, uz 

sz

Desired longitudinal accelerations. 
Trim inertial velocities.
Tuned initial altitude.



1.0 Introduction.

This research at the Aerospace Dept, of the University of Glasgow has been 

concerned with the simulation of flight past obstacles in a realistic atmospheric 

environment. Situations as varied as low altitude, close proximity flight near to a 

tower block, to flight over a ciifftop for air/sea rescue missions, to making an 

approach to a north sea oil platform are common operational environments for many 

types of helicopter. A realistic, but simple model of the turbulence induced by the 

flow obstruction would therefore be regarded as a valuable design tool, allowing 

accurate manoeuvre simulation as well as stability, control authority and operational 
viability analysis.

Modelling of the turbulent wake induced by the presence of an obstacle in the 

flow field was accomplished using a commercial CFD package, (FLUENT). Using a 

discrete field for gust modelling enables the accurate repetition of numerical 
experiments for different flight conditions by using absolute rather than statistically 

equivalent turbulent velocity data. However, only a finite turbulence field can be 

incorporated into the rotorcraft simulation and should a divergent rigid body mode be 

excited, colliding with the obstacle or exceeding the field boundary becomes a 

realistic possibility. It was therefore necessary for repeatability and consistency that a 

controller be developed which would negate the effect of atmospheric disturbance on 

the low frequency, rigid body modes, so maintaining a constant flight path. Due to 

the success of the control algorithm in the disturbance rejection role, it was proposed 

to extend the application of the controller to the simulation of rudimentary helicopter 

manoeuvres.

Simulation of helicopter manoeuvres has recently been accomplished using 

Inverse Simulation, a technique whereby the controls required to perform a 

predefined manoeuvre are calculated, enabling control authority analysis to be 

enacted. Although no control law is used explicitly, the method for constraining the 

flight path is of interest. Continual adjustments are made to the control vector such 

that the equation.

G ( u(t)) - yDES(t) = 0 Eqn(l.l)

is minimised, Ref(l). Inverse simulation algorithms such as GENISA (GENeric 

Inverse Simulation Algorithm), developed by Rutherford and Thomson, Ref(2), use 

Newton-Raphson iteration (generally regarded as the most powerful technique for
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solving problems such as eq(l.l)) for control modification. GENISA was used in the 

current work as a tool to provide the control displacements necessary to fulfil the 

control algorithm requirements.

In the past, an actuator disc (disc model) was used in inverse simulation to 

model the helicopter rotor forces and moments, mainly due to limitations in the 

computing power available. Using a disc model representation causes the rotor to act 
as a low pass filter to the minimisation algorithm, preventing the transfer of vibration 

or the effects of other high frequency inputs from having any effect on the solution. 
Atmospheric turbulence, for example, introduces additional loads on the aircraft, 
directly affecting all the dynamic modes operating within a wide frequency 

bandwidth - especially the rotor modes at (N/rev, N± 1/rev) which may be primarily 

responsible for gust induced vibration, Ref.(3). By using a fully coupled, articulated, 
individual blade-blade element model these modes are transmitted to the fuselage 

and are therefore present in the control selection algorithm. Thus, using a blade 

element model yields a more realistic representation of the overall change in the 

aircraft due to atmospheric uncertainties. The simulation is further enhanced by the 

use of an individual blade tail rotor in the simulation, rarely, if ever, used in control 
law design.

In situations where uncertainties are likely to significantly alter the response 

of the helicopter, an adaptive control strategy should be adopted. Haverdings, Ref(4), 
has designed one such controller, based on the optimal control of linearized 

dynamical systems. By modelling the reactions of an 'ideal' pilot, that is one with 

absolute knowledge of all aircraft states, to changes in flight path demands, a 

continuous feedback controller was presented. The rotorcraft model used, however, 
made no provision to alleviate high frequency inputs such as atmospheric turbulence 

nor were the rotor degrees of freedom modelled. A significant divergence from 

some of the desired flight states also appeared at the end of the manoeuvre. This 

suggests that a non-linear controller should be used when simulating manoeuvres 

using a sophisticated individual blade rotorcraft model.

Difficulty arises in designing a robust and accurate control law using the 

established parametric techniques (eigenvalue assignment, LQ optimisation) as well 
as non-parametric frequency domain based techniques ( H00, etc.) as they rely 

primarily on a feedback loop in the control law. Tischler, Ref(5),has observed that 
using only the rigid body modes as the measured states for implementation into the 

main feedback loop may cause the coupled body/rotor modes to become unstable.
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This destabilisation of the rotor dynamics has further been explored by Ham, Ref.(6). 
To alleviate these instabilities, accurate knowledge of the rotor states, flap, lag etc., 
for inclusion in the feedback loop is essential, so increasing the complexity of the 

controller. A pilot is, however, able to fly the helicopter along any realistic flight 
path without having knowledge of the rotor states, adjusting the controls based only 

upon rigid body dynamic information. The pilot is able to perform this operation by 

applying the controls not continuously, as in a conventional state feedback control 
law, but at discrete time intervals. The benefits to be gained, in the form of reduced 

complexity, from designing a control law based on pilot inputs and responses are 

therefore evident. It is therefore the aim of this paper to present a simple, heuristically 

insightful, active control algorithm mimicking pilot inputs which will fly a fully non
linear helicopter mathematical model along a predefined flight path.

2.0 Turbulence model

To demonstrate the disturbance rejection properties of the algorithm, the 

simulation is flown through an obstruction induced turbulence field. By using a 

commercial CFD package (FLUENT) the steady state turbulent wake behind any 

modelled obstacle can be obtained in terms of inertial velocity components at spatial 
locations. From Ref.(3), the position of each blade element is known and through a 

series of axes transformations the local aerodynamics can be modified by 

superimposing the transformed atmospheric velocity onto the local still-air blade 

element velocity. Similar modifications are made to the fuselage and tailplane 

aerodynamics. By using each blade element as a sampling station, a cyclostationary 

representation of the turbulence is afforded. Employing rotational sampling, Ref.(7) 
enables a more accurate representation of low amplitude, high frequency vibratory 

forcing, not evident in the conventional body or hub-fixed sampling methods.

Although RASCAL (Rotorcraft Aeromechanic Simulation for Control 
AnaLysis ), Ref(9), operates in 3-D space, a 2-D plane may be used in the 

construction of the turbulence field, if an appropriate obstacle is chosen, fig(2.l). The 

atmospheric model, however, remains active in all three dimensions. Even if the 

obstruction is complex, a general 'first-order' approximation to the solution can be 

obtained using a fairly simple model. This is shown by the oil-rig approximation, 
fig(2.2). Two severe operational landscapes were chosen to ensure a realistic test of 

the algorithm;
1. Flight at low level in close proximity to a tower block and
2. Simulation of the approach to an offshore oil platform.
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In scenario 1, the helicopter was required to maintain trim throughout the 

flight, so illustrating the disturbance rejection properties of the controller, while 

scenario 2 demanded a flare to hover following a 9° flight path (from an initial flight 
speed of 10 knots) landing on the flight deck of the oil-rig.

3.0 Rotorcraft Model.

The helicopter mathematical model RASCAL ( Rotorcraft Aeromechanic 

Simulation for Control Analysis ) used in the simulation is a fully coupled, individual 
blade/blade element model. Table 1 highlights the principal features of the model.

Model item Characteristics

Rotor dynamics (both rotors) • up to 10 individually-modelled rigid blades

• fully-coupled flap, lag and feather motion

• blade attachment by offset hinges & springs

• lag damper

Rotor loads • aerodynamic and inertial loads represented by up to 10

elements per blade

Blade aerodynamics • lookup tables for lift and drag as function of angle-of-

attack and Mach number

Wake model • momentum-derived dynamic wake model

• uniform and harmonic components of inflow

• rudimentary interaction with tail surfaces

• ground effect

Transmission • coupled rotorspeed and engine dynamics

• up to 3 engines

• geared or independently-controlled rotor torque

Airframe • fuselage, tailplane and fin aerodynamics by lookup

tables or polynomial functions

Atmosphere • International Standard Atmosphere

• provision for variation of sea-level temperature and

pressure

Table (1). Mathematical model description.
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4.0 Flight path generator.

The flight path generation model determines the desired states of the aircraft 
as a function of time. By careful choice of the primary states (states to be controlled) 

it is possible through the presence of rigid body cross coupling effects to reduce the 

number of required control states. Inertial positions (position of the aircraft centre of 

gravity wrt an earth-fixed reference frame) and, if required, inertial velocities, along 
with heading angle \|/ , form the primary state variables used to define the flight path,

i.e.

yOES = Fn{Xedem, yedem, Zedem,Xedem, yederri) Zedem> ^clem? Vdem}

The inertial velocity components are included, where necessary, to provide damping 

in the primary states induced by the application of the controls. The desired output 
vector is given,

yDES(tk+l) = ytrim(O) + Xdes • tk+1

where ytrim(O) contains the trim values of the primary states and Xdes is a constant 
vector of time derivatives. The vector ydes is used as an input to the control algorithm 

error or 'cost' function.

The form of the vector Xdes varies with the simulation objective, i.e., it 
determines whether a trim is to be maintained or a more severe manoeuvre simulated. 
Manoeuvres such as the flare to hover, which is presented in this paper, are calculated 

using a constant deceleration applied to the inertial frame velocity components. 
Accelerations are chosen such that a constant flight path is maintained throughout. 
The equations used, appendix(l), are configured such that the helicopter is 

constrained to fly to a predefined position, along the specified flight path irrespective 

of the time taken. This induces a large computational cost which can be alleviated by 

tuning the initial altitude, such that the descent to zero ft (which signifies the end of 

the manoeuvre) occurs within a specified time.

5.0 Controller.

The control algorithm used on this project was a model following error 

optimisation routine with a strong predictor/corrector element. The algorithm 

assumes an ideal observer is modelling the system dynamics, i.e.
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X = X Eqn(5.1)

allowing all the states to be used in the construction of the error function.
The discrete output vector can be expressed as a non-linear function of the 

states and controls.

y(t k) = F ( x(t k), u(t k)) Eqn(5.2)

If the controls are held constant over the control application interval T and a 

Zero-Order Hold is employed, then the output at time tk+i is a complex function of 

the control inputs at tk.

y(t k+l) = G ( u(t k)) Eqn(5.3)

The desired output vector, YDEs(tk+l)> obtained from the flight path 

generation model, enables definition of an error matrix.

E(u(tk)) = y( tk+i) - yoEs( tk+i) Eqn(5.4.1)

or, from Eqn(5.4)

E(u(tk)) = G (u(t k)) - yoEsC tk+l) Eqn(5.4.2)

The control deflections required to minimise Eqn(5.5.2) are found using a 

Newton-Raphson iteration.

Ui+i(tk) = Ui(tk) - (J[G (u(t k) I)-1 E(ui(tk))

where i is the iteration index and J[] is the Jacobian,

Eqn(5,5)

Jlij = [3'^('1{tk))/3uj(tk)] Eqn(5.6)

The iteration loop is terminated when E(u(tk)) falls below a pre-set tolerance. The 

control deflections predicted by the algorithm are then fed back as inputs to the actual 
system and the process continues for the next time interval. A flow diagram of the 

control algorithm is shown in chart(l).

© The University of Glasgow 1995 

6



6.0 Results.

6.1 Disturbance Rejection

To illustrate the disturbance rejection properties of the algorithm a single main 

and tail rotor helicopter, the Puma, was constrained to fly at close proximity to a 

tower block, operational landscape 1, illustrated in figure(2.l). The c.g. of the 

helicopter was positioned 40 metres to the right of the east facing wall. A trim 

airspeed of 10 knots was chosen to ensure that the vehicle dynamics were affected 

over a wide bandwidth, Ref.(3). The integration time interval, expressed in terms of 

the azimuthal displacement of the tail rotor, was 45° (0.00569 sec), with a control 
application interval, T, of 8 complete tail rotor turns (0.365 sec).

Fig(6.l.l) shows the motion of the uncontrolled versus controlled aircraft in 

the gust. After only 9 seconds, a lateral drift of almost 35 metres is present, along 

with a reduction in altitude of 3 metres in the free response. This motion is indicative 

of a 'spiral dive' type of rigid body divergence, a dangerous flight state especially at 
low level in close proximity to a building. Activating the controller (with reference to 

the flight states) results in a maximum lateral deviation from trim of less than 0.002m. 
Similarly, there is a significant reduction in the maximum altitude change. The 

overall effect is to maintain a flight path of y = 0°, as illustrated by comparison of 

figs(6.1.2) and(6.1.3).

From Ref.(3), flying through atmospheric turbulence induces an additional 
vibratory component to the rotor loading. Fig(6.l.4) shows time histories of the 

uncontrolled aircraft body accelerations. The vibratory component is small compared 

to the low frequency (rigid-body) accelerations, which are excited due to the 'ordered' 
nature of the turbulence field. Fig(6.l.5) shows the time histories of the body 

accelerations with the control algorithm activated. The large amplitude, low 

frequency component has been eliminated from each body axis acceleration, as 

required.

6.2 Simulation of Manoeuvres

This section of the report deals with the simulation of a relatively gentle 

helicopter manoeuvre performed initially in still air. The manoeuvre is a flare to 

hover, following a pre-determined glide path, described solely in terms of a linear
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deceleration of the longitudinal (x,z) inertial velocity components. The same 

helicopter configuration as in the disturbance rejection section was used.

The necessary retardation was calculated using basic Newtonian mechanics. 
Initially a target point was set relative to the starting trim position in the inertial 
frame. Boundary conditions of zero inertial velocity at the manoeuvre termination 

point were also imposed. The equations used to calculate the required deceleration, 
manoeuvre time and demanded inertial positions and velocities are given in 

appendix(l).

The first case consisted of a 25 knot flight along a 9° glide slope. The initial 
altitude was tuned to 66 ft, giving a manoeuvre time of 20 seconds. From fig(6.2.1) it 
is apparent that the helicopter tracks the demanded flight path very well. On the scale 

shown there is no significant error developing, even after the helicopter comes to rest 
(in an inertial velocity sense) i.e. as the algorithm attempts to trim the helicopter at 
hover. For such a delicate flight state as the hover, finding the controls required to 

trim the aircraft may be better accomplished when using this method if information is 

available for the body attitudes and rates as well as the constraints. This accounts for 

the sudden instabilities developing in the lateral/directional motion after 20 seconds 

of simulation, fig(6.2.2).

Fig(6.2.3) shows the control displacements required to perform this 

manoeuvre. As with disturbance rejection, a zero-order hold is assumed and the 

calculated control perturbations applied as step inputs. As expected, as the aircraft 
pitches nose up, a steady increase in collective main rotor pitch is applied. The 

tailrotor collective also increases due to the presence of a strong coupling between the 

roll/pitch/yaw dynamics. Fig(6.2.4) is a plot of the lateral vs. longitudinal cyclic pitch 

of the main rotor and gives an indication of the stick movement required to perform 

the manoeuvre (this is an approximate representation as no actuator dynamics were 

modelled).

In the second flare an initial flight speed of 40 knots was used, again with a 9° 

glide slope. This corresponds to a velocity of approximately 5ms-1 in the body axis z- 
direction. The uniform component of inflow velocity in this trim state is given by 

RASCAL to be approximately bms'1. As the incidence of the rotor disc changes 

during the manoeuvre, changes in the inflow velocity occur. If the inflow and rate of 

descent match there will be no net flow through the rotor, leading to a numerical 
instability developing within the model. This condition therefore represents almost a
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'worst case' scenario for the algorithm to deal with. Indeed, it proved necessary to 

include weighted velocity error terms ( Xe - Xedem ) etc. in the controller error 

vector, E(u(tic)), to ensure that the convergence criteria would be met.

From fig(6.2.5), it is apparent that the controller managed capably to perform 

the manoeuvre. As with the 25 knot case, there is little residual error build up in 

either the xe or ze displacements. The lateral displacement and heading errors are also 

well within acceptable boundaries, Fig(6.2.6). However, due to the increased severity 

of the manoeuvre there has been a dramatic increase on both the overall amplitude 

and vibratory component of the body accelerations, Fig(6.2.7). These accelerations far 

exceed existing ride quality criteria and would therefore have to be reduced in an 

actual helicopter control system by an inner loop ride quality controller.

6.2.1 Constraint Oscillations.

Considering a second order dynamic system, a constant input will result in an 

oscillatory response which can be characterised in terms of frequency of oscillation 

and asymptotic damping. If the output, or response, must be constant, then it is 

conceivable to assume that an oscillatory input will be required. Thomson, Ref.(8), 
has discovered that by applying constraints, i.e. demanding a constant output, an 

oscillatory response is introduced to the secondary, or indirectly influenced states. 
From the standard 6 dof., 9 state linear representation of the helicopter, the primary 

variables or those states heavily influenced by the constraints are u, v, w & r, while 

the unconstrained states are p, q, 9, (|). The 9th state, \J/, is used as one of the 

constraints. From Ref.(8), the frequency of the constraint oscillations can be 

predicted, (Fig(6.2.8) shows these oscillations present in p, q, 9, (]) for the 10 knot
manoeuvre). For the 10 knot trim case, the damped frequency of oscillation for the 
roll mode was calculated as = 0.4909 Hz and the pitch mode as wci(^2^ = 0.3183

Hz. These frequencies may be observed in the time histories of Fig(6.2.8). 
Figs(6.2.9-6.2.12) show the zero mean power spectral density curves for the secondary 

states over a range of sampling intervals. The effect of the time interval between 

control applications is evident in the frequency shifts shown around the predicted 

oscillation frequencies. It is therefore reasonable to assume that the oscillations 

present in the secondary variables occur due to the constraints imposed on the flight 
path variables, as predicted by Thomson, Ref(8).
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6.3 Effect of Control Algorithm Parameter Changes

6.3.1 Tolerance limit

Consider Fig(6.3.l). These results were obtained using the 10 knot flight speed 

case and by setting a tolerance limit of tol = 0.0001 on the inertial co-ordinate and 

tol/10 on the heading angle variables contained within the control algorithm error 

vector (see chart(l)). By observing the output from the controller it was apparent that 
there was a build up of residual errors in the lateral position constraint, ye, leading 

primarily to greater demanded lateral cyclic displacement. Reducing the tolerance on 

ye by two orders of magnitude prevented large errors from occurring, enabling the 

aircraft to follow the demanded flight path more accurately, Fig(6.3.2). The amplitude 

of constraint oscillations was also reduced (compare fig(6.2.8) with fig(6.3.3)) along 

with the required control deflections, fig(6.3.4). As small control deflections are 

desired (improved efficiency of the controller) tuning of the tolerance limits can be 

seen to improve the performance of the algorithm. For the more severe manoeuvres 

(25 and 40 knot cases etc.) tolerance modification acts to aid convergence of the 

controller rather than explicitly reduce the amplitude of the constraint oscillations.

6.3.2 Significance of the Control Application Interval.

This next section will explore the effects of altering the control application 

interval on the performance of the control algorithm. The 10 knot trim in still air was 

chosen, using both position and weighted velocity terms in the cost function. 4, 6, 8, 
10 and 12 turns of the tailrotor were chosen, corresponding to times of 0,188s, 0.282s, 
0.37s, 0.47s and 0.56s between successive control inputs. At T = 4 turns, a high 

frequency oscillation is present caused by the influence of the rotor dynamics on the 

controller. From fig(6.2.9), it can be seen that perhaps the first regressive flap mode is 

evident (==1.5Hz) along with the rotor coning mode at about 4Hz. At T = 12 turns 

rigid body modes begin to develop, consequently their effects are included in the 

controller. So that an overall comparison can be performed, define the Cumulative 

Standard Deviation coefficient by

CSTD = X sxq
i=l

where STD = [ ye, ze, 0, <{), \|t, u, v, w, p, q, r,u, v, w 0o,0is>0lc,0tr]T
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Table(2) contains the cumulative standard deviation coefficients as a function 

of the control application interval.

N° of turns 4 6 8 10 12
CSTD 1.1669 0.3486 0.2273 0.3112 1.3909

Table (2)

The results in Table (2) suggest that there is an optimum control application 

interval at approximately 8 turns of the tailrotor. This information, in conjunction 

with the practice of tuning the tolerances should improve the overall performance of 

the algorithm. It should be noted that control application intervals corresponding to 2 

and 16 turns of the tailrotor caused the algorithm to fail. This suggests that in 

addition to an optimum time interval T, there exists a finite band of admissible 

application intervals, outside of which the algorithm will fail. This statement is 

further elucidated by fig(6.3.5). This effect may be due, in part, to the natural 
dynamics of the helicopter. A small control interval (T < 4 turns) leaves little time 

for the effects of a control perturbation to be felt by the error vector (the section of 

the controller performed by GENISA). This leads to an ill-conditioned Jacobian 

matrix which may lead to the build up of numerical instabilities in the controller. By 

setting the control interval too great (T > 12 turns), the natural rigid body dynamic 

modes of the system develop increasing the magnitude of the elements in the error 

vector, possibly resulting in a convergence failure. This also leads to large control 
deflections which may result in a control authority exceedence failure.

6.4 Oil Rig Landing.

The simulation of a landing flare aimed at the platforms' helideck in a 

turbulent scenario was used as the final test of the algorithm. The algorithm is 

required to perform well in both the manoeuvring and disturbance rejection roles. 
The turbulence field used was that designated scenario 2, fig(2.2), oil rig field. The 

manoeuvre itself covers what would be the final stage of a standard 9° approach. The 

initial flight speed was 10 knots with a manoeuvre time of 15 seconds. From the 

results of section 6.3, the control application interval chosen corresponded to 8 

tailrotor turns.

A time response of the longitudinal inertial components is given in fig(6.4.1), 
showing, as before, that the algorithm tracks the desired flight path well. The
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lateral/directional constrained component errors are minimised well, although greater 

instantaneous lateral drift is observed, fig(6.4.2). A control authority bandwidth 

comparable to the 25 knot manoeuvre is observed, fig(6.4.3), showing no eontrol 
limits were exceeded. Overall, the control algorithm performs well with the 

combined manoeuvre simulation / disturbance rejection demands.

Conclusions.

A simple control algorithm has been designed which 

will allow the simulation of helicopter manoeuvres to 

be performed using an individual blade/blade element 
rotorcraft model.

The use of this controller in a turbulence rejection role 

has been demonstrated and proved to be highly 

effective.

The oscillatory motion apparent in the secondary variables 

is due to the application of constraints on the flight path states.

The performance of the control algorithm may be 

significantly enhanced hy careful tuning of the error 
vector tolerance limits

Stability boundaries for the controller exist and appear to be 

a function of the sampling interval, T.

The algorithm performs well in a combined manoeuvre simulation 

- disturbance rejection role.
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Appendix (1) Derivation of the FPG model manoeuvre equations.

The manoeuvre equations in the flight path generation model are derived 

using simple Newtonian kinematics in conjunction with pertinent boundary 

conditions. For the flare to hover, two primary boundary conditions are imposed, 
firstly that a constant flight path angle be maintained throughout the manoeuvre and 

secondly that the manoeuvre has to terminate when the altitude of the helicopter 

reaches zero. It is also necessary to define the manoeuvre time, tm, which, once set, 
allows calculation of the required accelerations in the longitudinal inertial reference 

frame, i.e.

ax(t) =
-u.

‘-m

az(t) = "Uz
t

Eqn(Al)

Eqn(A2)
m

Once the accelerations are known, the tuned starting altitude is given by.

z^i
2a,

Eqn(A3)

A similar operation is performed in the x-direction. The demanded positions and 

velocities at time t^+i for use in the control algorithm are given by.

1 2
dem = ux^k+l + 2ax^k+l Eqn(A4)

1.2
‘dem — ^z^k+l + 2^Z^^+I Eqn(A5)

^dem = ax + axlk+l Eqn(A6)

^dem — az ■*" azlk+l Eqn(A7)
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Flight path
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Chart 1. Structure of the control algorithm.
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Fig (2.1), Illustration of the flow pattern evolved when passing 
a rectangular tower block at 2.5 ms-1.
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Fig(2.2), Simple representation of the flow pattern induced by an 
offshore oil platform in a 5ms_1 freestream.
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Fig(6.l.l), Uncontrolled vs. controlled puma in operational 
landscape #1.

time (s)

Fig(6.l.2), Flight path angle for the uncontrolled aircraft.
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Fig(6.1.3), Flight path angle with controller implemented.



time Cs)time <s)

O.S.

-0.5.

-1 .0 J

time <s)

Fig(6.l.4), Uncontrolled turbulence-induced body accelerations.
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Fig(6.1.5), Turbulence-induced body accelerations with control 
applied.
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Fig(6.2.l), Controller tracking effectiveness for a 25 knot flare-to- 
hover.
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Fig(6.2.2), 25 knot flare-to-hover lateral/directional motion.
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Fig(6.2.3), Control inputs required for the 25 knot flare.
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Fig(6.2.4), Main rotor cyclic stick motion, 25 knots.
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Fig(6.2.5), Control tracking effectiveness for a 40 knot flare-to- 
hover.
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Fig(6.2.6), Lateral/directional motion, 40 knot flare-to-hover.
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Fig(6.2.7), Body accelerations, 40 knot case.
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Fig(6.2.8), Constraint oscillations induced by maintaining a 10 knot 
trim.
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Fig(6.3.l), Performance of the constraint variables in maintaining 
trim, standard accuracy.
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Fig(6.3.2), Performance of the constraint variables in maintaining 
trim, modified tolerance limits.
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Fig(6.3.3), Constraint oscillations using the modified tolerance 
limits.
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Fig(6.3.4), Comparison of the required control deflections for 
standard and modified tolerance limits.
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Fig(6.3.5), Cumulative STandard Deviation coefficient vs. interval 
between succesive control deflections.
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Fig(6.4. l), Control tracking effectiveness for an oil rig platform 

landing manoeuvre in turbulence.
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Fig(6.4.2), Lateral / Directional motion for an oil rig platform 

landing manoeuvre in turbulence.
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