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Summary

This report details the development of an inverse simulation algorithm based 

on numerical time integration. By contrast with algorithms using differentiation, Gisa 

suffers none of the problems associated with numerical instability. Also, being 

independent of the equations of motion, the algorithm is applicable to any vehicle.
The results presented here are for a Westland Lynx helicopter.
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Development of a Generic Inverse Simulation Algorithm Nomenclature

Nomenclature

g
h
Ir

Itr
Ixx» Iyy> Izz
Ixz
K3
h,n3 

L, M, N 

m
p. q.r
Qe
s
tm
U, V, W

V
XE> Ye, ze 
X, Y, Z

acceleration due to gravity (m/s2)
height of obstacle in hurdle-hop manoeuvre (m)
inertia of main rotor (kg m2)
effective inertia of transmission and gearing (kg m2)
helicopter moments of inertia about centre of gravity (kg m2)
helicopter product of inertia about y-axis (kg m2)
overall gain of engine/rotorspeed governor (Nm/rad/s)
direction cosines for Euler transformation
components of external moments on vehicle (Nm)
helicopter mass (kg)
components of helicopter angular velocity at centre of gravity (rad/s) 
engine torque output (Nm)
track in hurdle-hop manoeuvre (m)
time taken to complete manoeuvre (s)
translational velocity components of helicopter centre of gravity (m/s) 
helicopter flight velocity (m/s)
displacements relative to the earth fixed inertial frame (m)
components of external force on vehicle (N)

Greek Symbols

00 main rotor collective pitch angle (rad)

eis,0ic main rotor longitudinal and lateral cyclic pitch angles (rad)

'Cep te2, 'tc3 engine and rotorspeed governor time constants (s)

<|), 0, V body roll, pitch and sideslip attitude angles (rad)

track and climb angles (rad/s)

Q angular velocity of main rotor (rad/s)

Oidie angular velocity of main rotor at idle (rad/s)

Qtr angular velocity of tail rotor (rad/s)

Vectors and Matrices

X state vector

y output vector
u input vector
F error function

[J] Jacobian matrix
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Subscripts and Prefices

CALC, DES calculated and desired values 

e equilibrium or trim component
i, j matrix indices
k solution point
m iteration number
A perturbation component





Development of a Generic Inverse Simulation Algorithm.

1. Introduction

Within the field of flight mechanics there is a growing interest in the subject 
of inverse simulation. Inverse simulation can be used to predict a set of control inputs 

that will cause a predefined displacement of a subject vehicle. More specifically, in 

mathematically defining some desired vehicle manoeuvre or flight path the algorithm 

will solve the equations of motion for a unique time history of control inputs. This 

contrasts with conventional simulation, which calculates the vehicle state variables 

(and consequently flight path) in response to imposed control inputs. A more formal 
definition can be obtained by considering the initial value problem which expresses 

the relationship between state, control and output vectors of a dynamic system and 

forms the basis of most vehicle simulations.

x = f(x, u); x(0) = xe (1)

y = g (x) (2)

The equations of motion (1) permit prediction of the behaviour of the state 

vector X in response to an imposed control vector u over a specified time period, xq 

containing the state variables at t = 0. The output equation (2) states how the output 
vector y can be obtained from the state vector. More specific representations of 

equations (1) and (2), relating to helicopter simulation, can be found in Appendix A. 
These equations also summarise inverse simulation, which predicts the control vector 
u that will produce a desired output vector y, and in doing so, the corresponding state 
vector X.

The applications of inverse simulation are manyfold, particularly in the study 

of helicopter operations where manoeuvres are often flight path orientated. Indeed, 
the influence of manoeuvres on helicopter performance has been recognised by the 

authors of the current U.S. Military Handling Qualities Requirements [1]. One of the 

most successful and widely used inverse simulations is Helinv, developed in the 

Department Of Aerospace Engineering at the University of Glasgow [2]. It was 

written initially for the study of helicopter agility [3], and has subsequently been 

applied to investigations of handling qualities [4], offshore safety [5], and model 
validation, where comparisons with flight data have shown that Helinv predicts actual 
piloting strategy with reasonable accuracy [6]. There are, however, several inherent 
problems and limitations associated with the current algorithm. This report details the 

development of a new algorithm, Gisa (General Inverse Simulation Algorithm), 
designed to overcome these weaknesses.

- 1-
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Development of a Generic Inverse Simulation Algorithm.

The following section discusses the existing algorithm and its limitations, and 

suggests a new algorithm to overcome them. Development of the new algorithm is 

discussed in Section 3 while Section 4 documents its testing and verification. Finally 

the proposed applications of this method are presented in the conclusions.

2. The Helinv Algorithm : An Overview

The most basic feature of the current Helinv algorithm is its use of numerical 
differentiation to calculate rates of change of time dependent variables in the 

equations of motion (1), effectively converting them from first order differential to 

non-linear algebraic form. (The standard form of the equations of motion is given in 

Appendix A; Al-1 to Al-7). A Newton-Raphson method [7] is then used to solve 

the seven functions (Bl-1 to B1-7) in Appendix B for seven unknown variables: the 

attitude angles 0 and (j), the control angles 0o, 0is, 0ic and 0otT and the rotorspeed Q.
A more detailed discussion of the algorithm is given in Appendix B. Although the 

equations of motion are applicable to any vehicle, the calculation of aerodynamic 

forces and moments requires detailed, specific modelling; Helinv, for example, uses 

the model HGS, representing a single rotor helicopter, and its characteristics are 

described in Appendix C and treated in a more comprehensive manner in Reference 

[8]. One of the most fundamental elements of an inverse simulation is modelling of 

the required vehicle response - in this case the flight path to be flown, y. A great 
strength of Helinv is the large library of manoeuvres available including nap-of-the- 
earth, air-to-air-combat, offshore operations and mission task elements [9], [10], and 

an example of such a model (the hurdle-hop) is described in Appendix D. As 

indicated in the introduction, however, there are some inherent weaknesses with 

algorithms that use numerical time differentiation, such as Helinv, and these are now 

discussed.

2.1 Limitations of Algorithms which use Numerical Time Differentiation

There are two main disadvantages to inverse methods using numerical 
differentiation.

i) Modelling enhancements require restructuring of the algorithm.

Referring to equations Al-1 to Al-7 in Appendix A clearly the current model 
consists of six body plus the rotorspeed degree of freedom. Enhancements requiring 

the addition of extra degrees of freedom will inevitably lead to modifying the existing

-2-
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Development of a Generic Inverse Simulation Algorithm.

equations and hence the procedure by which they are solved. Different genres of 

aircraft - Helinv for example is limited to single main and tail rotor vehicles - would 

similarly require changes to the solution algorithm as they may possess different sets 

of states and controls. Clearly the helicopter model forms an integral part of the 

solution procedure, and thus changing the model requires changing the algorithm.

ii) It is generally accepted within mathematical literature that numerical 
differencing causes instability and inaccuracy.

The process of numerical time differentiation causes problems due to the wide 

range of frequencies associated with the vehicle modes. Helicopters for example, can 

have many degrees of freedom (e.g. 6 body, 1 rotorspeed, 6 flap, 6 lag, 3 inflow).
The rigid body modes may be of a low frequency (less than 0.5 Hz) whereas the 

flapping mode frequencies may be in the region of 5 Hz. As the algorithm employs 

numerical differentiation it is vital that the time step chosen to discretise the problem 

captures all of the dynamic characteristics of the aircraft. This implies very small 
steps to model adequately the high frequency modes which in turn can produce 

computational problems due to rounding errors when subtracting small differences in 

states influenced by the slowly changing, low frequency, rigid body modes; a 

phenomenon observed in the current algorithm when the blade flapping dynamics are 
included.

An alternative algorithm, which addresses these problems, is discussed in the 
next section.

3. General Algorithm for Inverse Simulation : An Overview

The basis of a general algorithm for inverse simulation is as follows. Once the 

problem has been discretised, the aim is to produce a set of applied control inputs 

which will move the vehicle from its current position and heading to a new desired 

position and heading over a specified small time step. If the correct series of step 

inputs were applied to the model at the start of the interval, and equations (1) and (2) 
were solved in the conventional manner (by use of numerical integration) then they 

would produce precisely the required position and heading at the end of the interval. 
Hence, given an estimate of these control step inputs, and by calculating the resultant 
values for position and heading change, it should be possible, by iteration, to obtain 

the required control steps. By comparison with the method discussed earlier which 

solves seven functions, consisting of the equations of motion, for u and additional 
unknowns (j), 0 and Q, the proposed algorithm solves, by a Newton-Raphson method.

-3
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Development of a Generic Inverse Simulation Algorithm.

four functions of the output vector y for the control vector u. This is an algorithm 

first suggested by Hess, [11], [12] and [13].

Although this algorithm is still prone to numerical errors, they should be much 

smaller than in the case of numerical differentiation. Also enhancements or 

fundamental modelling changes may be accommodated by replacing the functions 

f (x, u) (1) without altering the structure of the algorithm. The one major 

disadvantage of this algorithm is the greatly increased computational time required. 
This and other implications of using the proposed technique will be discussed in 

Section 4, whilst in the following section a full description of a numerical integration 

based algorithm, Gisa, is presented.

3.1 Gisa - A Generic Inverse Simulation Algorithm

What follows is an explanation of the programme Gisa which uses an 

algorithm based on integration for inverse simulation. The example given uses the 

same model as Helinv - a single main and tail rotor helicopter. Firsdy an overview, 
more formal than in the previous section, will be presented, and then a detailed 

discussion with reference to a flowchart.

Consider that the problem is discretised into a series of time points tk at each 

of which there is a predefined desired output vector yoES (tk) describing the position 

and heading of the helicopter. Figure (1). At the current time point t = tk, the value of 

x(tk) is known from solution of the previous time point t = tk-i; x(tk-i) having been 

integrated using, for example, a Runge-Kutta [14] method. The influence of the 

control vector on x(tk)m. x(tk+i)m (by integration) and y(tk+i)m can be found, using 

equations (1) and (2), by varying it about the current value u(tk)m. The problem is 

effectively a Newton-Raphson solution for the control vector u(tk)m which will 
produce a value of y(tk+i)m equal to yoES (tk+i)- The algorithm is now independent of 

the equations of motion, and depends exclusively on the output vector y and input 
vector u i.e. it is generic. Additionally it uses time integration rather than 

differentiation so there are no problems caused by different modal frequencies. It 
should be noted that though Jacobian evaluation (§3.2) also involves numerical 
differentiation,the derivatives are with respect to the control angles, change slowly 

only as the solution converges, and are thus more stable.

4-
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Development of a Generic Inverse Simulation Algorithm.

yCALC(tk+l)m = J'DEs(lk+l)

Figure 1. Helicopter at Previous. Current and Next Time Points Showing 

State. Control and Output Vectors

Referring to the flowchart of the solution procedure given in Figure 2, a step 

by step explanation of the algorithm is now given.

3.2 Gisa : a Newton-Raphson Solution Algorithm for the Control Vector u

The inverse simulation begins, either by calculating a specified trim state or 

reading appropriate trim values from a dedicated trimmer, and then reading a 

predefined desired manoeuvre (Appendix D) from data files. The heart of the 

algorithm lies within the loop for the k* time point, a conventional simulation for k = 

0 to n, around which there are m Newton-Raphson iterations per loop of k. The 

following will discuss the 'heart' of the algorithm, with later, more detailed 

explanation of the Jacobian calculation.

The initial solution occurs at t = 0, the value of x being known from the trim 

value xe and the first estimate of u taken as the trim value ue. In the general case (the 

mth estimate at the kth time point) x(tk)m can be evaluated using x(tk) and the current 
estimate for u(tk)m-

X(tk)m = f [x(tk), U(tk)m] (3)

This in turn can be integrated, using a Runge-Kutta method for example, to 

produce estimates of x(tk+i)m and y(tk+i)m at the next time point.

lk+l

^(lk+l)m = lk[(tk)mJ dt + x(tk)r
tk

(4)

y(tk+l)m = g [x(tk+l)m] (5)

-5
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Development of a Generic Inverse Simulation Algorithm.

As the basis for a Newton-Raphson solution, an error function is defined as 

the difference between the latest estimate of the output vector, y(tk+i)m and the 

desired value yDEs(tk+i)-

Fm — y(tk+l)m ■ yDEs(tk+l) (6)

The function is tested against a predefined tolerance. If less then the 

tolerance then the programme moves on the next solution point k+1 and continues 

from equation (3). However if Fm is greater than the tolerance then a Jacobian is 

calculated and using its inverse (7), a new estimate of the control vector u(tk)m+i can 

be found. The Jacobian is a matrix evaluated by differentiating the output vector with 

respect to the control vector (8), the practicalities of which are detailed in the next 
section.

tl(tk)m+l — tl(tk)m ‘ [J] ^ Fn (7)

[J] =
d y(tk+i)bi
du(tk)m (8)

This new estimate is then used to calculate x(tk)m+i and consequently the error 
function Fm+i within the m loop, m = m + 1. The programme is finished at the end of 

the manoeuvre time period (k=n). Evaluation of the Jacobian and its inverse is now 

discussed.

3.3 Evaluation of the Jacobian 1.T1 and its Inverse Ml'1

Again consider the mth estimate at the kth time point. The Jacobian is a 4 x 4 

matrix, the entries of which jij(tk)m are evaluated by differentiating each of the 

elements of the output vector yi(tk+i)m with respect to each of the elements of the 

control vector Uj(tk)m- This can be represented in general form.

•,,/t N _ ^ yi(tk+l)n
jijUkim - aUj(tk)m (9)

A more specific representation of the matrix can be made in terms of the 

actual output and control elements used within Gisa,

6-
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Development of a Generic Inverse Simulation Algorithm.

[J] =

r3xE 3 xE 3 xE 3 xE n
3 00 3 01s 3 01c 3 0Otr
3yR 3 ye 3_Xe 3 yE
3 00 3 01s 3 01c 3 0Otr
3 zE 3 zE 3 zE 3 zE
3 00 3 01s 3 01c 3 0Qtr
d\\f 3\|/ 3 Vjt 3t|/

- 3 6o 3 01s 3 01c 3 0otr -

(10)

where xg, ye, ze are displacements relative to an earth fixed inertial frame, 
\|/ is the azimuth or heading angle and
Oq, 01s, 01c. 0Otr are the blade pitch angles of the main and tail rotors.

Within the programme, however, there are no analytical expressions for the 

output vector y and so the Jacobian's elements must be calculated numerically, the 

general representation of which is given below.

0 yj(tk+l)m_ yi(tk+l. Ui(tk)+5Ui(tk))m - yi(tk+l. UjCtkl-Suiftkllm 
5 ui^tk^m 25uj(tk)m (11)

It is clear that all four output elements must be calculated at positive and 

negative perturbations from their current estimates and hence equations (3), (4) and 

(5) must be used a further eight times. The Jacobian inverse [J]'1 is approximated by 

Grout's method [15], new estimates u(tk)m+i are calculated and the iteration continues. 
With the algorithm now described, some of the results produced by Gisa are 

discussed in the next section.

4. Presentation and Validation of Results Obtained Using Gisa 

4.1 The Mathematical Model

The mathematical model used in Gisa is a partial non-linear model i.e. within 

the equations of motion the gravitational and inertial terms are non-linear but 
linearised versions of the external forces and moments are used. The form of this 

partial non-linear model will be discussed later, but first an explanation of why it was 

chosen. Consider, as was stated earlier, that the main modelling effort required is that 
of the external forces and moments, an exercise which is very time consuming. 
Although detailed modelling is necessary, and indeed will be the next period of

7-
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Development of a Generic Inverse Simulation Algorithm.

research, the main aim at this stage was the development of the generic inverse 

simulation algorithm, and bearing this in mind a linearised model, using derivatives 

evaluated in the HGS package, was deemed adequate. Linearised models are 

universally accepted as being accurate for small perturbations from the trim state but 
are nonetheless, by their vary nature, only approximations. Thus in order to increase 

the model fidelity without incurring large modelling changes, the evaluation of the 

inertial and gravitational terms are in non-linear form, and fully linearised terms used 

to calculate the external forces and moments. This in fact was also the form of model 
used by Hess [11].

Considering equation Al-1 in Appendix A, the equation for translational 
acceleration along the x body axis.

mu = -(wq-vr)-gsin9-)-X (12)

and that the force X can be expressed in terms of a trim and perturbation component.
i.e.,

X = Xe -I- AX (13)

then equation (12) can be converted to the following form.

mu = -(wq-vr)-gsin6-t-Xe-f-AX (14)

Xe can be calculated from the expression below.

Xe = m (qe We - ve re + g sin 0e) (15)

and the term AX can be calculated using derivatives from the linearised module of 

HGS mentioned in Appendix C. Thus the equations of motion can be evaluated using 

non-linear inertial and gravitational terms and fully linearised force and moment 
components, obtained by adding the trim values (as in equation (15)) to the perturbed 

values of the form below.

-8-
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Development of a Generic Inverse Simulation Algorithm.
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(16)

where Xu = 3— etc u o u

A number of results calculated using this model and the fully linearised 

version are presented in the next section. Additionally, comparisons are made with 

similar results obtained using Helinv.

4.2 Verification and Validation of Algorithm

For the purpose of validating the results produced by Gisa, the test manoeuvre 

chosen was a hurdlehop, for two main reasons. Firstly it is a manoeuvre used to drive 

Helinv whose results have been tested extensively [6], thus allowing verification of 

Gisa's results. Secondly the linearised force and moment terms in Gisa mean 

manoeuvres involving large deviations from the trim state are unsuitable as they 

render the model and consequently inverse solution inaccurate. Considering the 

hurdlehop manoeuvre described in Appendix D, Figure 3 (h=15m, s=500m, V=80kts) 

shows that the accelerations are both small, less than 0.25g, and confined exclusively 

to the longitudinal (x-z plane), and so a hurdlehop does not demand excessive 

deviations from the initial and final trim states. Additionally the severity of a 

hurdlehop manoeuvre can be varied simply by changing the obstacle height, and so 

the influence of severity on solution accuracy is easily investigated.

Figures 4 and 5 also show results for the above hurdlehop. In Figure 4 the 
desired output parameters xe, yn, ze and \\lare compared to those calculated by Gisa. 
As the differences between these results are the functions which Gisa solves then the 

algorithm has clearly converged. The solutions of these four functions, the control 
inputs, or rotor blade pitch angles, 0o, 6is, 0ic and Gon, are shown in Figure 5, which 

can be verified as follows; the low amplitude, high frequency oscillations which are 

apparent will be discussed later. With reference to the hurdlehop diagram (Figure 

D4) in Appendix D, a positive application of collective, which controls vertical 
acceleration, is required in the climbing phase. This becomes negative just before the 

half way point in order to attain zero vertical velocity at the peak of the hurdlehop

-9-
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Development of a Generic Inverse Simulation Algorithm.

profile. Input is negative throughout the descent until the helicopter approaches the 

manoeuvre exit, when a positive input is applied to level off at zero vertical velocity. 
Considering the first period corresponding to positive collective, the other three 

results can be justified as follows. The form of the lateral cyclic and tail rotor 

collective plots are similar to the main rotor collective while longitudinal cyclic's 

form is approximately a mirror image about the y-axis. An application of positive 

collective will tilt the rotor disc and consequently thrust vector backwards, so the 

longitudinal cyclic must be such as to maintain forward velocity i.e. negative tilts the 

rotor disc forwards. The applied collective will also increase the pitch and thus drag 

of the blades, and so to conserve rotorspeed the shaft exerts extra anticlockwise 

torque which produces a clockwise reaction on the fuselage. In order to stop the 

helicopter rotating, a restoring moment must be supplied by the tail rotor; this is 

achieved by increasing tail rotor collective in response to main rotor collective. 
Lateral cyclic is used to balance the right side force caused by the tail rotor; a positive 

input tilting the thrust vector to the left. Apparent on the plots for tail rotor collective 

and longitudinal and lateral cyclic are low amplitude, high frequency oscillations. 
These are mentioned by Hess [10], [11] and Thomson suggests that they are a 

consequence of an effective, infinite gain, feedback loop on position which modifies 

the dynamic charecteristics of the vehicle [16]. The rest of the manoeuvre is 

similarly justified, so the results would appear to be realistic.

Comparisons between the results calculated by Gisa and Helinv are illustrated 

in the first thirteen plots of Figure 6; four control angles, six state velocities and three 

attitude angles. The last three plots compare desired track, altitude and flight path 

velocity with those calculated by Gisa. Results for the four control angles, with the 

exception of Gisa's low amplitude, high frequency oscillations, are clearly very 

similar (these oscillations appear in Helinv if a smaller differentiation time step is 

used, Thomson [17]). Both collective and longitudinal cyclic vary only slightly in 

their peak amplitudes, while lateral cyclic and tail rotor collective, though not quite as 

accurate, also give good correlation. There is also a good match between Helinv and 

Gisa's state variables, particularly the longitudinal terms, u, w, q and 0, which are 

closely linked to the hurdlehop definition, itself a longitudinal manoeuvre; note the 

similarity between u and w, and the earth fixed velocities X£ and zE in Figure 4 as 

defined by the hurdlehop. This ties in with the very close collective and longitudinal 
cyclic results; controls which predominantly influence longitudinal motion.
Similarly, as with the lateral cyclic and tail rotor collective results, the lateral state 
variables, v, p, r, (]) and are not quite as accurate as the longitudinal, though still 
very good. The flight path parameters, track, altitude and velocity, of which accurate 

calculation are the algorithm's goal, agree very well with the desired values. Overall

- 10-
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Developmenl of a Generic Inverse Simulation Algorithm.

the results are very similar, any discrepancies in the results accountable for by the 

different models, particularly considering that the aerodynamic derivatives used in 

Gisa’s linearised terms are for a longitudinal trim state. Results such as these suggest 
that the algorithm is performing correctly.

4.3 Testing the Algorithm

It has been demonstated in the previous section that the algorithm works for a 

specific case. To further validate the algorithm’s ‘performance’, the following section 

discusses the effect of factors such as manoeuvre severity, size of integration time 

step and convergence conditions. As well as investigating how the result accuracy is 

affected, comparisons are made of run times both for varied parameters and for 

comparison with Helinv.

Hurdlehop Severity

Results for more severe hurdlehops are shown in Figures 7 and 8. The 

manoeuvres involve increased severity as hurdles of 25m and 35m respectively have 

to be cleared over the same track of 500m, so both the accelerations and consequently 

deviations from initial and final trim states are greater. As expected Gisa’s results, 
though similar, do not match Helinv’s as well as in Figure 6. The fact that the results 

have converged accurately (plots 14 - 16) supports the idea of modelling differences 

rather than weaknesses in the algorithm.

A shorter, lower hurdlehop was also investigated. Although the manoeuvre 

(0.15m height, 50m track) involves similar maximum accelerations as that in Figure 

6, the much shorter period means greater jerk (demonstrated by consideration of the 

rate of change rather than amplitude of the control inputs). Considering how this 

affects trim deviations, it is no surprise that, although the accuracy of the hurdlehop 

has not been compromised, the match between Gisa and Helinv has deteriorated 

considerably.

The idea that a non-linear model would improve the accuracy is further 

supported by results (not shown) for a longitudinal acceleration (Figure 9) which 

involves much greater trim deviations. The desired parameters are matched but 
control inputs and states do not compare as favourably with Helinv as in the 

hurdlehop. To extrapolate, the pattern of accuracy loss since the good correlation in 

Figure 6 indicates that although the linear model is limited, the algorithm is valid.

11 -





Development of a Generic Inverse Simulation Algorithm.

XE

t = 0

Figure 9 Longitudinal Acceleration (yE and ze equal zero)

Integration Time Step

The authors of [17] suggest that numerical integration within algorithms such 

as Gisa should be very accurate for a wide range of time steps, but that if “there is an 

uncontrolled state variable, the integration inverse method may be unstable for small 
step time”. In Gisa many states are uncontrolled but there is no evidence of the high 

frequency oscillations predicted in the reference. Tests have been made for time steps 

covering the range mentioned. Very little difference in accuracy has been found due 

to varying the time step. The greatest consideration has been finding a time step to 

smoothly capture all of the modes but not incur too long a cpu time - too great a time 

step may require many iterations to solve, too small a step involves too many solution 

points. It is hoped to find time in the future to test the model in [17] with Gisa’s 

algorithm and compare results.

Effect of Perturbation Size

The perturbation size used in calculating the Jacobian (equation (11)) has 

negligible effect on the accuracy of the results, suggesting a robust algorithm, though 

does influence the run time as can be seen in the tables below. In order to make any 

firm conclusions, however, some experimentation will be needed with a variety of 

manoeuvres.

‘Nag’ Tolerance. Convergence Parameter

Tolerance of the Nag (software library) integration is largely determined by 

the accuracy needed for results; it is pointless to use a very high tolerance, and high

- 12
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Development of a Generic Inverse Simulation Algorithm.

run time, for graphical data if the detail will not be visible in the plots. Similary the 

convergence tolerance (ycALc(tk+i)m - yDEs(tk+i)) should agree with the desired 

accuracy, but obviously cannot exceed that of the integration. Results were obtained 

for Nag / convergence tolerances of lO’3 / lO 2, lO 5 / lO’4 and lO 9 / lO 8 which were 

an exact match when plotted but as can be seen in Table 1, run times varied from 5 

minutes to 2 hours. Again, the algorithm would appear to be accurate and so the 

choice of tolerance depends upon the intended application of the results.

The definition of convergence is of more concern, particularly considering 

convergence to desired values of zero such as yE(tk+i) and \j/(tk+i) in a hurdlehop. It 
is for this reason that absolute differences, rather than percentage errors were chosen 

for yDEs(tk+i) and ycALcOk+ik as a percentage of values tending to zero requires 

consideration of the computing accuracy. An additional advantage of this is that 
absolute differences aid the choice of the Nag tolerance mentioned above.

Effect of Matching Steps / Ramps with Displacements / Velociries

The algorithm used to generate results in this report uses earth fixed velocities 
and yaw rate - [xE, yE, yjT - as components of the output vector y(tk+1)m and 

solves the problem for rate of change of control inputs, [Gb, 6is, 9]c, 6oirJ4' i.e. matches 

ramp inputs with velocities.

Control vector u(tk)m Output vector y(tk+i)m

Case (1) Gisa SD 

(steps / displacements)
[00, 6ls, 01c, 0OtrlT [xE, ye, ZE, vF

Case (2) Gisa SV 

(steps / velocities)
[00, 01s, 01c, 0OttlT [xE, yE, Ve]t

Case (3) Gisa RD 

(ramps / displacements)

[^, 01s, 01c, ^tr]T [XE, yE, ZE, \|/F

Case (4) Gisa RV 

(ramps / velocities)

[^, 9ls, 6lc, ^tr]T [xe, yE, z£, ve]t

Table 1 Different Combinations of Steps / Ramn.s and 

Displacements / Velocities

Results were also generated for the other combinations in Table 1. The choice 

of steps or ramps made no difference to the solution accuracy. However, as can be

13
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Development of a Generic Inverse Simulation Algorithm.

seen in Figure 10 (Case 3 vs. Case 4), the choice of constrained velocities or 
displacements does change the results; constrained displacements produce more 

accurate values of yg (plot 14) andy (plot 13), constrained velocities produce better 
values of V (plot 16). The reasons for this have yet to be investigated.

Fully Linearised Model

Figure 11 shows a comparison of results between the fully -linear versions of 

Helinv (Helinvl) and Gisa. There is clearly good correlation between the results, 
whereas the linear and non-linear versions of Helinv are appreciably different. This 

observation is further evidence of the algorithm’s validity. Constraining velocities or 

displacements has a similar effect as with the non-linear model.

Comparison of cpu Times

In addition to calculating accurate results it is also desirable to minimise the 

amount of time taken for the algorithm to run. The tables below compare cpu times 

for the different cases discussed above.

Gisa vs. Helinv for hurdlehops of increasing severity (tolerance = lO 5, 
perturbation size = 0.05, s = 500m):

h(m)
max load factor

15
1.198

25
1.309

35
1.427

cpu time (minrsec)
Gisa RV 10:02.47 10:40.63 11:10.57
Helinv 0:53.11 0:58.95 1:01.52

Effect of perturbation size and tolerance (hurdlehop - s=500m, h=15m):

perturbation
tolerance

o o
 

d

0.05
lO-9

0.001
lO-5

1.0
10-5

cpu time 

(hr:min:sec)
Gisa RV

0:05:11.79 2:37:49.85 0:13:49.73 0:09:49.32

- 14-
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Development of a Generic Inverse Simulation Algorithm.

Effect of steps / ramps, displacements / velocities (hurdlehop - s=500m, 
h=15m, tolerance = lO 5, perturbation size = 0.05):

algorithm : Gisa SD Gisa SV Gisa RD Gisa RV
cpu time (min: sec)

non-linear 5:27.68 7:26.15 6:55.03 8:52.32
Helinv 0:53.11
linear 1:56.62 1:55.95 1:58.11 1:57.17
Helinvl 0:09.85

From the above tables the following conclusions can be made.

i) The numerical differentiation algorithm (Helinv) runs a lot more quickly than 

the integration algorithm (Gisa).
ii) The fully-linearised model runs a lot more quickly than the non-linear model.
iii) Perturbation size has little effect on cpu time.
iv) Tolerance greatly influences cpu time and should be selected to suit the 

application of the results.
v) Choice of Cases (1) to (4) does not greatly change cpu times.

5. Conclusions

1. The integration algorithm for inverse simulation used within Gisa accurately 

predicts a time series of control inputs which will produce a predefined, discretised 

manoeuvre.

2. Although the results are currently valid for a limited set of manoeuvres only, it 
is anticipated that this is due to the linear aircraft modelling used. A detailed non­
linear model should allow good results for a wider range of more severe manoeuvres.

3. The algorithm appears to be robust, working regardless of time step size, 
perturbation size and tolerance.

4. Computing time is a major disadvantage as the algorithm takes much longer to 

run than the differentiation method {Helinv). This will not be a problem, however, as 

more powerful computers become available.

- 15
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Development of a Generic Inverse Simulation Algorithm.

5. There is a discrepency in the results calculated by using constrained 

displacements or velocities. This has to be investigated further.

6. At this stage the algorithm appears to be both accurate and stable. It is 

predicted that any modelling changes will pose no problems and hence Gisa should be 

truly generic.

7. The next planned stage in the algorithm’s development is to incorporate a 

helicopter individual blade model. Subsequent applications will depend on the 

accuracy of results obtained.

- 16
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Figure 2. Flowchart for Generalised Inverse Simulation Algorithm

(stop Is k = n ?

IsFm< tolerance^

m = 1

m = m + 1
Fm- yCtk+l)!:! - yDES(tk+l)

u(tk)m+l= u(tk)m-or -Fr

Define time history of manoeuvre yuEs(tk)’ 
k = 0 to n

Read trim conditions x(0) and u(0) 
n = number of time points 

k = current time point 
m -- Newton-Raphson iteration
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Development of a Generic Inverse Simulation Algorithm

Appendix A F.nnatinns of Motion of a Single Main and Tail Rotor Helicopter

Considering equations (1) and (2) as applied to a single main and tail rotor 

helicopter; the state, control and output vectors are defined as follows :

x = [uvwpqr<t)6\(r^2]T

u = [0o 6is0ic 9otr]T

y = [ XE YE ZE ¥ F

Appendices

where u, v, w

p, q.r
<1), 0,V

a
0Q, ®ls, ®lc, ®0tr

are the components of translational velocity relative to a
body fixed reference frame (xb, yb, zb),
are angular velocities about the body axes,
are the Euler (or attitude) angles relating the body fixed
axis set to the earth fixed inertial frame (xE, yE, zE),
is the angular velocity of the main rotor and
are the blade pitch angles of the main and tail rotors.

The function fin equation (1) consists essentially of the following six Euler 

rigid body equations:

Xu = - ( w q - vr)+— -gsin0 (Al-1)

Y
V = - (u r - w p) + — - g cos 0 sin (]) (A 1-2)

z
w= - (vp-uq)+— -gcos0cos(t) (A 1-3)

Ixx P = ( lyy ' Izz ) Q r ^xz ( r-*" P Q ) L. ■ (A 1-4)

lyy q= (Izz - Ixx ) rp + Ixz (r2 - P2 ) + M (A 1-5)

Izzf=(Ixx-Iyy)Pq + Ixz(p-qr) + N (A 1-6)

plus the rotorspeed governor equation :

t Q _ (Qe. - Qr - Qtr - Qti) ! ^ 
Ir

(Al-7)
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Development of a Generic Inverse Simulation Algorithm Appendices

where m, Ixxj lyy; Izz> Ixz

X, Y, Z, L, M, N 

Qe. Qr, QtR, Qtr 

Ir

are the aircraft's mass, moments of inertia and product 
of inertia about the y-axis,
are the external forces and moments along and about the 

body axes,
are the torque output of the engine, and torques required 

to drive the main rotor, tail rotor and transmission, and 

is the effective inertia of the rotor system.

The rates of change of the attitude angles are related to the body axes angular 
velocities by the kinematic expressions.

(j) = p + q sin ([) tan 0 + r cos (]) tan 0 

0 = q cos (]) - r sin (])

\j/ = q sin (]) sec 0 + r cos ([) sec 0

(A2-1) 

(A2-2) 

(A 2-3)

The earth fixed velocities xe, yE and ^ can be calculated from the translational 
body fixed velocities u, v and w and the attitude angles (j), 0 and \|/ by the Euler 

transformation equations where the transformation matrix [li,..., n3] is effectively 

the function g in equation (2).

(A3)
■ xE ■ 

yE _ r
12

mi
m2

nl ■ 
n2

■ u ■

V
L ZE J . 13 m3 n3 . _ w .

11 = cos 0 COS\|/
12 = cos 0 sin \]/
13 = -sin 0
mi = sin (]) sin 0 cos \|/ - cos 0 sin \|/ 
m2 = sin (j) sin 0 sin \|/ + cos (j) cos \\f 
m3 = sin (]) cos 0
ni = cos sin 0 cos + sin (|) sin \|/ 
n2 = cos (]) sin 0 sin - sin (]) cos y 

n3 = cos ^ cos 0

With the exception of (A 1-7) the above representations of equations (1) and 

(2) are not unique to the helicopter, but are widely used in many rigid body

-11 -
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Development of a Generic Inverse Simulation Algorithm Appendices

simulations. It is the calculation of the external forces X, Y and Z; and moments L, 
M and N which requires detailed, specific modelling. An example of this is the HGS 

model used within Helinv as summarised in Appendix C.

- lU -



'#• "5 I ,':- =

:1s-1-
4_> ^‘T^ I ,>•

& R-=? •; ■. :^-j" ■■
hs*"

- =
. :< i" i\j

m
4:



Development of a Generic Inverse Simulation Algorithm Appendices

Appendix B. The Helinv Numerical Algorithm

As with Gisa, Helinv incorporates several sets of pre-programmed manoeuvre 

descriptions which are required as system outputs from the simulation. In fact, the 

manoeuvres are essentially the inputs for the simulation. By contrast with Gisa, 
Helinv's output vector only contains the eath fixed coordinates. The ouput vector is 

then :

y = [XE, yE, zeF

and the azimuth or heading angle, X/ is additionally constrained to fully define the 

manoeuvre. The earth fixed coordinates xe, Je and zg are primarily influenced by 

longitudinal cyclic, lateral cyclic and collective respectively, and so \j/, the variable 

most influenced by tail rotor collective, is chosen as the fourth manoeuvre variable.

Solving the equations of motion for the current problem, it has been 

established that the'defining variables are the flight path coordinates (xe, ys and ze) 
and aircraft heading, \|/, and that the principle aim is to obtain the unknown control 
inputs which will produce them (Gq, 0is, Gic and Goo-)- This is achieved by solution of 

the six body equations of motion and the engine equation (Al-1 to A1-7), with the 
remaining three unknowns being the fuselage pitch and roll attitudes (G and (j>) and the 

angular velocity of the main rotor, Q. This choice may not at first be clear, however 

if one considers that when the attitude and earth referenced velocity vector of the 

vehicle are known it is possible to obtain

i) the body referenced velocity vector (u, v, w) and by differentiation the 

acceleration vector (ii, v, w);
ii) differentiation of the attitudes gives the angular velocities (p, q, r) and 

accelerations (p, q, f);
hi) knowledge of the body velocities will allow the areodynamic forces and 

moments on the fuselage to be obtained, whilst the control angles and rotorspeed (and 

all the other state information) ensures that the rotor forces may be found, hence the 

external forces and moments (X, Y, Z, L, M and N) are available.

Examination of the seven equations of motion will show that there is then 

enough information to obtain values for all of the terms in them, and hence the 

equations are soluable. This is now discussed in more detail.

- IV
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Development of a Generic Inverse Simulation Algorithm Appendices

The solution is cast in 'time marching" form - that is the input information (the 

flight path) is expressed as a time series at equally spaced intervals, and the seven 

equations of motion are solved at each time point in the series usin the flight path 

information at that point. If we consider the case of a manoeuvre taking a time tm, 
which is divided into a time series of n intervals then a general time point in the 

solution, tic may be defined as,

0 < tk<tm where l<k<(n + l)

The input at this time point is

XE(tk), yE(tk)5 ZE(tk), V(tk)

which may be differentiated to give

XE(tk), yE(tk), ZE(tk), y(tk) and XECtk), yE(tk), zE(tk), \j/(tk)

At each time point values are obtained for all of the unsteady time variant 
terms in the equations of motion which converts them from differential form to non­
linear, algebraic form. The equations are then solved by a Newton-Raphson iterative 

technique to find the seven unknowns

6(tk)j ^(tk)» ^(tk)> 6o(tk)) 01s(tk)j ^IcC^k)? and 60tr(tk)

From equations (A 1-1 to A1-7) the requirement is then to solve : 

Fi(0(tk),...,0otr(tk)) =u(tk) + (q(tk) - v(tk) r(tk)) + g sin 0(tic) = 0 (Bl-1)

F6((0(lk)v»0otr(lk)) — Izzf(lk) " (^xx “ lyy) P(tk) q(tk) - IXz (jX'-k) “ q(tk) r(tk))

- N(tk) = 0 (Bl-6)

F7(0(tk),...,0otr(lk)) =OE(lk) 'te2 ■*“ ("tcj + ’tc3)QE(tk) + QE(tk) " K3 (Q(tk)

-iiidle+i:e2 W) = 0 (Bl-7)

- V -
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Development of a Generic Inverse Simulation Algorithm Appendices

Clearly from the preceding description of the mathematical model there are 

many intermediate calculations required. The sequence of calculations at the mth 

iteration is as follows.

i) Initial Guess of Unknown Variables

The estimate from the pevious iteration is used as the initial guess at the 

current iteration so that

0(tk)m = Q(^k)m-1» ^(tk)m = 0(tk)m-l> etc- m

For the first iteration the converged values from the previous time point are
used:

0(tk)m = 0(tk-i), <t>(tk)m = (t^Ctk-i). etc. m = 1

ii) Calculation of the Body Referenced Translational Velocities

The body axes velocities are obtained from the transformation equation (A-2). 
The expression for u(tic)m is

u(tk)m = XE(tk) cos e(tk)m cos \i/(tk) +yE(tic) COS 0(tk)m sin \|/(tk)m
- ^(ti,) sin 0(tk)m (B2)

and similar expressions are obtained for v(tk)m and w(tk)m.

iii) Rates of Change of Euler Angles and Rotorspeed

Numerical differentiation is used to obtain the Euler angle rates and rate of 

change of rotorspeed. Backward differencing is used to give the following for 0(tk)m 

and 0(tk)m

e(tk)m=mA) and (B-3)
tk - tk-1 (tk - tk-l)2

and similar expressions may be obtained for ^tk)m, ^(tk)m and Q(tk)m. 

iv) Calculation of the Body Referenced Translational Accelerations

VI -
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Development of a Generic Inverse Simulation Algorithm Appendices

The body accelerations are obtained by differentiation of the corresponding 

velocities, so that for u(tk)m5 from equation (B2)

u(tk)m = xE(tk) cos 0(tk)m cos \]/(tk) +yE(tk) cos e(tk)m sin \|/(tk) -zE(tk) sin 0(tk)m
- ^tk)m [(xfiltk) cos V(tk) + yE(tk) sin \j/(tk)) sin 0(tk)m + cos 0(tk)m]
- ■<l<tk) [xE(tk) sin \|/(tk) - jtCtk) cos v(tk)] cos 0(tk)m (B4)

and similar expressions may be obtained for v(tk)m and w(tk)m.

v) Calculation of Vehicle Angular Velocities and Accelerations

Equations (A3-1 to A3-3) may be recast to give body angular velocities in 

terms of the Euler angle rates so that, for example, the roll rate, p, may be found from

P(tk)m — ^tk)m ^K^k) sin 0(tk)r] (B5)

which may be differentiated to give

p(tk)m = ^tk)m - iKtk) sin 0(tk)m -y(tk) 4<tk)m cos 0(tk),, (B6)

Expressions for q(tk)m, r(tk)m, q(tk)m and f(tk)m are obtained in a similar way.

vi) The External Forces and Moments

Having established estimates for all the vehicle states and controls it is 

possible to evaluate the corresponding external forces and moments : X(tk)m, Y(tk)m, 
Z(tk) m? L(tk) m? M(tk)m and N(tk)m.

vii) Engine Torque and its Rate of Change

The torque required to turn the main rotor, QR(tk)mj tailrotor, QrR(tk)m, and 

transmission, QnCtiJm- are obtained from the calculation of external forces and 

moments. These values are then used in association with equation (A 1-7) to obtain 

the required engine torque

QE(tk)m = (^tk)m * i(tk)m) 1r + OR(tk)m QrROklm + Qtr(tk)m (B-7)

- Vll
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Development of a Generic Inverse Simulation Algorithm Appendices

The rates of change of engine torque, QE(tk)m and QE(tk)m> are calculated by 

numerical differentiation using the values of engine torque from the previous two 

time points (QE(tk-i)> QE(tk-2)) in the same way as shown in equation (B3).

It is now possible to obtain values for the seven functions at the mth iteration. 
If the solution has not converged (i.e. the functions are not within a small tolerance of 

zero) then new estimates of the unknown variables are found. The new estimates are 

found from

1

...
 CD

__
__

__
__

__
1 1----------------

CD

1__________

• •

1

boCD
_______

1 1

CD 0 1 
_

f aPl 1t d 0 j ®0tr y

faF11t 3 0 J ®0tr y

(B8)

(tk).

The Jacobian elements are calculated by numerical differentiation in the same 

way as desribed in §3.3, though, of course, for functions (Bl-1 to B1-7). With new 

estimates the iteration continues in a conventional way.
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Appendix C HGS fHeliconter Generic Simulation) Mathematical Model

The mathematical model used in Helinv is known as HGS (Helicopter Generic 

Simulation) and has the following characteristics:

generic non-linear model of a single main and tail rotor helicopter with seven 

degrees of freedom (six body plus rotorspeed)

option to include the extra degrees of freedom for flapping motion and 

dynamic inflow

rotor disc model incorporating rigid flapping blades with root cut-out, linear 

twist, constant chord and 2-dimensional aerodynamic properties

fuselage, tailplane and fin aerodynamics by look-up tables.

The HGS model also has a suite of programmes available which allow the 

calculation of general trim states and the response to control inputs. As well as the 

non-linear model, there is also a linearised version of HGS which allows stability 

analysis to be performed and is used in a linearised version of Helinv for the study of 

constrained trajectory flight. All of the HGS and Helinv modules have dedicated 

graphics facilities (where) applicable and advanced dynamics graphics tools are 

under development.

IX -
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Appendix D Mathematical Definition of Manoeuvres

When considering the mathematical definition of a manoeuvre two main 

requirements must be adhered to; that it is able to accurately compute the vehicle 

displacements and velocities throughout the manoeuvre, and that it displays a 

physically realisable degree of continuity. For the first, bearing in mind that an 

inverse simulation calculates a time history of control inputs which will accurately 

reproduce a desired, predefined manoeuvre, then the displacements, velocities and 

accelerations must be expressed as functions of time. Secondly if the resultant profile 

is insufficiently smooth, then rapid changes or discontinuities in the time derivatives 

of the profile may lead to numerical problems in the inverse algorithm. For 
simplicity, polynomial representations have been adopted. As both their order and 

constants are determined by boundary conditions, the combination of prescribed 

displacements, velocities and accelerations must be considered carefully. For the 

example of an aircraft undergoing rectilinear acceleration, a choice of initial and final 
displacements would be less representative than velocities. Additionally the aircraft 
may require to be in trim at the initial and final points and thus zero acceleration (or 
even jerk) must be stipulated, otherwise discontinuities would result at the boundaries.

For the purposes of inverse simulation, any manoeuvre is a time history of the 

output vector y, which contains the earth fixed coordinates xg, yg and zg; and the 
azimuth or heading angle \j/. For some manoeuvres, referring to figures (Dl, 2, 3), it 
is easier and indeed sometimes desirable to express the earth fixed velocities in terms 
of functions of the flight velocity, V, track angle, % and climb angle y. The equations 

for velocities below can subsequently be manipulated to calculate displacements or 

accelerations.

xe(0 = V(t) cos y(t) cos x(t)

yE(t) = V(t) cos 7(t) sin x(t)

ZE(t) = - V(t) sin y:t)

(DM)

(Dl-2)

(Dl-3)

When the manoeuvre can be expressed in terms of xg, yg and zg explicitly, 
equations (Dl-1 to 3) are obviously unnecessary. A hurdlehop. Figure D4, is a 

manoeuvre where it is necessary to clear an obstacle, height h at the midway point, 
over a distance s and then return to the original altitude and velocity. The hurdlehop 

is performed at constant heading in the longitudinal (x-z) plane. In order to ensure

- X -
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continuity, initial and final accelerations and jerk are set to zero; the boundary 

conditions thus being:

i) t = 0,
ii) t=^,

iii) t = tm,

a) V = V0, V = 0, V = 0; 
a) V = Vmax;

a) V = Vq, V = 0, V = 0;

b) zE = 0, zE = 0, zE = 0 

b) zE = -h

b) zE = 0, zE = 0, zE = 0

where tm is the time taken to complete the manoeuvre. The seven velocity and zE 

boundary conditions allow definition of sixth order polynomials, which can be shown 

to be of the form :

V(t) =

ZE(t) =

tmj It 64 (Vo-Vmax) + Vo (D-2)

64 h (D-3)

yE(t)=v(t) = o (D-4)

The longitudinal displacement XE(t) can be evaluated numerically using 

equation (D-5), and (D-6) can be rearranged in terms of the manoeuvre time tm.

XE(t)=Vv2-^(t)2 (D-5)

tm

s = JxE(t) dt (D-6)

In essence then, the complete manoeuvre may be defined by the parameters s, 
h, Vo and Vmax.

- XI
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V(t^

Vcos 7

Figure D2 The Track
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Figure D3 The Altitude

Figure D4 Hurdlehop Manoeuvre
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