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Abstract

The need for automation of the multiblock grid generation process is discussed. A 

new approach to automatically process a multiblock topology in order to prepare it 

for the grid generation process is described. The method is based on a cost function 

which attempts to model the objectives of the skilled grid generation software user 

who at present performs the task of block positioning and shaping in an interactive 

manner. A number of test cases are examined. It is also suggested that an existing 

unstructured mesh generation method could be adopted as an initial topology gen­

eration tool. Further work towards creating a fully automatic grid generation tool 

and extension into three dimensions are discussed briefly.

11



Contents

Abstract ii

1 The need for automation 1

1.1 Introduction............................................................................................... 1

1.2 Elements of the analysis process.............................................................. 1

1.3 Automatic topology generation .............................................................. 4

2 Automatic topology processing 6

2.1 Rationale.................................................................................................. 6

2.2 Curve definitions...................................................................................... 7

2.3 Cost function............................................................................................ 8

2.4 Cost function minimisation....................................................................... 14

2.5 Calibration test cases................................................................................ 15

2.6 Existing topologies................................................................................... 19

2.7 Marine application example.................................................................... 24

2.8 Two-element aerofoil example.................................... 24

3 Problems encountered and future work 29

3.1 Global Minimum...................................................................................... 29

3.2 Curve definition refinement .................................................................... 29

3.3 Generality.................................................................................................. 30

3.4 Automatically generated topologies............................................................30

3.5 Extension to 3-D..........................................................................................31

4 Conclusion 32

Acknowledgements 33

111



References 34

IV



1 The need for automation

1.1 Introduction

Multiblock or zonal structured grids remain a popular choice in CFD. This ap­

proach involves an unstructured arrangement of blocks with structured grids which 

conform with the problem geometry. The alternatives of unstructured, Cartesian, 

hybrid structured-unstructured and overset (Chimera) grids each have their own ad­

vantages and disadvantages. The choice of which one to use is difficult, an essential 

element of which is a compromise between the relative complexity of grid genera­

tion and flow solution. Multiblock grids afford the advantage of easier calculation 

management and lower operation counts and memory requirements due to their in­

herent structure, but grid generation for complex configurations is problematic and 

time-consuming. The subject of which method to choose is not discussed further 

here, for an introduction to the issue see [1],[2]. Here we are interested in the mult­

iblock grid generation procedure, and note that to address its particular problems 

is relevant and useful since simulation using multiblock grids is popular. For some 

recent examples of its application see [3],[4],[5],[6].

1.2 Elements of the analysis process

Figure 1 shows a schematic diagram of the elements of a CFD analysis using mult­

iblock grids. With modern CAD and graphical plotting software, the geometry 

definition and results analysis stages present few problems. Numerous satisfactory 

commercial packages exist for these tasks, with present work concentrating on im­

proving speed and extending capability although the basic tools are well established. 

The flow solution stage is the subject of much ongoing research, but with modern 

computing power even large scale simulations can be achieved with reasonable turn­

around times. The primary obstacle to obtaining accurate flow solutions is the lack 

of a practical, accurate and general turbulence model.
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Figure 1: A CFD analysis process using the multiblock method

The bottleneck in the process occurs at the second and third stages. Even for fairly 

simple geometries in two dimensions, the task of designing a suitable arrangement 

for the grid blocks can be a demanding one. Each part of the problem geometry re­

quires a body conforming local arrangement of the blocks, for example a ‘C’-shaped 

arrangement around an aerofoil, but these local patterns are often difficult to match 

as a coherent whole. The task of defining an appropriate block pattern is known as 

‘topology generation’. In three dimensions the task can be daunting and requires 

considerable skill. Fine adjustments of the curves and block faces making up the 

topology and actually generating the grid to satisfaction can take man-months of 

effort for complicated configurations like full aircraft. The need to facilitate the to­

pology and grid generation process by providing interactive graphical environments 

specifically designed for the task was recognised nearly ten years ago [7],[8]. A few 

years later Thompson and Weatherill [2] were able to list several commercial pack-



ages providing this capability and subsequent development has continued apace. 

Although these tools undoubtedly accelerate the process, the amount of time and 

effort required for grid generation still impedes routine analyses for multiple geo­

metries, especially for complex configurations. Progress towards the alternative goal 

of fully or mostly automatic grid generation for arbitrary geometries [2],[8] has not 

been as impressive. In Thompson’s recent review paper [9] the need for automation 

is particularly stressed. Real progress has been made by several authors but all of 

the diverse approaches suggested to date require a degree of skilled user input. The 

main problem is the difficulty in encapsulating the ‘art’ of topology generation in a 

programmable method. The approach of Dannenhoffer[10],[ll], which is an integral 

part of the National Grid Project[12], is probably the most advanced method to 

date in terms of automating as much of the grid generation process as possible. An 

abstract “topology plane” is employed initially to interactively design the topology, 

and block faces are automatically set up by the code. A stochastic process is then 

employed to reduce the number of blocks. The user then proceeds to edit the topo­

logy and construct the grid using a state-of-the-art GUI. Stewart[13],[14] employs a 

search algorithm with a directional probe to build a two-dimensional block decom­

position. This promising approach has proven difficult to apply generally, and it is 

unclear how well it could extend to three dimensions. The SAUNA[15] system em­

ploys a library of known topologies; to generate a new grid with a known topology 

is therefore straightforward, but for a new topology considerable effort is required 

to add to the library. The IGEM-GFD system[16] can automatically generate local 

topologies around recognisable components, after which the user must create the 

remainder of the topology. Unstructured quadrilateral and hexahedral mesh gener­

ation techniques have also been employed to create block topologies[17],[18]. Note 

that the methods used are not fully automatic and appear to suffer from generality 

problems. However, this type of approach appears very promising since a number



of general, fully automatic methods have been established in the parallel field of 

structural mechanics. In Section 1.3 it will be suggested that a particular method 

for initial topology generation possessing the characteristics required already exists 

and has been well developed. There is therefore the potential to fully automate one 

of the troublesome elements of Figure 1. Section 2 is the main part of the present 

study. Having defined an initial multiblock topology, the actual shape and location 

of the blocks must be defined. A new, straightforward method is proposed for auto­

matically adjusting both the relative placement of blocks and the shape of the curves 

making up their edges. In this way the subsequent generation of the block interior 

grids can take place with little or no recourse to further manual block placement 

or edge shape modification. This process is here called ‘topology processing’. To­

gether with established algebraic grid generation and elliptic smoothing techniques 

this provides the potential for automation of the third stage in Figure 1. After a 

topology of good quality has been obtained, the task of generating the grid proper in 

the interior of the blocks becomes straightforward using conventional algebraic grid 

generation tools. Any remaining grid smoothness problems across block boundaries 

can be treated using elliptic smoothing.

1.3 Automatic topology generation

A multiblock grid consists of an unstructured arrangement of structured grid blocks. 

Traditionally the definition of this block arrangement is conceived by the expert user 

who views the domain in question and imagines the best way to fill it with blocks. 

This is a skilled task, especially in three dimensions. An attempt to replicate the 

expert’s thought processes in code to produce an automatic tool would necessar­

ily involve shape recognition and trial and error as well as an appreciation of the 

target flow solver’s requirements for the grid. Rather than starting from scratch in 

an attempt to create such a tool, a simpler alternative is possible. Since the topo-



logy consists essentially of unstructured quadrilateral blocks in 2D or unstructured 

hexahedral blocks in 3D, it is possible that one or more automatic mesh genera­

tion procedures developed for structural analysis could be suitable for generating 

initial multiblock topologies. In this way the expert task of generating multiblock 

topologies for each individual case can potentially be reduced to the expert task of 

choosing an existing automatic mesh generation method which produces multiblock 

topology-like results. Several automatic unstructured quadrilateral and hexahedral 

mesh generation methods exist, see for example [19], the resulting meshes each hav­

ing there own attributes. An approach which generates results consistently striking 

in their similarity to good multiblock topologies is the Medial Axis approach of 

Armstrong et al., see [20]-[24j. The method is based on a skeletonization technique 

(where for example a 2D shape is encoded in an esssentially ID manner) which is 

well known for its high quality of shape description. Intriguingly, the method was 

initially proposed as a model for human shape perception, which perhaps explains 

its ability to generate domain decompositions which fit geometries well, the main 

requirement of a multiblock topology. This speculation aside, in the Medial Axis 

approach there is an established automatic domain decomposition technique which 

results in good quality unstructured quadrilateral or hexahedral meshes which ap­

pear to meet the requirements of multiblock decompositions. Of course an initial 

topology formed in this way would consist of blocks with straight-sided faces. The 

initial topology may also have other unwanted features such as poor orthogonality 

at block corners and poorly shaped blocks which do not conform well with other 

blocks and the problem geometry. The re-shaping of the initial topology for our 

purpose is the subject of the next section.



2 Automatic topology processing 

2.1 Rationale

Once the initial topology has been constructed, it is necessary to form the detailed 

shape of the curves making up the edges of the blocks and to decide on the placement 

of important points such as where a number of block corners meet. This process is 

referred to here as topology processing. There is no generally applicable definition 

of an optimal multiblock grid or topology. Different grids and different topologies 

can be used to obtain good results, see for example [25] where various grids and 

topologies were employed to good effect on the same two-element aerofoil problem. 

In the absence of a definite objective in optimising the topology, to achieve our goal 

of obtaining an automatic procedure we instead attempt to model the actions of an 

experienced grid generation engineer. Topology processing is achieved with modern 

grid generation packages using an interactive Graphical User Interface (GUI). The 

GUI enables simultaneous design and assessment of the topology but is very labour 

intensive. The skill involved is to shape the topology in a manner which will allow 

the generation of a grid with good characteristics such as orthogonality and smooth­

ness. These qualities are in themselves difficult to define as well as to achieve, which 

is one reason why grid generation is often referred to as an art as well as a science. 

An engineer experienced in multiblock grid generation soon recognises certain simple 

elements to this process however; in this section it is argued that these elements can 

be formulated in a cost function which can be used to quantify the quality of the 

topology. To simulate the interactive operations of an engineer the cost function 

can then be minimised to achieve a topology of good quality. The cost function will 

be constructed using geometric considerations only. In some cases another factor 

in grid generation, including the topology design, is the expected behaviour of the 

flow itself; notably grid lines can be deliberately aligned with streamlines and shock
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waves. Topology design based purely on geometry will in many cases be sufficient, 

and at the least will provide an advanced starting point for further modification 

based on the actual flow.

In Section 1.3 it was discussed how an unstructured mesh generation method can 

provide an initial topology definition. An ideal initial topology generator would 

produce topologies which would require no processing, this stage could be by-passed 

and grid generation could proceed directly. Even if the topology generator produced 

straight-sided blocks, elliptic smoothing could be sufficient to provide a smooth grid 

especially if a large number of small blocks were used. However, although it is 

difficult to quantify how much poor quality in a block topology elliptic smoothing 

can cure, there does not appear to be at present an automatic, unstructured quad- 

rilateral/hexahedral mesh generation method which can deliver the ideal level of 

topology quality. Even the most promising method available for this application, 

the Medial Axis approach discussed in Section 1.3, would require significant addi­

tional refinement of block edge shape and singular point location, which is too much 

to demand of elliptic smoothing in the general case.

2.2 Curve definitions

In the present study each curve or block edge is defined simply as consisting of 

straight line segments joining p equally spaced points with index j, see Figure 2. 

To simplify programming, all curves have p points irrespective of the actual curve 

length or shape. The initial location of the points is obtained by interpolation from 

the initial topology definition. A straight line segment approach cannot provide a 

high quality of shape description without using an excessive number of data points. 

However, since these curves are used here only to define internal block boundaries, 

onto which a spline can be fitted for algebraic grid generation and across which
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elliptic smoothing may be employed, such a definition is adequate. Note that al­

though the problem geometry is also represented by straight line segments during 

the topology processing, the problem geometry is fixed and the original definition 

can be recalled on proceeding to the grid generation stage.

j=p=6

Figure 2: Curve simply defined as straight line segments

2.3 Cost function

Figure 3 shows a multiblock grid for the NLR 7301 wing/flap configuration which 

has been used in a CFD study where excellent agreement with experiment was 

obtained[26]. Figure 4 shows the topology defined by the block edges, and Figure 

5 shows a detail of this around the flap. Reference will be made to these figures to 

help illustrate the objectives of the cost function construction.

In Figure 5, there are two points in the vicinity of the flap leading edge where five 

blocks corners meet. Here the designer must consider how best to set the block



Figure 3: Multiblock grid for NLR 7301 wing/flap configuration

Figure 4: Block topology for NLR 7301 wing/flap configuration
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Figure 5: Detail of block topology around flap

(b)

(C)

Figure 6: Several block corners meeting at one point
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Figure 7: Measurement of shape-following cost element

corner angles. Structured grid flow solvers give most accurate results when the grid 

cells are orthogonal since this minimises the truncation error associated with the 

discretisation. When four blocks meet at a point, as shown in Figure 6(a), it is 

therefore desirable to ensure that the angle 9 in the corner of each block is as close 

as possible to a right-angle. Similarly when three, five or more blocks meet at a 

point, as shown in Figures 6(b) and 6(c), it is desirable to have the same value for 

6 in each of the block corners so that no one block corner has cells with a large 

deviation from orthogonality. In our cost function we therefore penalise deviation 

of the vertex angles 9i for each block corner or vertex i. A simple way of achieving 

this is to write the cost Cv associated with block vertices

a, E -1) 1.1
(1)

where v is the total number of vertices. In this way where four blocks meet at a point 

the cost is zero if all of the block corners form right angles, and the cost increases
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Figure 8: Measurement of block expansion cost element

sharply on deviation from this. Since the exponent is greater than one, when a 

number of blocks other than four meet at a point the minimum cost is incurred 

when all the block corner angles are equal. A value of 2 was used initially for the 

exponent, but the cost incurred when other than four blocks would meet at a point 

rendered other costs insignificant.

Figure 3 shows a grid with good smoothnesss properties. On examining figure 4, 

it is evident how the shape of the interior block edges follows the shape of the 

aerofoil surfaces to contribute to this smoothness. Grid smoothness is possible only 

if gradual changes in the curvature of adjacent grid lines are permitted. Consider 

Figure 7 where two blocks are shown which share a common edge q. To encourage 

grid smoothness between the block edges p and r the shape of q will ideally represent 

a transition from the shape of p to r. The closer q is to p, the more closely the 

shape of q should follow that of p, and the more the influence of r should diminish.
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A cost element Cs to penalise poor ‘shape-following’ has been constructed as

c PZi r u /A \2 - /p \2Oi I \ Q^i I= HE [ai+bi CLi di “I- hji \ bi
(2)

Ajj 2(jjj -|- Gjj—1

j — bj -/ij+l

where c is the total number of curves. On each curve i there are p equally spaced 

points. The distance from the point j on the curve i to the corresponding point on 

an opposing block face is labelled Ojj as indicated in Figure 7. The quantity Aij is 

therefore a measure of how well the local curvature of p is following that of q. This 

is summed over the length of the curve. Each curve in the interior of the domain (i.e. 

each curve that does not define a fixed geometry) has two opposing counterparts; 

ajj and are the distance measures to each. To ensure greater influence of curves 

in close proximity, the influence on curve i of each opposing curve is scaled by their 

average separations at and l>i from i, defined as

1 P

a* — ai’-

~b‘ =
P

(3)

(4)

The construction of a cost function element to model shape-following is not straight­

forward. The engineer with experience of multiblock grid generation can readily re­

cognise when blocks are well shaped, but how to define what this means in terms of 

gradients, curvatures etc. is not obvious. The cost element (2) tries to match local 

curvature. The definition of the gradients at the curve ends is then important to the 

success of the method. A previous attempt at constructing a cost element was based 

on local gradient rather than curvature. Referring to Figure 7, this worked very well
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for cases where the curves p and r have approximately the same orientation as q, 

but becomes a poor measure of shape-following otherwise.

In Figure 4 the blocks are fairly regularly shaped in that none of the blocks expand 

in size very sharply. If a block expands too sharply, then cell orthogonality and 

grid smoothness can be adversely affected in the block interior. Figure 8 shows two 

blocks sharing a common edge of length 1. The opposing edges have lengths la and 

lb. A cost element Ce to penalise sharp block expansions has been constructed as

Ce =
i=l

(k ! ft - <,n21
liCli Lbi

(5)

The total cost Ct associated with the quality of the topology can then be written as

Ct T ksCs 4“ h>fyC (6)

where kv, ks, ke are positive constants which define the relative importance of the 

cost elements. Appropriate values for these constants were found by experimentation 

using simple model cases and verification on more complex cases, see Section 2.4.

2.4 Cost function minimisation

Equation (6) defines a cost function which measures the quality of a multiblock 

topology. This cost function is minimised in order to obtain a topology of good 

quality. The resulting topology is referred to as the ‘processed’ topology. To do 

this, a straightforward iterative improvement technique is employed. The number 

of points p defining each curve is chosen as the minimum number which give a suit­

able definition of the problem geometries, typically between 8 and 40. A point on 

one of the c curves is chosen at random. Two random numbers between -1 and 

1 are multiplied by the pre-defined maximum displacement distance dmax, and the 

selected point is displaced in the x and y directions by each result respectively.
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remembering that a point may belong to more than one curve. Points on curves de­

fining the domain boundaries, i.e. on “exterior” edges, are not permitted to move. If 

the total cost of the modified topology has been reduced then the move is accepted. 

Otherwise the move is rejected and the former position of the displaced point is re­

called. A large number Nc of trial moves are attempted, N being some large integer.

In the cost elements (2) and (5) the quantities Oj and bi are used as scaling factors. 

In implementing the cost function minimisation procedure, care must be taken to 

ensure that the block shapes are not being inadvertantly altered to maximise these 

quantities in order to minimise the cost (they are on the denominator). To achieve 

this they are evaluated infrequently, every 100 successful trial moves.

It is well known that simple iterative improvement does not provide a mechanism 

for avoiding local minima. Careful selection of the trial moves can help avoid this 

problem. Trial moves of curve sections as well as single points were employed. Al­

though this helps to avoid local minima to some extent, this simple approach to cost 

function minimisation could be improved upon, as will be discussed in Section 3.1. 

It is considered sufficient however for the task of demonstrating the general method. 

As will be demonstrated below for a number of test cases, iterative improvement 

has succeeded in finding a good enough local minimum where the block topology 

properties have clearly been improved in terms of preparation for the grid generation 

stage.

2.5 Calibration test cases

A simple test case was constructed, consisting of two blocks sharing a common edge, 

in order to find appropriate relative magnitudes of kv and ks in equation (6). For 

these tests ke was set to zero. Figure 9 shows some representative results for a
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0.0
0.001

Figure 9: Test case to find value for kv

Figure 10: Test case to check shape-following
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number of cases where ks = 1.0 and the magnitude of kv was varied. The curve 

definition p = 10 was used. With kv = 0.0 the shape-following cost is the only 

non-zero part of the cost function. As expected the shape of the resulting curve lies 

somewhere between the straight line of the left-hand opposing curve and the greater 

curvature of the right-hand opposing curve. As kv is increased the tendency for the 

ends of the curve to form right angles at the block corners increases, eventually to 

the detriment of the overall shape. A good compromise is found at values around 

kv = 0.001 (with ks = 1.0), at which condition the effect of the cost associated with 

corner angles becomes noticeable. For this case the final cost becomes converged 

to three significant figures for N — 15000. A set of similar tests was carried out to 

ensure that the proximity of opposing block edges has the desired influence on the 

shape-following cost. Keeping kv = 0.001 and ks = 1.0, the location of the common 

edge was varied; the results are shown in Figure 10. Note that the original result 

with a central common edge is shown with the other results superimposed. There 

is a smooth transition in curve shape as required.

An eight block grid for a single element aerofoil was used to determine a suitable 

value for the block expansion cost coefficient ke. Figure 11 shows the initial topology, 

taken from a grid known to be of good quality which has been used successfully in 

a CFD study[27]. The figure also shows a processed topology obtained by setting 

ks = 1.0, kv = 0.001 and ke = 0.0. For this case the curve definition p = 20 was used 

and the final cost becomes converged to three significant figures for N = 20000. The 

result obtained using ke = 0.0 is satisfactory in this case since the initial topology 

used does not contain blocks with an unacceptable block expansion rate. However, 

following the same approach as for kv, gradually increasing the value of ke should 

indicate a value where the block expansion cost element begins to have an effect but 

is not yet dominating the other cost elements. Figure 12 shows the effect of varying
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original
0.0

Figure 11; Block expansion test case, initial topology and processed topology with 
ke = 0.0

0,0001
0.001

Figure 12: Processed topologies with various values of ke
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the value of ke. The block expansion cost element begins to take effect for values 

of ke around 0.001; in the figure for this value the block edge emanating from the 

aerofoil leading edge has been stretched slightly to match the length of the block 

edges emanating from the trailing edge. For lower values of ke there is no effect, and 

for higher values the block expansion cost begins to swamp the other cost elements, 

as shown in the figure where the processed topology for ke = 0.01 has poor shape­

following and block corner angle charactersistics.

These two examples have indicated appropriate values for the coefficients in equa­

tion (6) and demonstrated that the method works well for simple cases. Encouraged 

by this, the method will now be applied to other existing multiblock topologies from 

real problems, in order to examine how the method performs on topologies which 

are known to be already of good quality and to check that no deleterious effects are 

experienced, before moving on to more realistic test cases. The same coefficients will 

be used throughout as were used for the example test cases {ks = 1.0, kv = 0.001, 

ke = 0.001) in the hope that their values will be case independent.

2.6 Existing topologies

A simple and common multiblock topology is a three block grid around a single 

element aerofoil. The same grid as used above for the calibration case was also 

used in three-block form. Figures 13 and 14 show the original and processed block 

outlines for this case. The curve definition p = 40 was used and the final cost be­

comes converged to three significant figures for N = 10000. The topology processing 

method has improved the block corner angles at the trailing edge and maintained a 

satisfactory shape for the interior block edges.
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onginal
processed

Figure 13: Three block single element aerofoil grid, entire domain

original
processed

Figure 14: Three block single element aerofoil grid, detail



21

original
processed

Figure 15: Nozzle/plume grid

original
processed

Figure 16: Cavity flow topology
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Figures 15 shows the original and processed topology for a grid used in a nozzle/plume 

study[29]. For this case the curve definition p = 10 was used and the final cost be­

comes converged to three significant figures for N = 15000. Again the topology 

processing method has improved the block corner angles, quite significantly chan­

ging the shape of one curve, but a satisfactory trade-off between orthogonality and 

curve smoothness/shape-following has been achieved.

Figures 16 shows the original and processed topology for a grid used in a cavity flow 

study. The cavity has a right-angled leading edge and a radiused trailing edge, the 

novel topology created for this configuration is a good example of how some imagin­

ation can be required to create a topology suitable for even simple configurations. 

For this case the curve definition p = 10 was used and the final cost becomes con­

verged to three significant figures for N — 20000. The topology processing method 

has again significantly altered the shape of one of the curves in order to improve 

block corner angles.

Figure 17 shows the multiblock topology for a multi-element aerofoil grid from Brit­

ish Aerospace which has been used in a CFD study of a high-lift configuration where 

good agreement with experiment was achieved[28]. The large number of blocks re­

quired for even moderately complex configurations (81 in total for this grid) is 

evident from the figure. The result of the topology processing procedure is shown 

in Figure 18. For this case the curve definition p = 30 was required and the final 

cost becomes converged to three significant figures for N = 20000. There is very 

little room for improvement from the initial excellent configuration, the only real 

difference is an improvement of the block corner angles, most notably at the point 

where five blocks meet below the forward part of the main element.
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original

Figure 17: Original multi-element aerofoil topology

processed

Figure 18: Processed multi-element aerofoil topology
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2.7 Marine application example

The topology processing method has been applied successfully to simple test cases 

in Section 2.5 and to real problems where the topology is already of good quality in 

Section 2.6. The main aim of this work is to produce a topology processing method 

applicable to the inevitably unrefined initial topologies which can be generated us­

ing unstructured quadrilateral grid generation techniques, see section 1.3. A coarse, 

straight-sided topology has been created manually for a model marine application. 

This is a demonstration case in order to simulate the result of such an automatic 

topology generation method, see Figure 19. The corresponding processed topology 

is shown in Figure 20. For this case the curve definition p = 10 was used and the 

final cost becomes converged to three significant figures for N = 40000. The initial 

configuration has been improved considerably; the blocks have good ortogonality 

characteristics, do not expand rapidly and conform well with the geometry and each 

other.

2.8 Two-element aerofoil example

To investigate a further example using initially poor topologies, two coarse straight­

sided topologies have been created manually for a two-element aerofoil demonstra­

tion case in order to simulate the result of such an automatic topology generation 

method, see Figures 21 and 22. The Williams B aerofoils[30] are used in both cases. 

The corresponding processed topologies are shown in Figures 23 and 24. The initial 

topology A (Figure 21) has the agreeable feature of well located block corners. To 

modify this topology to obtain a form suitable as a basis for the actual grid gen­

eration phase involves changing the shape of the block edges to a smoother, more 

geometry conforming pattern. This has been achieved by the present topology pro­

cessing method, see Figure 23. The initial topology B has the additional problem
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I
I

Figure 19: Initial topology, marine application example

Figure 20: Processed topology, marine application example
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of an irregularly shaped block at the leading edge of the ‘flap’. The topology pro­

cessing method has also coped with this well, see Figure 24, by drastically reducing 

the lengths of the long sides of the block at the nose of the flap. Both results from the 

topology processing method could be used as inputs to the grid generation proper 

stage. The method has been successful in finding a compromise between smoothing 

the initial configuration, maintaining reasonable orthogonality and resizing blocks 

which expand too sharply. It is noted however that the final configurations are dif­

ferent, so the minimisation method has clearly not found a global minimum. This 

issue will be discussed in Section 3.1.
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Figure 21; Initial topology A, two-element aerofoil

Figure 22: Initial topology B, two-element aerofoil
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Figure 23: Processed topology A, two-element aerofoil

Figure 24: Processed topology B, two-element aerofoil
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3 Problems encountered and future work
3.1 Global Minimum

The present method does not find a global minimum for the multi-element aerofoil 

case. This is not surprising given the very simple minimisation procedure employed. 

The local minima obtained for the cases examined here are satisfactory, but there 

is doubt whether this will be generally true. A straightforward extension of the 

iterative improvement technique is simulated annealing[31] which is well known to 

obtain near-optimal results for a broad range of minimisation problems. A drawback 

to this method is that it necessitates additional computational effort; the present 

method already requires a substantial amount of computing time, the two-element 

aerofoil example requiring approximately half an hour using a desktop PC. Ulti­

mately the most promising direction is likely to be to begin with a higher fidelity 

curve description (for example using B-splines) to reduce the number of data points 

and hence operations, and using a more advanced minimisation procedure, perhaps 

again borrowing from structural mechanics where there are established techniques 

for shape optimisation in component design.

3.2 Curve definition refinement

As noted directly above, a reduction of the computational time required for the 

process is desirable. If a small number of points is used in the curve definition, 

then the number of operations necessary to evaluate the cost function (and hence 

compuatational time) is reduced. However, often a finer definition of the curves is 

required to adequately represent the problem geometry. With this in mind, a curve 

refinement approach was adopted. The initial curve definition could be fairly coarse, 

and after a number of trial moves the curve definition would be successively refined. 

This approach did reduce the overall time required to obtain a converged solution 

in some cases, but was not successful generally. In Figure 11, the curves are defined
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using 20 points connected by straight line segments. These segments are small 

enough to represent the strong curvature at the leading edge. When the refinement 

approach was attempted for this case, a coarser curve definition misrepresents the 

leading edge curvature, introducing unwanted features into the curves attempting 

to follow the aerofoil surface. These features must then be removed by applying a 

large number of trial moves in the later stages when the curve definition becomes 

adequate.

3.3 Generality

The same cost function and cost function coefficients were used to process all the 

test cases presented. This provides some evidence that the method may be generally 

applicable, but realistically a far larger number of test cases from a greater range of 

problems should be examined before being able to state this confidently. A particular 

question is how the method will perform using large numbers of small blocks; all of 

the test cases considered had a relatively small number of large blocks.

3.4 Automatically generated topologies

This report has concentrated on demonstrating the potential of an automatic topo­

logy processing method, which has been examined essentially in isolation from the 

other elements of the multiblock grid generation process. The next step should be 

to examine whether the method can fulfil its potential by linking with the other ele­

ments, see section 1.2. There is little doubt that algebraic grid generation and elliptic 

smoothing performs well when based on a sound topology. The main question is 

how well the processing method would perform given automatically generated initial 

topologies. The next step should therefore be to use an unstructured quadrilateral 

mesh generation method (such as the Medial Axis approach discussed in section 1.3) 

to generate inital topologies for the processing stage to verify that this approach can
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indeed produce multiblock topologies possessing the required characteristics.

3.5 Extension to 3-D

In three dimensions the problem of multiblock grid generation is more demanding 

and the need for automation is even greater. The present topoloogy processing 

method generalises to three dimensions, as do the other elements in the suggested 

automated route. This work has concentrated on multiblock grid generation in two 

dimensions, but there is a clear path to the generalisation.
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4 Conclusion

A new approach for automatic multiblock topology processing has been presented. 

A cost function which evaluates the quality of a multiblock topology has been cre­

ated. The elements of the cost function are based on the objectives of the multiblock 

grid generation software user when interactively constructing the topology. A simple 

minimisation procedure is employed to obtain a topology of good quality. The po­

tential of the method has been demonstrated using a number of test problems. It 

has been suggested that full automation of the entire multiblock grid generation 

procedure is possible using in sequence an existing unstructured grid technique to 

obtain an initial topology, the present processing method, then conventional algeb­

raic grid generation and elliptic smoothing. Problems encountered during the study 

and future work have been discussed.
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