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Flight Mechanics of Gyroplanes

S. S. Houstonf 

The University of Glasgow

Abstract

The class of aircraft known as gyroplanes (or autogyros) helped to pave the way for the 

development of the helicopter. However, they have found no application in contemporary 

commercial or military aviation. It is in recreational or sport flying that the gyroplane has proved 

popular. Most if not all designs are however homebuilts, and as a consequence little analysis of any 

significance has been conducted on the flight mechanics of these aircraft. This Paper presents the 

application of a sophisticated generic rotorcraft mathematical model to the gyroplane problem, to 

analyse the trim, stability and controllability of these aircraft. It is concluded that, except for 

longitudinal trim, the basic flight mechanics of the gyroplane are like those of the helicopter, with 

lightly damped rigid-body modes, extensive coupling and non-linearity in the response to control 

inputs. The rotorspeed degree of freedom must also be included in modelling the aircraft.
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Mw

Mq

Nbl
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V

cross product of inertias (Nm^)

pitch inertia (Nm^)

yaw inertia (Nm^)

cost function

blade element lift (N)

pitch moment derivative with respect to vertical velocity (1/s) 

pitch moment derivative with respect to pitch rate (1/s) 

blade yaw moment (Nm) 

rotor radius (m)

flow veloeity component normal to blade element (m/s) 

flow veloeity component tangential to blade element (m/s)

blade element velocity (m/s) 

airspeed (m/s)

normal foree derivative with respect to vertical velocity (1/s) 

normal force derivative with respect to pitch rate (1/s)

a blade lift-eurve slope (1/rad)

b number of rotor blades

c rotor blade chord (m)

dr increment of rotor blade length (m)

e blade root attachment hinge offset from hub eentre

kn reciprocal of rotorspeed degree of freedom time constant (1/s)

n number of turns of main rotor

p roll rate (rad/s)

pi ith value of body x-axis angular acceleration in time history (rad/s^) 

q pitch rate (rad/s)

qi ith value of body y-axis angular acceleration in time history (rad/s^)

r blade element radial position from hinge (m); yaw rate (rad/s) 

ri ith value of body z-axis angular acceleration in time history (rad/s^)
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r,,r2 trim and linearisation algorithm time range (s) 

u translational velocity along body x-axis (m/s)

ith value of body x-axis translational acceleration in time history (m/s2) 

control vector

translational velocity along body y-axis (m/s)

ith value of body y-axis translational acceleration in time history (m/s^) 

translational velocity along body z-axis (m/s)

ith value of body z-axis translational acceleration in time history (m/s^) 

state vector

state vector acceleration

centre of mass position vector with respect to airframe reference (m) 

hub X axis

xhub hub position vector with respect to airframe reference (m)

X, ith value of state vector in time history

ith value of state vector acceleration in time history

M,.

u

V

V, 

w

W, .

X

X

'■hub

X.

y .—tnm

z

z

tnm state vector

transformed state vector 

transformed state vector acceleration

At time increment in numerical integration (s)

A diagonal matrix of eigenvalues of A 

Q. rotorspeed (rad/s)

D.e equilibrium rotorspeed (rad/s)

n' perturbation rotorspeed (rad/s)

Q rotor angular acceleration (rad/s^)

Qi ith value of rotor angular acceleration in time history (rad/s^) 

a blade element angle of attack (rad)

S blade element drag coefficient

5r rudder angle (rad)
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5, propeller blade root pitch angle (rad)

5Xj state vector perturbation

duj control vector perturbation 

0 roll angle (rad)

6 pitch angle (rad)

lateral cyclic pitch angle (rad) 

longitudinal cyclic pitch angle (rad) 

p air density (kg/m^)

\\f blade azimuthal position about shaft (rad)

Ic

0,

Introduction

There are a wide range of configurations in the family of aircraft known as rotorcraft. The 

helicopter is the most common type, finding widespread application in commercial and military 

aviation. The gyroplane however, is an increasingly popular machine in sport and recreational flying, 

having found no practical application in contemporary commercial or military roles. The gyroplane 

did however help to pave the way for the development of the helicopter, introducing cyclic pitch 

control and blades attached to the rotor hub by means of a hinge. Ref. 1.

Currently, most if not all types of gyroplane are in the homebuilt category. As a consequence, 

the depth of analysis of the type's flight mechanics is limited by the absence of the mathematical 

modelling and simulation facilities available to major aerospace organisations. The study of 

gyroplane flight mechanics is however timely, in the light of the accident rate suffered by the 

aircraft. For example, in the U.K., there were 6 fatal gyroplane accidents in the period 1989-91, Ret. 

2.

Background

The helicopter integrates the functions of lift, propulsion and control in the main rotor, while 

the gyroplane separates propulsion from lift and control. The key difference between the two. 

configurations however, is that the helicopter has a torque applied to the main rotor shaft in order for
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it to rotate and hence provide lift; the gyroplane has no torque applied, relying instead on the flow of 

air through the rotor produced by virtue of forward speed to rotate it. Therefore, the gyroplane has no 

still-air hover capability, which also means that it has no still-air vertical take-off and landing 

capability. Moreover, its low-speed capability is limited to manoeuvres in a direction determined by 

the propulsive force thrust axis, which is aligned with the aircraft fore-and-aft direction. Without a 

'steerable' propeller, the gyroplane cannot fly backward or sideways.

The configuration therefore lacks the characteristics of the helicopter that have made it so 

popular a rotating-wing configuration. In some respects, the gyroplane could be considered to be a 

rotary-wing aircraft without any of the unique benefits in terms of hover and low-speed 

manoeuvrability that rotating wings convey to the helicopter.

The current technical level of rotorcraft mathematical modelling for simulation is such that 

blades are individually represented as bodies, with the aerodynamic and inertial loading built up 

from summed elements distributed along the blade radius. The mathematical description of the 

model used for the results in this Paper is contained in Ref. 3. The model is generic, and its key 

features are summarised in Table 1. The full range of rotorcraft, from helicopter (in tandem, coaxial 

or single main and tail rotor forms) to tilt rotor or even the gyroplane can be simulated with 

appropriate data. For the gyroplane application, the second rotor in the model is configured as a 

propeller. The software implementation of the model allows calculation of time response to a general 

set of initial conditions, calculation of the response to control inputs and atmospheric disturbances, 

calculation of the trim required to maintain a given flight state, and a linearisation routine which 

calculates stability and control derivatives for a six or seven degree-of-freedom rigid-body 

representation of the aircraft.

Theory of Gyroplane Flight

In this section the physical principle of the production of lift by a gyroplane is described and 

contrasted with the helicopter.
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Figure 1 shows the velocities and forces acting on a blade element when the rotor is operating 

in helicopter mode. It is clear that both lift and drag have components acting along the negative hub 

X direction, i.e. opposing the motion of the blade element. Therefore, a torque must be applied to the 

rotor shaft, by the engine or engines, to balance the torque arising from the lift and drag.

Table 1 Mathematical model description

Model item Characteristics
Rotor dynamics (both 
rotors)

• up to 10 individually-modelled rigid blades

• fully-coupled flap, lag and feather motion
• blade attachment by offset hinges & springs
• lag damper

Rotor loads • aerodynamic and inertial loads represented by 
up to 10 elements per blade

Blade aerodynamics • lookup tables for lift and drag as function of 
angle-of-attack and Mach number

Wake model • momentum-derived dynamic wake model
• uniform and harmonic components of inflow
• rudimentary interaction with tail surfaces
• ground effect

Transmission • coupled rotorspeed and engine dynamics
• up to 3 engines
• geared or independently-controlled rotor 

torque
Airframe • fuselage, tailplane and fin aerodynamics by 

lookup tables or polynomial functions
Atmosphere • International Standard Atmosphere

• provision for variation of sea-level 
temperature and pressure

The situation for the rotor acting in gyroplane mode or autorotative flight, is shown in Figure 

2. Here, the lift and drag force components in the hub x direction are in balance, and no torque is 

required to be applied to the shaft. This situation can only arise if the inflow angle changes sign i.e. 

the inflow is up through the rotor, opposite to the helicopter in powered flight.

Associated with the balance of lift and drag required to produce autorotative flight, is the 

rotorspeed degree of freedom. Unlike the helicopter, no torque is applied to the rotor shaft by the 

engine, controlled either by the pilot or an automatic system to provide a nominally constant

-6-



- = 7%;.fi

. A v4 -'
• _■ '. •

I’ •I

:^k’''*'..;- . ■r '- -i
■‘fe-fp -*3

■,-£;t:? >4 ..'. -p-kt-:
■ ■/'-'4

- 'of-' ->:)•-»- jSxeiW.--^

-:j^ *■ > :i ■'■' ■ pji-.r ’:( X>W :.' .>1
'*s<

■ '. 'X • *¥ -f
;'V„ :-. -:"V ;- . 'I

I ‘ i i. - »"• V':- •*?
• - - ■■ ,%r-' - r - : 1 'y-"

vt.'i'r'vy "■3l-:t »''*
:i ^<7 

■VV- -V.,. ^ '■ > l5^.-..

:3*\'

‘*\x.
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rotorspeed. An understanding of the behaviour of the rotorspeed degree of freedom is therefore of as 

much interest as the nature of autorotative flight itself.

A simple model of rotorspeed behaviour can be constructed from the full equations given in 

Ref. 3. From Newton's 2nd. Law,

IRQ = Nblb

The aerodynamic torque can be derived from Figure 2, neglecting any blade in-plane (lag) or out-of­

plane (flap) displacements, as

Nbl = \/2pceRfv2{ aa<p - 5 )dr

where

a = d + (p 
(l>-UpIUl
v2 = u2p+uf
Ut = Vf sin \if+Q.r

The rotorspeed equation can be expressed in linearised, small perturbation form by assuming that 

the periodic terms in the aerodynamic torque do not affect stability and act simply as a forcing 

function, by neglecting products of small quantities, and assuming that Q = -t- Q.'. The result is a

linear ordinary differential equation with a constant coefficient, i.e.

Q' = kaQ.'

where

ka = -pceQ2R4d{ l-e3)b/ (61R)

-7-





The sign of the coefficient ka determines the stability of the rotorspeed to perturbations, and its 

magnitude determines the rise time. For the gyroplane configuration simulated in this Paper, the 

coefficient is approximately -0.15, indicating a stable mode with a rise time of 4-5 s.

Simulation of Rotorcraft with Individually Modelled Blades 

Since the rotor blades are modelled individually, the governing equations of motion are 

periodic, even in an equilibrium (trimmed) flight condition. This is illustrated in Figure 3 which 

shows the vertical acceleration at the gyroplane's centre of mass in steady level flight at 80 knots, 

during three complete revolutions of the rotor. This behaviour presents special problems, particularly 

in seeking a trimmed flight state solution. Several authors have tackled this problem, e.g. Kim (Ref. 

4). More recently, descriptions of periodic trim methods and results have been presented by McVicar 

(Ref. 5) and Achar & Gaonkar (Ref. 6). The approach taken with this model will now be described.

Trim algorithm

The trim method that is used with the model is simple but has proved to be effective in 

calculating the control positions and attitudes required to maintain a general equilibrium flight state. 

As will be seen it is an approximate method, but the approximation to the trim has been found to be 

very good indeed.

The problem for the gyroplane is stated as:

given a general steady flight condition defined by airspeed, climb rate, turn rate, heading and track, 

find the steady, time-invariant vector

y,..=\-eueusrs,veaf

such that the function

J = = 0

-8-
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where

Xi = [ ui V,. w. pi qi r Q f

The subscript i denotes the ith point in a discrete time history of n points, where

n = (t2-ti)l

For rotorcraft in general, there are an integer number of complete revolutions of both rotors in the 

interval (t2 — tx). This is necessary because the cost function J is proportional to the sum of the 

mean forces and moments acting on the airframe during the interval. For the gyroplane, this is not a 

restriction since the propeller produces negligibly small periodic forces and moments. The value of 

is chosen to be greater than the settling time of the slowest mode, typically the blade in-plane (lac) 

dynamics.

The cost function J is minimised using a standard least-squares method. An initial value of 

y.trim 1S chosen and J calculated. During the time interval (t2 — tl) the acceleration vector xt is not

integrated with respect to time. The aircraft is therefore constrained to fly a particular trajectory with 

a particular attitude and rotorspeed, defined by the current value of the vector y in the iterative
— trim

least-squares scheme. The resulting forces and moments acting on the airframe over the time interval 

(^2 — ^i) are calculated. If J ^0 then a new selection of is made, and the process repeated until

y = o.

The relatively lightly or negatively damped rigid-body and rotorspeed modes are therefore 

suppressed at each stage in the minimisation, including the ultimate stage in the trim calculation 

process. Therein lies the approximate nature of this method, since this is an unrealistic situation. The 

trim state is defined by time-invanant flight condition, aircraft attitude and rotorspeed, whereas in 

reality the periodic nature of the forcing applied to the airframe will result in a periodic rather than 

time-invariant trim. However, it has been found that having calculated the trim using the method

-9-
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described, "releasing" the trimmer (i.e. integrating the vector xt with respect to time) results in a 

periodic attitude, flight condition and rotorspeed that even with lightly and negatively damped rigid- 

body and rotorspeed modes, takes a considerable amount of time to diverge significantly from what 

is then, in effect, a pseudo-trim state. Figure 4.

Linearisation algorithm

The trim method is readily extended to the calculation of stability and control derivatives.

The linear 7 degree-of-freedom (6 rigid-body plus rotorspeed) in state-space form is

x = Ax + Bu

where x = [uvwpqr<pQ(p Q]r andw = [ 6U dXc Sr 5,]T. Then, given yirim the cost function ,/ is

repeatedly recalculated with each state and control in the 7 degree-of-freedom model structure 

sequentially and individually perturbed by a small amount. Then, for a single-sided difference 

method

Aj = '^xii5xj)/(nSXj)
i

Bj='^xi{dUj)/(ndUj)
i

Results

Currently, gyroplanes tend to have a two-bladed main rotor of teetering-type articulation, and 

a two-bladed fixed-pitch propeller. In order to render the current study non-specific to a type or 

types, the main rotor was configured as a three-bladed type with offset flap, lag and feather hinges. 

The propeller was configured as a three-bladed constant-speed unit. The geometry and mass 

properties are otherwise similar to current machines. Table 2 contains the leading particulars of the 

configuration simulated.
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Airframe aerodynamics are configuration-specific for any type of aircraft and it was for this 

reason that they were neglected in this study. This includes propeller slipstream effects on the 

rudder. Therefore, the flight mechanics of the basic vehicle configuration are examined. The results 

are still applicable to gyroplanes in this weight category.

Table 2 Configuration leading data

Parameter Description
Mass 300 kg
L 480 kg m2
lyy 1500 kg m2
h. 900 kg m2

L 105 kg m2

Xcg (0.25,0,0) m

Blade radius 3.6 m
Blade mass 7.2 kg
Distribution uniform
Twist 0 deg
Chord 0.2 m
Airfoil section NACA 0012
Mach number validity 0-0.8
Angle-of-attack range ±21 deg
Number of elements 9
Hinge offset 0.025
Direction of rotor rotation Clockwise viewed from 

above
Shaft tilt (aft) 5 deg
—hub (0,0,-1) m
Rudder area 2 m
Lift curve slope 3.8 /rad
Propeller rpm 2500
Blade twist 0 deg

-11-





Trimmed flight requirements

Figures 5, 6 and 7 show the control angles, aircraft attitudes and rotorspeed required to trim 

the gyroplane in level flight between 30 and 80 knots. This speed range was determined by the fact 

that a viable equilibrium flight state could not be achieved below 30 knots because of blade 

aerodynamic limits. Above 80 knots the power required exceeded that available from a range of 

small piston engines.

In Figure 5, it can be seen that the longitudinal cyclic required to trim is increasingly negative 

with increasing forward speed, indicating positive static stability. However, it is very weak, the 

control angle required changing by only 1 deg. The lateral cyclic pitch is also negative, becoming 

more so with increasing speed. This is attributed to the pitch required to balance the asymmetry in 

lift produced with a rotor system in forward flight, and is of a sign consistent with rotor direction of 

rotation. The mdder angle required increases with decreasing speed due to the reduction in dynamic 

pressure. Rudder angle is required to balance the sideforce produced by the lateral cyclic pitch . In 

reality, the rudder angle required at low speeds is likely not to be as significant because of propeller 

slipstream effects. (The model calculates a propeller induced velocity of almost 20 knots at an 

airspeed of 30 knots).

In Figure 6, it can be seen that the pitch attitude decreases with increasing airspeed, from a 

value of almost 20 deg at 30 knots. In this regard the gyroplane is similar to a fixed-wing aircraft, 

and the rotor can be viewed as a circular wing that will eventually stall when the airspeed is too low. 

The roll attitude however is non-zero, akin to the situation found with the helicopter, and this is due 

to the lateral tilt of the main rotor disc required to balance the lift asymmetry between advancing and 

retreating sides of the disc.

Figure 7 shows the rotorspeed required to produce trimmed flight. As can be seen, it 

increases with increasing forward speed, which is intuitively correct since increasing airspeed will 

increase the mass flow of air through the rotor. Although the rotorspeed is almost double that of

-12-
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contemporary helicopters, at 80 knots it still results in tip speeds on the advancing side of the rotor of 

typical hovering helicopter values of about Mach 0.65.

Modes of motion

The eigenvalues of the matrix A determine the stability of the quasi-steady rigid-body modes. 

There are four longitudinal and five lateral-directional eigenvalues, together with one arising from 

the rotorspeed degree of freedom. Figure 8 shows these eigenvalues across the 30-80 knots speed 

range at intervals of 10 knots. Each mode of motion is given a different symbol. For clarity, 

particularly because of the low-modulus eigenvalues, teach speed point has not been identified 

individually, since the figure is intended mainly to show qualitatively the nature of gyroplane motion 

in level flight. There are two large modulus modes, one aperiodic (denoted by crosses) and one 

oscillatory (denoted by circles). The other modes are of low modulus and are predominantly stable, 

although the mode shown by solid diamonds is unstable. It should be noted however that all the 

other low modulus modes (denoted by squares and triangles) are unstable at 30 knots, a relatively 

substantial migration to the stable left-half plane taking place when the speed is increased from 30 to 

40 knots.

It is necessary to examine the eigenvectors associated with each eigenvalue of the matrix A if 

the character of these modes (in terms of state variables) is to be established. The 80 knot case is 

considered for illustrative purposes although analysis of the other speeds results in the same 

conclusions. The two large modulus modes are examined in detail, together with the unstable low 

modulus one. Table 3a shows that the large modulus oscillatory mode is most like a helicopter or 

aeroplane dutch roll, with sideslip velocity v being the dominant translational velocity in the motion, 

and roll and yaw being the dominant angular velocities with yaw rate lagging roll rate by about 90 

deg. Table 3b shows the other large modulus mode to be predominantly longitudinal in nature. 

Vertical velocity is the dominant rigid-body motion, and there is substantial rotorspeed response 

present also. Table 3c shows that the unstable low modulus mode is also mainly longitudinal in 

nature. Dominant translational velocities are u and w while q is the most significant angular 

velocity. This mode is therefore most like a helicopter or aeroplane phugoid in nature (the instability
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suggests however it to be most like the unstable phugoid found with helicopter response), although 

there is substantial rotorspeed response in this mode also.

Table 3a Large modulus oscillatory mode character

Eigenvalue -0.4243+3.90881
State Modulus Phase (deg)

u 0.0210 46.4
V 0.9774 0
w 0.1765 7.2
p 0.0505 359.0
q 0.0156 46.0
r 0.0878 269.1

<P 0.0129 258.3

e 0.0036 303.7

(p 0.0224 172.8
Q 0.0440 274.7

Table 3b Large modulus aperiodic mode character

Eigenvalue -2.8248
State Modulus Phase (deg)

u 0.0901 0
V 0.1493 0
w 0.8756 0
p 0.0101 0
Q 0.0004 0
r 0.0032 0

<P 0.0036 0

e 0.0001 0

(p 0.0011 0
Q. 0.4502 0
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Table 3c Unstable low modulus oscillatory mode character

Eigenvalue 0.1009+0.4469!
State Modulus Phase (deg)

u 0.7858 0
V 0.0920 162.2
w 0.2232 289.7
p 0.0096 3.0
Q 0.0176 303.1
r 0.0050 301.2

<t> 0.0213 284.7

d 0.0386 225.8
<p 0.0101 224.6
Q. 0.5672 251.5

Finally, necessary conditions for the controllability of each mode can be established and used 

as a guide to the nature of gyroplane control. The "controllability matrix" is given by

C = E~lB

It is obtained by applying the change of variable x= Ez to the state-space description

x = Ax+ Bu

e.g. see Ref. 7. The result is a state-space description

z=Az+Cm

where A is a diagonal matrix whose elements are the eigenvalues of A. Hence a zero row of the 

matrix CT indicates that the corresponding mode is uncontrollable. Alternatively, the relative 

magnitude of the elements in each row gives some indication (per unit control deflection) of which 

controls have the most influence over that eigenvalue, and hence mode. Table 4 shows that the large

-15-
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modulus aperiodic mode controllability is dominated by longitudinal cyclic, while the dutch roll-type 

mode controllability is dominated by lateral cyclic and rudder, and somewhat surprisingly, 

longitudinal cyclic. The unstable low modulus mode is most strongly influenced by longitudinal 

cyclic although the inherent cross-coupling is such that the lateral cyclic has almost as large an 

effect.

Table 4 controllability of selected modes

Ou
Magnitude

Eigenvalue -0.4243-4-3.9088i 10.0226 25.4127 7.2301 4.7145
Eigenvalue -2.8248 1.1708 277.2258 21.8408 11.9258

Eigenvalue 0.1009-i-0.4469i 2.6785 184.6675 135.8853 14.3250

Response to control inputs

The short-period response to longitudinal cyclic, or pitch, inputs is examined in this section. 

This response was chosen for two reasons: first, because of its importance to handling qualities; 

second, because the stability analysis revealed this mode to be unconventional in the helicopter or 

aeroplane context.

The full non-linear model with simulation of individual blades was used. Figure 9 shows the 

form of the longitudinal cyclic input as a doublet of 2s period. Three amplitudes were used: 0.45, 0.9 

and 1.8 deg. Figure 10 shows the pitch rate response to each input. For comparative purposes, the 

responses are normalised by dividing pitch rate by the corresponding amplitude of inpqt. This clearly 

renders any amplitude-dependent non-linearities. These inputs produce a wide range in the 

magnitude of pitch rate response. The smallest amplitude for example, produces a peak pitch rate of 

around 3 deg/s, while the largest input produces about 12 deg/s. It can be seen that there is some 

non-linearity with input size, but it is not very significant for the range of input magnitudes 

examined. The result also highlights another aspect of the short-period pitch response, and that is the 

apparent lack of pitch damping - the response increases almost uniformly with time after each, step of 

the doublet input.
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Analysis

The most significant item highlighted in the results is the short-period pitch motion of the 

gyroplane. The stability analysis and the time responses show that a classical short-period mode does 

not exist, either in terms of mode damping and frequency, modal content or angular response. An 

examination of the stability matrix A (i.e. the stability derivatives) and the gyroplane configuration, 

is necessary to understand this behaviour.

The 80 knot case is again used as an example. The classical approximation to the short-period 

mode for aeroplanes and single main and tail rotor helicopters with small offset flapping hinges (Ref. 

8) is given by the minor of A

The appropriate values of the derivatives are

Zw =-2.912 

Mw =-0.013 

Z9 = 46.178 

Mq = 0.118

Note that the pitch damping Mq is very small, and positive, and wilt therefore tend to be 

destabilising. This explains the pitch rate response shown in Figure 10. The derivative Mw is

negative i.e. stabilising. This is opposite to that normally obtained with helicopters without 

tailplanes. Ref. 9. The derivative Zq is dominated by the speed (80 knots or 41.184 m/s) so about

10% of its value comes from rotor aerodynamics, usually taken to contribute negligibly to this 

derivative. Ref. 9. The derivative Zw is of the correct magnitude for a rotor at this speed and thru.st.

These values give approximate eigenvalues of Asp of -0.0950 and -2.6990, the latter very

close to the exact value of -2.8248. The exact value for the former eigenvalue is about -0.3, but it 

tends to coalesce with the rotorspeed mode to produce a complex conjugate pair, seen in Figure 8 as
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the squares. Although this approximation to the short-period mode is only partially valid, it can be 

used to explain how the two real roots tend to be produced. If the mode were conventional, it would 

be oscillatory in nature. The condition for a pair of real roots being produced is

{ZwMq-MwZ(l)<{Zw + MqflA

This is satisfied here since not only is the product ZwMq small in magnitude, it is less than zero, 

making an added contribution toward satisfying the condition for two real roots.

The key feature that explains this unconventional short-period mode is then the pitch rate 

damping Mq . Its positive value can be attributed to a substantial aerodynamic contribution to Zq

arising from the rotor not being at the pitch rotation centre (the c.g.). Since the c.g. is forward of the 

hub, the moment contribution from this source is positive, i.e. destabilising. This is opposite to the 

conventional helicopter with its forward shaft tilt. The c.g is forward of the hub since it has been 

chosen to lie on the shaft line to give a reasonable pitch attitude in cruise, and the shaft itself is tilted 

aft by 5 deg.

Similar reasoning explains the negative value of Mw. It is dominated by the moment 

contributed from Zw , i.e. negative with the c.g. forward of the rotor hub.

Discussion

One interesting aspect of this study has been the usefulness of the model in the form of 

classical rigid-body linearised stability and control derivatives. The development of rotorcraft 

mathematical modelling has been such that improved fidelity has only been possible by including 

non-linearity and additional degrees of freedom, thereby rendering derivative models apparently 

inappropriate. This study helps to show however, that a derivative model that has been numerically 

reduced from an individual blade/blade element formulation, captures the rigid-body response 

characteristics of the full model. The value of the derivative is that it provides a mechanism by which 

understanding and analysis of physical behaviour can be made, which is essential for sophisticated
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models such as the one used for this study. The stability and control derivative therefore still has a 

role to play in the analysis of rotorcraft flight dynamics.

The derivative form of the model has been essential for developing an understanding of the 

gyroplane's behaviour. It has characterised complex behaviour in a manner that allows explanation 

of response characteristics, particularly the short-period longitudinal motion. The nature of key temis 

in the pitching moment equation i.e. Mq and Mw was shown to be opposite to that experienced with

the helicopter, and this is due to the fact that the rotor shaft is tilted aft, rather than forward. This 

could be considered to be a design driver, since the rotor disc needs to be at a positive angle of attack 

for autorotative flight and tilting the shaft aft reduces the amount by which aircraft nose-up pitch 

attitude is needed to provide this. It is an example of how vehicle configuration affects gyroplane 

flight mechanics.

Increased flapping hinge offset would tend to stabilise Mq. However the gyroplane in this 

study had a deliberately low offset to mimic the rotor systems of contemporary gyroplanes. The 

analysis of gyroplane flight mechanics in pitch conducted in this Paper may be valid, since Ref 2 

quotes a survey of owners who highlight sensitivity in pitch to be a noticeable handling feature. 

Changing the rotor system to allow increased flap hinge offset could result in a more complex (and 

hence costly) design than is currently used. Bearingless main rotor technology such as that currently 

under development for helicopters however may allow low cost higher-offset rotors to become 

available for the homebuilt gyroplane in the future. This could benefit airworthiness and flight safety 

through improved handling qualities, but full validation of this model from flight test including 

handling assessments would be required before such a design change could be justified on these 

grounds.

It is also clear that the rotorspeed degree of freedom must be included in modelling gyroplane 

flight. This is not always the case with helicopters where the engine and rotor governing system can 

often be assumed to produce a constant rotorspeed, irrespective of flight condition. Analysis of the
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character of the modes shows that the rotorspeed state is not restricted to the rotorspeed mode, but 

appears as a substantial response in the short-period and longer-term unstable longitudinal modes as 

well. The rudimentary analysis of the rotorspeed mode conducted at the start of this Paper provides a 

surprisingly good approximation to the actual value of this mode's eigenvalue, which is about -0.25. 

The expression for kn could therefore be used in parametric exercises to establish the impact of

design variables on the stability of this important mode.

Conclusions

Gyroplane flight mechanics are such that the trim characteristics and rigid-body dynamics are 

similar to those of a conventional single main and tail rotor helicopter. There are lightly-damped 

modes with cross-coupled responses, and the response to controls displays non-linearity with input 

magnitude. Conventional helicopter mode types are present e.g. modes with discernible dutch roll or 

phugoid characteristics. However, rotorspeed is an important additional degree of freedom that must 

be included in modelling gyroplane flight mechanics. This is because the coupling between 

rotorspeed and the rigid-body states is such that the rigid-body modes have a considerable rotorspeed 

content. Only in one aspect of longitudinal trim i.e. the pitch attitude variation with airspeed, is the 

gyroplane similar to a fixed-wing aeroplane. The short-period pitch motion, important from a 

handling qualities standpoint and which was studied in detail, is unlike either the aeroplane or 

helicopter. This was attributed to negligible pitch rate damping Mq . For the configuration studied,

with moderate aft tilt of the shaft, this result is attributed to rotor force perturbations with pitch rate 

being destabilising. Rotor force perturbations with vertical velocity (or angle of attack) tend to be 

stabilising. This is opposite to the helicopter case.
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Flight Mechanics of Gyroplanes
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Figure 1 Schematic of blade element forces and 
velocities in helicopter mode
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Flight Mechanics of Gyroplanes
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Figure 2 Schematic of blade element forces and 
velocities in gyroplane mode
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Flight Mechanics of Gyroplanes

Figure 3 Vertical acceleration in trimmed flight at 80 knots
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Flight Mechanics of Gyroplanes

Figure 4 Rotorspeed response following release from pseudo-trim, 80
knots
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Flight Mechanics of Gyroplanes

Figure 5 Aircraft control angles required to trim in level flight
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Flight Mechanics of Gyroplanes

Figure 6 Aircraft attitudes required to trim in level flight
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Flight Mechanics of Gyroplanes

Figure 7 Rotorspeed resulting from trim in level flight
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Flight Mechanics of Gyroplanes

Figure 8 Locus of rigid-body mode stability roots, 30-80 knots

ucta.
>,
i.a
B
‘Sd

I—x<x—X-^X------X—^^^
-3 -2.5 -2 -1.5 -1

o
o
o
o 2o

O^q
A

-0.5 A 0.5

o -2 +
o

o
o

o -4

Real part (1/s)

Figure 8





Flight Mechanics of Gyroplanes

Figure 9 Longitudinal cyclic pitch control input
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Flight Mechanics of Gyroplanes

Figure 10 Normalised pitch rate response to different amplitude
inputs at 80 knots
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