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Summary

This report documents the application of the inverse simulation algorithm 

Genisa [1] to the Conceptual Simulation Model developed at DRA Bedford. The 

CSM is a simple, decoupled helicopter model used to investigate advanced control 
systems. As the aim was primarily to test the practicalities of the CSM in inverse 

simulation, no attempt has been made here to qualify the model, which is described in 

Appendix A and more fully in reference [2]. The Lateral Jinking manoeuvre is used 

to generate all results. Helicopter configurational data is similar to a Westland Lynx.
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Nomenclature

ao
Cx

inflow

Cx
CxF’ Cyf 

g
Gp, Gp3 
Gq, Gq3 
Gr, Gr3 
gti’ G^, Gc 

ll,ns 

m
mTC’ nTC

p> q>r
PdEM - rDEM
R
s
Sxp, Syp 

tl. t2, t3 

UB. VB’ WB 

UBR’ WBR

Vp
VT
Wf

xp. Ye, ze 
X, Y, Z
^^ZrOT-tc

rotor lift-curve slope 

rotor thrust coefficient
simplified thrust coeff. used for inflow calculation
rotor X force coeff.
fuselage X and Y force coeffs.
acceleration due to gravity
roll rate demand linear and cubic gains
pitch rate demand linear and cubic gains
yaw rate demand linear and cubic gains
pitch, roll and yaw inceptor gains
direction cosines for Euler transformation
helicopter mass
pitch and yaw acceleration input for turn coordination 

components of helicopter angular velocity at centre of gravity 

roll, pitch and yaw demand 

rotor radius 

rotor solidity
fuselage frontal and side area
time taken to complete sections of lateral jinking manoeuvre 

reference body axes velocity components 

velocity components resolved into rotor disc axes 

resultant airspeed at fuselage in presence of rotor downwash 

true airspeed 

induced upwash
displacements relative to the earth fixed inertial frame 

X, Y, Z forces
incremental rotor thrust for turn coordination

(1/rad)

(m/s2)
(rad/s)
(rad/s)
(rad/s)

(kg)
(m/s2)
(rad/s)
(rad/s)
(m)

(m2)
(s)
(m/s)
(m/s)
(m/s)
(m/s)
(m/s)
(m)
(N)
(N)

Greek Symbols

a
Ctp

P
Y
Sc

-TC

angle of attack
fuselage incidence in presence of rotor downwash 

sideslip
flight path angle 

collective pitch input
incremental collective pitch for turn coordination

(rad)
(rad)
(rad)
(rad)
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50 rotor drag factor
52 rotor thrust dependent drag factor
T), C pitch, roll and yaw control inputs
(]), 0, \|/ body roll, pitch and sideslip attitude angles
0SHAFT rotor shaft tilt angle
(t)TC’ ^MAX bound and maximum bank angle 

normalised induced downwash
in plane and normal to plane no:

p air density
actuator time constant

Q angular velocity of main rotor

Vectors and Matrices

X state vector

y output vector
u input vector
[J] Jacobian matrix

Subscrints and Prefices

CALC, DES calculated and desired values
ERR error term
FUS, ROT fuselage, rotor
TC turn coordination
e equilibrium or trim component

ij matrix indices
k solution point
m iteration number

(rad)
(rad)
(rad)

(kg/m3)
(s)
(rad/s)
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1. Genha : Generic Inverse Simiilafion Algorithm

1.1 Introduction

Inverse simulation can be used to predict a set of control inputs that will cause 

a predefined displacement of a subject vehicle. More specifically, in mathematically 

defining some desired vehicle manoeuvre or flight path the algorithm will solve the 

equations of motion for a unique time history of control inputs. This contrasts with 

conventional simulation, which calculates the vehicle state variables (and 

consequently flight path) in response to imposed control inputs. A formal definition 

can be obtained by considering the initial value problem which expresses the 

relationship between state, control and output vectors of a dynamic system and forms 

the basis of most vehicle simulations :

X = f (x, u); x(0) = xe (1)

y = g (x). (2)

The equations of motion (1) permit prediction of the behaviour of the state 

vector X in response to an imposed control vector u over a specified time period, xe 
containing the state variables at t = 0. The output equation (2) states how the output 
vector y can be obtained from the state vector. Specific representations of equations 

(1) and (2), relating to the CSM, can be found in §2. These equations also summarise 

inverse simulation, which predicts the control vector u that will produce a desired 

output vector y, and in doing so, the corresponding state vector x.

1.2 Generic Inverse Simulation Algorithm

In Genisa the initial solution occurs at t = 0. The value of xe is calculated for a 

specified trim condition and the first estimate of u taken as the trim value Ue. In the 

general case (the m* estimate at the k* time point) x(tk)m can be evaluated using x(tk) 
and the current estimate for u(tk)m

x(tk)m = f [x(tk), u(tk)m]. (3)

This in turn can be integrated, using a Runge-Kutta method for example, to 

produce estimates of x(tk+i)m and y(tk+i)m at the next time point.



Inverse Simulation Incorprrating the CSM

Wl
^(tk+l)m = jx[(tk)m] dt + x(tk)m 

tk
(4)

y(tk+l)m = g [x(tk+l)m] (5)

As the basis for a Newton-Raphson solution, an error function is defined as 

the difference between the latest estimate of the output vector, y(tk+i)m and the 

desired value, yoEsCtk+i), that represents the prescribed flight path

yERR(tk+l)m = y(tk+l)m ' yDEsOk+l)- (6)

The function is tested against a predefined tolerance. If less then the 

tolerance then the programme moves on the next solution point k+1 and continues 

from equation (3). However if yERR(tk+i)m is greater than the tolerance then a 

Jacobian is calculated and using its inverse, a new estimate of the control vector 
u(tk)m+i can be found (7). The Jacobian is a matrix evaluated by differentiating the 

output vector with respect to the control vector (8).

u(tk)m+l = u(tk)m - [J]'1 yERR(tk+l)m

[J] =
d y(tk+l)m
d u(tk)m

(7)

(8)

This new estimate is then used to calculate x(tk)m+i and consequently the error 

function yERR(tk+i)m+i within the m loop, m = m + 1. The programme is finished at 
the end of the manoeuvre time period (k=n).

1.3 Alternative Optimal Solution

The method described in §1.2 is valid only for situations where the number of 

known states (i.e. the manoeuvre constraints) is equal to the number of unknown 

controls. In such circumstances the Jacobian, [J] is square and readily inverted.
There are alternative situations, however, where the Jacobian is rectangular and an 

exact solution of equation (6) does not exist, though as will now be described it is 

possible to rearrange the algorithm into a form for which an optimal solution can be 

found. From equation (8) it can be seen that.

[J] u(tk)m = y(tk+i)m (9)
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which is linear. Clearly from (9) the desired solution is a value of u(tk)m, uuEsCtk)^ 

which will produce y(tk+i)m equal to yDEs(tk+i)m i-e. solution of the following 

equation :

[j] u(tk)m - yOEsdk+Om = yERR(tk+l)m- (10)

Equation (10) can be put in a more convenient form. In the region local to the 

solution, equation (8) can also be expressed as,

rT1 _ d yERR(tk+i) m
" dUERR(tk)m (11)

where.

UERR(tk)m = u(tk)m - UDEs(tk) (12)

so equation (10) can be rewritten as shown in (13).

[J] UERR(tk)m = yERR(tk+l)n (13)

The next estimate in the Newton-Raphson iteration is evaluated using a 

modified form of equation (7):

U(tk)m+1 = U(tk)m - UERR(tk)n (14)

For the case where the number of constraints and controls are equal. Grout’s 
Factorisation Method [3] allows an exact solution of (13) for UERR(tk)m- The 

modified algorithm has been tested for such a case and gives exactly the same results 

as the method in §1.2. Alternatively if the number of controls exceeds the number of 

constrained states it is possible, using Singular Value Decomposition, to find a Least 
Squares minimal solution [4] for UERR(tk)m- Thus using this algorithm a flight path 

parameter can be left undefined and an optimal solution evaluated for the remaining 

constraints. Figure 1 presents the algorithm in the form of a flowchart.

2. Verification of the CSM

To ensure that the CSM Fortran was in a form consistent with Genisa, it was 

written from model documentation rather than transporting the existing code directly. 
The equations of motion contain Euler rotational expressions - (18), (19), (20) -
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which, due to the transfer functions used, are peculiar to the CSM . In addition to the 

six Euler, three kinematic and three Euler transformation equations are three for the 

actuator states. Equations (15) to (26) are more specific representations of (1).

Three translational and three rotational Euler rigid body equations :

UB = - ( wB q - vB r) + — + g sin 0 (15)

Y
vB = - ( uB r - wB p ) +— - g cos 0 sin (j) (16)

2
WB = - ( VB p - uB q) +- - g cos 0 cos (]) (17)

P = - Lp (Tile + PdEMtc ■ p) (18)

q = Mxc - Mq (ti1s + qDEMTc " cl) (19)

f = NTC-Nr(TiOTR + 2.0^Nr(3). (20)

Three kinematic relations :

(j) = p + q sin (]) tan 0 + r cos (j) tan 0 

0 = q cos (j) - r sin ([)

= q sin (j) sec 0 + r cos (j) sec 0. 

Three actuator states:

• _ Qdem ■ t1is
mIs

(21)

(22)

(23)

(24)

Tllc =
Poem ■ Tlic (25)

POTR -
rDEM ■ POTR (26)
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The earth fixed velocities xg, yg and ^ can be calculated from the translational 
body fixed velocities uB, vB and wB and the attitude angles (|), 0 and \\f by the Euler 

transformation equations where the transformation matrix [li,..., n3] is effectively 

the function g in equation (2).

■ xE ■

YE =
L zE J

11 mi ni
12 m2 n2
13 m3 n3

■ UB ■

VB
- WB .

(27)

11 = cos 0 cos \|/
12 = cos 0 sin \|/
13 = -sin 0
mi = sin (]) sin 0 cos \\r - cos <|) sin \|/ 
m2 = sin (]) sin 0 sin V|/ + cos (]) cos \)/ 
m3 = sin ([) cos 0
ni = cos ^ sin 0 cos y -t- sin ([) sin y 

n2 = cos (j) sin 0 sin y - sin (j) cos y 

n3 = cos (]) cos 0

Before attempting inverse simulation, it was necessary to compare the 

responses of the DRA and Genisa CSM models during conventional simulation.
Small inconsistencies were considered allowable as the models differ slightly; for 

example the inclusion of a Zpus force and tailplane model in the DRA version. 
Configurational data is given in Appendix B. Firstly a comparison was made between 

the respective trim conditions over a range of velocities, and then the control 
responses were verified. The next section describes the method by which Genisa 

trims the CSM.

2.1 Trim

Due to the decoupled nature of the CSM, steady level flight is characterised by 

the attitudes <]) and y and the directional controls q, ^ and C, being equal to zero. The 

equations of motion are thus reduced to four in terms of unknowns uB, vB, 0 and 5C 

depending upon the flight velocity. Trim is found by a Newton-Raphson solution of 

equations (28) to (31),

XTox - m g sin 0 = 0 

Zq-Qj = m g cos 0 = 0

(28)

(29)
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VT - uB cos 0 - wB sin 6 = 0 (30)

- uB sin 9 + wB cos 6 = 0 (31)

XTOX = XROt (ub, wb, 5c) + XFUS (uB, wB) and ZXOt - ZROt (ub, wb, 5c) 

Comparisons of 9 (VT) and ^ (VT) for the two models are shown in Figures 2

and 3.

The correlation is good, differences accountable for by discrepancies in the 

modelling and trim algorithm (DRA solves for a, 6, 5C). The second test is to 

compare model responses to prescribed control inputs.

2.2 Responses to Step Inputs of r]. £ and C

This paper concentrates on the Lateral Jinking manoeuvre and it is therefore 

appropriate to verify the CSM response to roll inceptor, Figure 4 illustrates the 

(Genisa) CSM response to a 1 second step input of

The results shown in Figure 4 and others for r\ and C compare well with data 

documented at DRA Bedford and are consistent with the form of a first over, second 

order system. The CSM used within Genisu appears to perform accurately.

3. Inverse Simulation Incorporating the CSM

With inverse simulation of a conventional helicopter model, one common 

approach is to demand that the helicopter adheres to the manoeuvre flight path 

velocities, xe, yn and te and heading rate \[/ [1]. Initial studies however, where the 

helicopter was simply constrained to maintain trim, indicate that this is not possible 

using the CSM. Investigation of results shows that although ^ and \]f respond 

favourably to collective and yaw inputs (5c and Q, the longitudinal and lateral 
velocities are very insensitive to inputs of pitch and roll (ri and q). These inputs have 

a significant effect over several seconds, but over a typical integration interval (0.1 

sec) the relevant Jacobian elements are much smaller than those differentiated with 

respect to 5c. Experimentation has shown that by constraining zEand either the 

angular body velocities q, p, r or attitude rates 9, (j) and \\f the algorithm does succeed 

in maintaining trim. The reasons for this become apparent if the CSM controls are 

compared with those of a conventional helicopter model. In a multiblade model.
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longitudinal and lateral cyclic inputs (9is and 9ic) tilt the rotor disc which alters the 

direction of the thrust vector, changing forces and so directly affecting the 

translational states. Due to the offset of the vector from the centre of gravity, 
moments are produced and angular states are also affected directly. By contrast CSM 
responses to the pitch and roll inceptors, p and ^ (which are analogous to the cyclic 

controls) are modelled using transfer functions relating them to the angular rates q and 

p. With no coupling between the angular and translational states, xe and ^ are 

affected only indirectly once q and p have changed significantly. This explains the 

discrepancy between the immediate and longer term translational state responses.
Any manoeuvres to be used for inverse simulation of the CSM must be defined in 

terms of angular parameters.

The manoeuvre used to produce the results in this report was Lateral Jinking 

as described in the next section.

3.1 The Lateral Jinking (LJ) Manoeuvre

Lateral Jinking, hencewith referred to as LJ is defined by DRA Bedford to 

represent transient turning and tracking in low level NOE flight. The primary control 
axis is roll. Typically the aircraft is initially in forward flight at 60 kts and 7.5 m 

altitude. It is subsequently displaced laterally by 23 m (at the very least 16 m) to the 

left and stabilised on a parallel track for 6 secs, then returned to the original heading 

and groundtrack. Figure 5 summarises the groundtrack.

YE

184 m

XE

Figure 5 Groundtrack for Lateral .linking Manoeuvre 

When flying the manoeuvre pilots are given the following guidelines.

1. Endeavour to maintain an approximately symmetrical roll attitude profile 

when ‘rolling in’ and ‘rolling out’.
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2. Within the constraints of desired levels of aggression ((])max equal to 15°, 30° 

or 45°), minimise the time between tracking phases.

3.2 Lateral Jinking Applied to the CSM

As discussed at the beginning of §3, the manoeuvre must be defined in terms 

of angular parameters and altitiude. The chosen states are 6 (t), 0 (t), \|/ (t) and T£ (t) 
which are controlled respectively by the pitch (ti), roll (^) and yaw (Q inceptors and 

collective (5c). DRA guidelines, §3.1, demand a constant altitude of 7.5 m and a true 

balanced turn which will displace the helicopter 23 m laterally. Analysis of AFS 

(Advanced Flight Simulator) results indicate that the manoeuvre is controlled by the 

roll inceptor, ^ and that the CSM turn coordination augmentations allow a true 

balanced turn consistent with a zero-sideslip condition. The constraints are thus 

defined as follows.

i) Vertical Velocity, ^ (t)

To ensure that the helicopter is kept at a constant altitude of 7.5 m, the vertical 
velocity is constrained to be zero.

zE(t) = 0

ii) Pitch Rate, 0 (t)

As the flight velocity is constant and there is no coupling between pitch and 

roll it is possible to demand a steady 60 kts trim pitch setting, thus 0 (t) is set to zero.

0(t) = O

iii) Bank Rate, (j) (t)

The demanded time history of ^ (t) controls the helicopter during the 

manoeuvre. Figure 6 shows an idealised representation of a typical DRA AFS bank 

angle response during a LJ manoeuvre. The vehicle, originally at zero bank, is rolled 

into the turn to a bank limit of - 4)max by a pulse of roll inceptor (the profile of which 

is similar to that of 0 (t)) and then back to zero at the turn mid-point. It is then rolled 

out of the turn up to + <j)MAX and back to zero in time for the next straight. This 

ensures that the helicopter accelerates laterally into the bend to a maximum value of
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YE (t) and decelerates out so that the lateral velocity is equal to zero as the helicopter 
enters the straight. The boundary conditions for (]) (t) and resultant polynomial for 0 

(t) are detailed in §3.3.

Figure 6 Bank Rate. Bank Angle and Groundtrack During Transient Turn 

iv) Yaw Rate, \|/(t)

The heading angle should be such as to produce a true balanced turn and 

maintain zero-sideslip consistent with weathercock stability. Given a constant pitch
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angle, 0e the turn coordination terms calculate a suitable value for heading angle, \\r (t) 
as a function of the instantaneous bank angle, ^ (t).

As it is unnecessary to define a yaw rate time history, \(/ (t), the manoeuvre can 

be fully described by the states ±e (t), 0 (t) and ^ (t). The result is 4 controls, 3 

constrained states and consequently a rectangular Jacobian. Referring to §1.3, the 

algorithm can solve such a problem by finding a Least Squares minimisation of 

equation (13). A more detailed representation of (13) is presented as equation (32) 
below.

r 0 ^ 3 ^ 3 ^ 3 pc- 5c DES
3 5c 3ti 3 ^ 3C
30 30 30 30 tides

3 5c 3ti 3 ^ 3 C ^DES
3 0 3 0 3 0 3 0

L 3 5c 3ti 3 ^ 3C J L c - Cdes -

ZE - ZE DES 

0 - ©DES

_ ^-Ws -
(32)

3.3 Definition of Bank Rate Time History, (t)

The bank angle time history (]) (t), shown in Figure 7, can be described by four 

sections within the interval OE.

i) OA : time to maximum negative bank, ti

This section is defined by six boundary conditions :

O: (l) = 0,(j) = 0,(j) = 0
A ; (]) = - (j)MAX> ^ = 0, ^ = 0

which determine the coefficients for a 5th order polynomial of ^ (t)

^ (t) = [-10 (^)3 + 15 (^)4 - 6 ^)5] <j)MAX 

and, by differentiation, a 4th order polynomial for ^ (t)

*(.)=[-©2 + 2 ©3-©4]^.t/

ii) AB : time at maximum negative bank, t2

10

(33)
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As the bank angle is a constant value of - (|)max> the bank rate is clearly equal
to zero.

(j)(t) = 0

iii) BC : time from maximum negative to maximum positive bank, 2 ti

Six boundary conditions :

B ; (]) = - (fiMAXj <j) = 0, (j) = 0 

C : 4) = + 4)max. <j) = 0, (j) = 0

allow definition of a 4th order polynomial for bank rate, (j) (t)

M.)=[4(i)2-4©3 + ©4]1^|f^ (34)

iv) DE : time at zero bank, t3

During the period of the manoeuvre straight, bank angle (j) (t) and thus rate are 

equal to zero.

<i) (t) = 0

All other sections of the manoeuvre can be expressed as positive or negative 

values of i) iv). For example the polynomial for EF is described by changing the 

signs of equation (33).
Bank Angle, (])

+ 4)max

time, t

ti t2

Figure 7 Bank Angle Time History

11
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3.4 Manoeuvre Periods

The final manoeuvre shape is controlled by the periods ti and t2, which are 

dependent upon the choice of roll derivative, Lp and level of aggression (|)max-

i) ti Roll acceleration. Referring to Figure 4 it is possible to estimate the
time taken to achieve (})max for a unit step of roll inceptor. Such response plots 

indicate the minimum allowable value for ti which will not exceed the control limit 
(^MAX = ± 1) in inverse simulation. The minimum value of t] is proportional to the 

roll derivative, Lp.

ii) t2 A value must be chosen which produces the desired lateral
displacement. To obtain the displacement requires running the full Genisa algorithm, 
which implies repeated calculations until an appropriate value of t2 is found. This 

would be computationally expensive so values were established by trial and error. In 

addition the determined values of ti are only guidelines which devalues accurate 

calculations of t2. If inverse simulation of the CSM is to be used as a future control 
design tool, it is assumed that a qualitative understanding of how constraints such as ^ 

(t) affect a system are of more importance than fixed numerical accuracy. Such a trial 
and error procedure is desirable as it avoids dependence between the inverse 

algorithm and the manoeuvre thus allowing the designer more flexibility.

iii) t3 The manoeuvre specification suggests 6 secs for the straight section.
This is to allow any characteristic oscillations to damp down.

4. Results

All results produced here are for the LJ manoeuvre described in §3. Vehicle 

responses, control inputs and flight paths are included for two cases reflecting 

different aggression parameters. Both manoeuvres attempt to minimise the time taken 

to displace 23 m laterally but being constrained to either 15° or 45° bank the result are 

substantially different, albeit with qualitative similarities. By contrast with inverse 

simulation results produced using a conventional model, [1], it cannot be assumed 

that the vehicle will adhere closely to the desired flight path as this is not defined 

explicitly. Though the algorithm did match the desired attitudes very closely and 

ensure a small sideslip, it became apparent during the course of running tests that a 

groundtrack of any accuracy needs careful choice of time step and appreciation of 

manoeuvre severity. As shown in Appendix B all gains are unity and the derivatives 

Lp, Mq and Nr are equal to - 9.0, - 4.5 and - 4.5 respectively.

12
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4.1 Accuracy of Results

Case 1 : low aggression parameter; (1)max = 15°. As a unit step input is the 

maximum allowable control displacement, Figure 4 indicates the minimum time 

required for the helicopter to bank to ± 15°; approximately 0.28 secs. Using this value 

of ti and a non-specific t2, the controls did indeed reach, but not exceed, the control 
boundary. The resultant groundtrack, however, was poor as the algorithm was unable 

to achieve zero bank and heading in preparation for the straights, and the helicopter 

drifted off track. Various combinations of ti and t2 were tried in an effort to find 

values which maintained a reasonable track and produced a lateral displacement close 

to 23 m. Thus ti, t2 and t2 in results for Case 1 are equal to 0.5, 2.2 and 6.0 seconds 
respectively.

Case 2 : high aggression parameter; (j)MAx = 45°. Similarly to Case 1, the 

estimated value of ti (0.56 sec) resulted in an inaccurate flight path. The values 

chosen were 1.0, 0.1 and 6.0 seconds respectively. Clearly the model requires longer 

to achieve 45° rather than 15° bank, but much less time need be spent at ([)max to 

produce the same displacement.

Plots for Cases 1 and 2 are presented in Figures 8, 9, 10 and 11, all of which 
show good results. As expected the maximum lateral control displacement, ^ is close 

to ± 1 reflecting the demanded bank rate. The other three controls are, by 

comparison, very close to trim. Altitude and pitch and bank attitudes, which are of 

course constrained, are very close to the prescribed values; 0 and zg remaining at their 

trim levels and (|) matching the intended profile. Comparing Figure 9 with 6 and 7 

confirms the good correlation. The length of plateaux in Case 1 reflect how much 

longer the helicopter must adopt maximum bank than in Case 2 where the time spent 
at 45 shows as little more than a peak. The different profiles are of course accounted 

for by contrasting the appropriate values of ti and t2. Of interest are the unconstrained 
heading responses, \|r, both of which attempt a no sideslip condition in response to the 

instantaneous bank angle by holding the flight velocity vector in the body xb-zb 

plane. Both the least squares minimisation and the CSM turn coordination terms are 

influential in this adopted configuration which, as mentioned earlier, agrees with 

weathercock stability. The small sideslip and pitch angles are confirmed by the 

domination of uB over the other translational velocity terms vB and wB. Roll rate, p is 
of a form similar to accordingly the yaw rate profile matches that of the heading 

angle, and the fluctuations in the collective and longitudinal inputs reappear in the 

longitudinal state responses wB and q. The helicopter’s freedom about the yaw axis is

13
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apparent from the lack of restraining pedal input, All the results show good 

correlation with data from DRA simulations.

4.2 Drift from Desired Groundtrack

As the bank angle time history profile is a combination of functions rather 

than one continuous polynomial it is important to choose a time step which will 
adequately capture the transition phase. If this is not satisfied then subsequent 
sections suffer from bad initial conditions and, as mentioned above, the vehicle drifts 

off track. This problem is accentuated by increasing manoeuvre severity, 
characterised by a small ti, as a high rate of change of (j) will add to the probability of. 
maxima / minima passing between time points. The result of this is failure to secure 

zero bank at the start of a straight section, causing drift. An example of such a 

groundtrack is shown as Case 3 on Figure 10 where (|)max5 ti and t2 are equal to 45°,
0. 5.and 0.8 secs respectively.

5. Conclusions and Recomendations

1. There is good correlation between the responses of the CSM written for 

Genisa and the version used at DRA Bedford.

2. For successful inverse simulation of the CSM it is not possible to define 

manoeuvres in terms of flight path parameters. Because of the peculiar nature of the 

controls, constraints must be described in terms of vehicle body angular velocities or 

attitude rates.

3. As the desired flight path is not defined explicitly, its accuracy is not 
guaranteed. With the relationship between controls and angular responses, however, 
it is possible to avoid exceeding control limits. This means that the manoeuvre can 

always be flown regardless of how it matches the expected profile.

4. Good choice of inputs produces very accurate manoeuvres and smooth, 
realisable vehicle responses for all but the most severe demands. In addition the 

results compare very favourably with those recorded on the Advanced Flight 
Simulator at DRA Bedford.

5. The advantages of the Conceptual Simulation Model, which assumes full 
decoupling via an active control system, are evident in the inverse simulation results. 
The Lateral Jinking manoeuvre can be flown using almost exclusively one control;

14



G.U. Aero Report 9428

the lateral input or roll inceptor, This directly affects the roll rate, p and 

consequently the bank angle (|), the time history of which itself describes LJ. Using 

the least squares minimisation mentioned in §1.3 it is possible to demand constant 
pitch, 0 without adversely affecting other states as the CSM turn coordination terms 

ensure a heading, \j/consistent with a no-sideslip condition.

5. For the reasons detailed in 3. and 4. GenisaCSM is potentially a useful design 

tool for either minimising pilot effort or maximising vehicle performance.

6. GenisaCSM could well be used for other manoeuvres though, as here, with 

careful consideration of the task and subsequent user inputs.

15
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(stop Is k = n ?

u(tk)m+l= u(tk)m ‘ l“ERR(tk)m

J'ERR(tk+l)m- y(tk+l)m ‘ yDEs(lk+l)

Define time history of manoeuvre yDKS(tk), 
k = 0 to n

Solve
[J] UERR(tk+l)m= yERR(tk+l)m 

for UERR_________

Read trim conditions x(0) and u(0) 
n = number of time points 

k = current time point 
m = Newton-Raphson iteration

Figure 1 Flowchart for the Generic Inverse Simulation Algorithm
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Figure 2 Trim Pitch Attitude for a Range of Velocities
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Figure 3 Trim Collective Pitch Input for a Range of Velocities
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Figure 4 CSM Roll Response to a Unit Step Input. £
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Figure 9 Attitude Angles Calculated bv Genisa for Cases 1 and 2 
9. (i) and y (deg) vs. time (secs)
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Appendix A The Conceptual Simulation Model fCSIVD

The CSM is documented more comprehensively within reference [2], Readers 

unfamiliar with the model are advised to use [2] in tandem with this report.

A.l Introduction

Conventional helicopters are characterised by marked non-linearities and 

cross-coupling in their dynamic response. The demanding environment of nap-of-the- 
earth (NOE) flying can impose a high workload on the pilot. Advanced control 
systems present the opportunity to reduce workload and more fully exploit the 

aircraft’s performance. It is necessary however, to obtain a comprehensive 

understanding of which control modes would be most suited to NOE flight. The 

complexities of a non-linear model make prediction of control responses very 

difficult. It was deemed appropriate to develop a greatly simplified ‘conceptual’ 
model, so easing investigation of different control systems. The optimum controls 

thus identified can be adapted for more ‘realistic’ models in due course.

Cockpit ergonomics will not be discussed here as this inverse simulation is 

concerned only with the control inputs, helicopter state responses and flight path 

outputs i.e. the mathematical model summarised by equations (1) and (2).

The ability to precisely control the pitch, roll and yaw of the helicopter is a 

fundamental requirement for fast and accurate adherence to flight path. Within the 

CSM, the angular responses are represented by simple transfer functions which act on 

the longitudinal, lateral and pedal control inputs. In this way the type and mode of 

control can be easily varied and simply defined using parameters directly related to 

the vehicle response characteristics (e.g. frequency and damping). Cross coupling is 

completely absent; the idea being that the control system in a real ACT helicopter 

could completely suppress such effects.

It was considered too abstract to represent the rotor thrust by transfer functions 

acting on the collective input, especially as the basic rotor response to collective pitch 

can be modelled quite simply. Additionally the simple rotor model allows calculation 

of the power absorbed by the rotor. Thrust sensitivity is assumed to include the cyclic 

pitch needed in practice to balance the moments generated by collective.

Turn coordination and normal force augmentations were used to minimise the 

cyclic and collective inputs required to maintain speed and height, thus easing control
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in turning flight. In essence then the helicopter is motivated by a thrust vector parallel 
to the rotor shaft, the magnitude of which is altered by the collective input, the 

direction by using the angular inputs.

A.2 Rotational Freedoms

The control laws used within the CSM depend upon the helicopter velocity. 
However, as the lateral jinking manoeuvre discussed in this report is flown at a 

constant 60 knots, only the relevant control law (rate demand) will be discussed.

i) Pitch

Within the CSM there is a deadspace function which describes an area of 

insensitivity about the control mid-stick positions. It should be noted that all controls 

calculated by Genisa are the effective values i.e. control values equal to zero could be 

anywhere within the deadspace.

The demanded pitch rate is the following function of the longitudinal control 
input, ri and the gains, G which vary according to the helicopter to be represented.

CIdEM - Gq 1) -t- GqS T)3, TImaX = ± 1 (A-1)

Simple first order actuator model gives finite pitch acceleration.

3lls =
c1dem ■ ^lls (A-2)

Pitch acceleration .

q - Mxc - Mq (ti1s -I- qDEMxc ' d) (A-3)

The turn coordination terms qDEMxc and MTC are defined in §A.4, the 

derivative Mq depends on the helicopter being modelled.

ii) Roll

The demanded roll rate is the following function of the lateral control input

PdEM - Gp ^ + Gp3 ^3, ^MAX - ± 1 (A-4)

11
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Simple first order actuator model gives finite pitch acceleration.

Tllc =
Poem ■ Tlic (A-5)

Roll acceleration

P - - Lp (P ic + Pdemtc ■ P) (A-6)

The turn coordination term Pdemtc is defined in §A.4, the derivative Lp 

depends on the helicopter being modelled.

iii) Yaw

The demanded yaw rate is the following function of the lateral control input

rDEM - Gr C + Gr3 Cmax = ± 1 (A-7)

Simple first order actuator model gives finite pitch acceleration.

t1otr -
rDEM ■ rl0TR (A-8)

Roll acceleration .

f - Ntc - Nr (tIotr + 2.0 P- Nr P) (A-9)

The turn coordination term NTC is defined in §A.4, the derivative Nr depends 

on the helicopter being modelled.

A.3 Translational Freedoms

i) Rotor Model

The rotor thrust is based upon conventional blade element / momentum theory 

[5], [6] though much simplified. Forces normal to the shaft, both longitudinal and 

lateral flapping and rotor in-plane forces, are neglected. Constant rotor speed is 

assumed. Asymmetric disc loadings are ignored as an effective control system would

m
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suppress this feature. A simple inflow model is used but no fuselage downforce due 

to the downwash is considered. Rotor flow parameters are calculated from airspeed 

components resolved through rotor shaft tilt (small angle approximation assumed). 
Note that the range of 6c is 0 -^ + 1.

Velocity components.

UBR - UB + WB ^SHAFT

WBR - WB ■ UB ^SHAFT

(A-10) 

(A-11)

Non-dimensionalised velocity in the plane of, and normal to the rotor disc.

\i- =

2 2 
BR + VB

QR
(A-12)

M'z
WBR
QR

(A-13)

Normalised induced inflow, and thrust coefficient used in Newton-Raphson 

iterative solution for Xq.

Xn — -T inflow

2-\j[i2+(\xz-X0)2
(A-14)

Ctmow = h +5(^‘z- ^o) U(i + n2) e..]¥ (A-15)

Thrust coefficient used to calculate normal force. The term 5Ctc is defined in

§A.4.

Ct = [(5C + (5 + 5 ^l2) +5 (Hz - >^0) + J (1 + H2) 9.w] ^ (A-16)

X force coefficient.

Cx - (- Sq + §2 Cj) 4 (A-17)

IV
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The rotor X and Z forces are resolved into the reference body axes, again 

assuming small shaft tilt angle and neglecting the lifting component of rotor drag.

^ROT - (Cx + CT OsHAFt) P R4 Q2 (A-18)

Yrot = 0 (A-19)

Zrot = - Cj 71 p R4 Q2 (A-20)

ii) Fuselage Model

Local incidence and airspeed are dependent on rotor induced velocity : 

wj = - X0 Q R

/Wd + G5^ Wt\aF = tan-1 (—-----
h v uB ^

Fuselage forces.

iii) Total Forces

(A-21) 

(A-22)

= VUB + VB + (WB + G^Wj)2 (A-23)

1 2^FUS =2 p ^F ^XF Gxf cos aF (A-24)

^FUS =2 P ^F VB Syp Gyp (A-25)

ZFUS = 0 (A-26)

XTot = XFUS + XROT (A-27)

YTot = Yfus (A-28)

ZTOT = ZROT (A-29)

A.4 Turn Coordination Terms
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The turn coordination facility is intended to reduce workload by causing the 

vehicle to execute a true balanced turn in response to an input on a single inceptor. 
Required turn rate is defined as a function of the instantaneous bank angle, (j) and 

suitable moments are produced to achieve appropriate pitch, roll and yaw rates for a 

correctly banked turn. Acceleration terms are included to ensure the correct transient 
dynamics. The choices of both rate and acceleration terms are described in [2].

i) Maximum Bank Angle.

During a coordinated turn the required pitch rate becomes infinite at 90° of 

bank. To avoid this singularity a maximum bank angle, (])tc is set at 70°. Beyond (])tc 

its tangent is used, angles above 90° are replaced by their complements.

ii) Steady State Angular Rates.

Pitch, roll and yaw rates appropriate to current bank angle.

PdeMtc -
g cos Y tan (j)TC sin 6

Vx cos (3
(A-30)

QdeMtc _
g cos Y tan (|)tc sin (j)

VT cos P
(A-31)

rDEMTC
g cos Y sin (j) 

VT cos P
(A-32)

ii) Angular Accelerations During Turning Manoeuvre.

Mtc -
2 g sin (]) (p cos Y + r sin y)

VT cos P
(A-32)

Ntc -
g (p cos 7 cos (j) + r sin y)

Vx cos P
/ p \2 f . . rXxoT cos a + ZXQX sin cx . _, , e vg”| A 'i/2\-(---- ^-----) { cosy sin (|) ------ —-------- smy-H—J j (A-33)

VT cos P 5 6

iii) Collective Augmentation.

VI
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The following augmentation term increases collective to ensure that, when the 

helicopter is banked, the venical component of rotor thrust balances the weight. This 

term is not included in the inflow calculation, so that when activated a power increase 

is still registered.

AZRot = m g cos 0 (tan (|)TC sin (j) + cos (]) - 1) (A-34)

^cTC '/I 1
AZROTTC

(| + ||l2) (7tpR4Q2^)
(A-35)

VI1
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Appendix B Configurational and Control Data

Parameter and Symbol Values Units

Rotor lift-curve slope ao 6.0 (1/rad)

Fuselage X-force coefficient CxF -0.16
Fuselage Y-force coefficient CYf -0.75
Fuselage to rotor downwash Gx 1.5

Mass m 4078.86 (kg)
Rotor radius R 6.4 (m)

Rotor solidity s 0.0778

Fuselage plan area SXF 13.84 (m2)

Fuselage side area SYf 19.14 (m2)

Rotor drag factor 5o 0.009
Rotor induced drag factor 5, 5.333
Rotor shaft tilt angle ^SHAFT 0.0698 (rad)
Rotor speed Q 35.63 (rad/s)

Table 1 Fuselage and Rotor Parameters

Parameter and Symbol Values Units

Roll

Roll rate demand linear gain Gp 1.0 (rad/s)

Roll rate demand cubic gain Gp3 1.0 (rad/s)

Roll derivative Lp -4.5 (1/s)
Pitch

Pitch rate demand linear gain Gq 1.0 (rad/s)

Pitch rate demand cubic gain Gq3 1.0 (rad/s)

Pitch derivative mq -9.0 (1/s)
Yaw

Yaw rate demand linear gain Gr 1.0 (rad/s)
Yaw rate demand cubic gain Gr3 1.0 (rad/s)

Yaw derivative nt -4.5 (1/s)
Table 2 Control Laws

Vlll
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