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Abstract

This report describes how the two-dimensional planar flow solver PMB2D has been
modified for axisymmetric flows. The equations describing axisymmetric flows are
derived. The issue of conservation is discussed. The modified linear system arising

at each implicit time step is detailed. Finally, results for inviscid, laminar and

turbulent flow test cases are presented.
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Chapter 1

Introduction

1.1 Background

The planar two-dimensional, steady-state flow solver PMB2D developed by the CFD
group has reached a level of maturity enabling application to a diverse range of aero-
dynamic problems. The main features of the flow solver are outlined here; for full

details see [1], [2].

A cell-centred finite volume method is employed. Osher’s scheme and MUSCL vari-
able interpolation are used to discretise the convective terms and central differencing
for the diffusive terms. The linear system arising at each implicit time step is solved
using a Generalised Conjugate Gradient method. A Block Incomplete Lower-Upper
(BILU) factorisation is used as a preconditioner. A structured multi-block grid
system is employed. The BILU factorisation is decoupled between blocks to reduce
communication. This results in efficient implementation on distributed memory par-
allel computers. An important feature of the flow solver is the use of approximate
Jacobian matrices for the left hand side of the linear system. This has led to sub-
stantial reductions in memory and CPU-time requirements compared to the use of
exact Jacobians. The k —w turbulence model is employed with MUSCL variable in-

terpolation and the Engquist-Osher scalar conservation law for the convective terms.






Methods for unsteady and incompressible flows are discussed in [3] and [4] respect-

ively.

1.2 Motivation

In order to simulate large, complex aerodynamic problems using CFD a fully three-
dimensional flow solver is necessary, using a multi-block approach or otherwise to
cope with geometric complexity. However, there is a class of aerodynamic flows
for which it is not necessary to resort to the complexity and expense of a full 3-
D method. It is possible to make use of an existing two-dimensional flow solver
to develop an axisymmetric flow solver, thus achieving a level of three-dimensional
capability, albeit limited to axisymmetric geometries at zero incidence and sideslip.
For this type of problem an axisymmetric rather than a full 3-D solver is a more
efficient tool, considering the comparatively large amount of memory and CPU time
required for 3-D calculations. The equations for axisymmetric flow can be cast in a
form very similar to those for planar two-dimensional flow, which can then be solved
using a numerical scheme with few alterations from the planar case. Examples of
interest include slender bodies, base flows and nozzle/plume flows. This effort is
therefore worthwhile because the modification required is relatively straightforward

and the range of application surprisingly wide.

Several examples of computational aerodynamics codes solving the Euler and Navier-
Stokes equations appear in the literature, for example for base flow applications [5],
[6], [7], [8], [9], [10], [11] and missile forebodies [12], [13], [14], [15]. Some other
applications are hypersonic flow [16] and internal nozzle flow [17]. Applications to

underexpanded jets are discussed in [18]. Some flow solvers use the present approach






of considering the axisymmetric case as an extension of the two-dimensional case [5],
6], 9], [10], [11], [12], [14], [16], [17], thus allowing one flow solver to be used for two
different types of flow. This work aims to investigate the modifications for axisym-
metric flows to the method described above. This is worthwhile since the planar
method has been observed to work well for high speed flows which are frequently
encountered by axisymmetric bodies. Specifically, we shall consider supersonic flow

around forebodies, underexpanded jet plumes and high speed base flows.

1.3 Structure of report

This report begins by presenting the equations for axisymmetric low. Comparison
is made with the equations for planar flow. The alterations made to the original
linear system and the issue of maintaining a conservative numerical scheme are then
discussed. The remainder of the report concerns the application of the axisymmetric
flow solver to various test cases to evaluate accuracy and efficiency in solving a range

of flows, and hence the utility of the flow solver to industry.






Chapter 2

The equations for axisymmetric
flow

2.1 Introduction

In this chapter the Navier-Stokes equations and the two-equation k — w turbulence
model are presented in forms suitable for axisymmetric flow; the equations are writ-
ten in cylindrical coordinates (r, 8, z) with the assumptions of zero angle of incidence
and sideslip (0/00 = 0) and no spin (vy = 0). A large part of their derivation from
general vector/tensor forms is also included for completeness. This should help to
highlight the origins and purpose of the ‘extra’ terms present in the axisymmetric

equations compared to the two-dimensional equations.

2.2 Mass continuity

The equation of mass conservation, or continuity equation, is written in conservation

form as [20],[21]:

dop B
E"r‘v.(pV) = (2.1)

where p is the fluid density and V is the velocity vector which has components

(vr, vg, v,) in cylindrical coordinates. The divergence of a vector A in a cylindrical






5
frame is
0A, A, 104y 0A,
, A, 0% 2.2
¥ or £ r r 00 0z 22)
and therefore in a cylindrical frame equation (2.1) becomes
op O 10 0 PUr
e — == = — 2.3
ot T ar (Pr) + S gg (P + 5 (ovs) r .8
With our assumptions of axisymmetric flow with no spin this reduces to
op O 0 Uy
—+ = (ov)+ — (0,) = — 2.4
ot T gy (Pr) + 5~ (pv2) = (2.4)

2.3 Momentum conservation

The equations of motion or momentum -equations neglecting body forces can be

written in vector form as [20]
ov
P +PV.VV + Vp gv (V.V)— uV2V = 0 (2.5)

where V is the velocity vector. When expanding the vector terms in equation (2.5)
it should be recalled that in cylindrical coordinates the unit vectors are not invariant
in space [21],[22]. Following equation (2.2), the divergence of velocity in cylindrical

coordinates is given by

0v, v, 10vy Ov,

V.V = —+—— 2.6
or r T 0f 0z (26)
The strain tensor V'V in cylindrical coordinates is:
Ovr Ovg. dv;
or or or
— 10v, _ vg 10vg | v, 1 9v,
V. = r 06 T r 08 e T r 96 (27)
Ovy Ovg v,
8z 8z 0z






6
Expanding the Laplacian of the velocity vector in cylindrical coordinates gives
ViV = V. (VV) =
8 (dv, 10v, | 18 (13, 8 (dv, 1 (18 .
o (GE) + 15+ 15 (o - 2) + 2 (%) - L (12 4 )
8 (& 18 18 (18 . 8 (8 1 (18v,
o () + 15+ 15 (R + ) + 2 (%) - L (12 _ w) (2.8)
3 (v 15 18 (19 8 (&
or (50) 13+ 14 (1%5) + 2 ()
Finally the pressure gradient term is
op
or
— 10p
9p
0z

The equations (2.5) to (2.9) are the momentum conservation equations in cylindrical
coordinates. It is convenient at this stage to introduce our assumptions concerning
axisymmetry, viz. /00 = 0 and v; = 0 . The momentum equations in the radial

(r) direction and axial (z) direction then become respectively

ot or ' oz o 30r\or  r ' B2

0 (0v 10v 0 [dv v
—pp | = ) oy O U] 2.1(
”[8r<8r)+rar+az<8z> 7‘2:' . (2.10)

ov, < Ov, 87),) op pd (81}, Uy sz>
P to\vro -t — ) +—— +—+

ov, I . ov, . ov, N dp pd [Ov, P ov,
P W or “ 0z dz 30z \ Or r 0z

B ﬂ Oov, laszr_ 0 (O0v,
“lor\ar ) T raor T3\ 50

These equations can be simplified, using the continuity equation (2.4), to

I

0 (2.11)






0 0 g oty O OTr» v (Trr — Tog)
= i . = e e e () O
ot (pvr) + or (pvr +p) or o 0z (pvrv:) 0z r * r ( )
0 0 O, 8 . 0T, PV U, Ty,
_ _ _ — —= 2.13
ot (pv:) + or (pvrv) or ¥ 0z (pvz +p) 0z r + T ( )

where the shear stress components are written as

e ()

TT or 3\0r r 0z
ov, 2 (0v, v, Ou,

T = *“<2az*§(ar+7+az)> (2.14)
v 2 (0v, v, Ov,

oo = —“(27‘5(&*7*%))

B ov,  Ov,
= _”’(az i 87")

As will be seen later, it is convenient to re-arrange equations (2.12) and (2.13) to

the following form (which resembles the planar equations)

%(pv) 8(pvr+p)—§—r{#<2?%_§(avz (%r))}

s,
3( i vz 81), pv _u lavr U
i pUrvs) = oz |1 r 3 \rdr 12
(2.15)
2( +£( _3 3v2+8vr i( )
AR =Dl [ i vl | Il GO
E ﬁ 28vz g ov, Ov, oy, A L 1 ov, " v,
2z |"\“ 92 3 82+—£¥ R r\30z Or
(2.16)
2.4 Energy equation
The equation for the conservation of energy can be written as [21], [23]
e ;. (V) = A o 5 (2.17)
TR EE e '






where e is the internal energy per unit mass, q is the heat transfer vector and @ is

the heat added per unit volume by external agencies. @ is the dissipation function,

which can be written as
2
® = p|(VV+VVh).vv - = (V.V)? (2.18)

We are interested in the form of the energy conservation equation suitable for
axisymmetric flow. In cylindrical coordinates, with the assumptions that /90 = 0

and vy = 0, the dissipation function becomes

ou, \ 2 U\ 2 ou,\?>  [Ou, Ou,\>
2= u[2<8r> +2(7) +2(8z) +(W+8z)

2 (0u u ou,\?
e I S S e 2.19
3 (81‘ ke r * 8z> } (2.19)
Equation 2.17 can then be written, with the same assumptions, in the form
de ov, v Ov, ~ J¢: ¢ Oq,
f’a“’(ar ; az) T T v %

dur v, | v, OO B 2.20
+8TTTT+<32J+3T Trz + T~+T7—00 ( )

0z
assuming also that there is also no external heat addition. It can be shown using

v, ov,  Owv, ) ov, Ur

the continuity equation (2.4) that

) I 2 i
9 9 9 B 2.91
3t () + 5 (ovr) + 5= (purs) + = Pt (221
0 0 0 5 PV, dv,
9 9 9 s 9,92
gt P=) F 5 () £ o (o) + = T 22)

The following equation is obtained by substituting equation (2.21) into (2.12) mul-

tiplied by v, and adding this to the equation obtained by substituting (2.22) into
equation (2.13) multiplied by v, :

d 2 dp Op Orez 07, 0Ty, A7
BT 2 2 T za. ~ Ur - Ur - z = z
g /2 H02/2) 4o gt bt 0 3 gy Y g
e Ur (Trr = 7_00) Jis VeTrz (223)
v

r







An equation representing the conservation of energy per unit mass is then obtained

by adding together equations (2.20) and (2.23) :

d 3 5 0 pv, 0
— 2 2 - \PUr T a. 2 z
pdt(e-H)T/ +UZ/)+8r(m +q )+ = +82(Pv +¢.)

0 4 UrTrr + VyTrz — @G
5 (UrTor + v,77,) — P (VaToz + 0r7y,) = : L H(2.20)

The total energy per unit volume FE; is calculated as

1
E, = p(e+§(vf+vf)>
It can be shown using the continuity equation (2.4) that

d - aEt 3 ert (9
pd_t (Et/p) = o o (UrEt) + B + F (UzEt)

Hence equation (2.24) becomes

OE; 0 0 0
W + E (Ur (Et +p)) + E (’Lz (Et +p)) = 8_7' (vrTrr + VyTry — qr)
T E T zlrz — Yy
_% (vazz I UrTry — QZ) = + ( ) s p) > sl L 4 (225)

r

As will be seen later, it is convenient here to express this equation in the following

form (which resembles the planar equations):

0E, & @ 0
ot g U (Be+p) + o (v, (B, +p))

0 ou, 2 (9u, ou, ou, Ou,
_5{“["(2&“§(W+8z>>J”Z[“(aZ*arﬂ_‘”}
0 ou, 2 (0u, ou,

7 0 (055 (5 52)) o

e (E, + ou, .
B Bl p)+p 028r+§8z 3 0z

2.5 Non-dimensional, Reynolds-averaged form

The equations shown above are in dimensional form. In practise it is more convenient

to use non-dimensional quantities. The procedure used for non-dimensionalising is
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described in sections A.2 and B.1. The Reynolds-averaging procedure, see appendix
A.3, enables consideration of turbulent flow. The equations for mass continuity

(2.4), momentum (2.16 and 2.15) and energy (2.26) become in non-dimensional,

Reynolds-averaged form :

Mass continuity

Op 0 0 PUr
i+t =)+ —(pv,) = — 2.27
5t * oy () + g (o) = L (227)
Momentum
0 0 [p+upr [ Ov, 2 ov, Ov, 2
a7 () + 35 (02 +7) - 7 | (2W"(E+E>+§P’“)J
6 _ 09 (p+upr (Ov, Ov, _ pvl A(p+pr) 1av,_u_,)
+ oz orva) 62[ Re <6r+6 )J T 7 TT3Re \ror
(2.28)
0 0 0 [p+pr (Ov, O, 0
g () + g (o) — 5 [l (B 32)| + 52 (2 +0)
0 [p+pr sz_ ov, Ov, _ pvv,  p+pr (18, 81)2)
62[ Re (282 (3z+6_r)+§pk)J E TR ol e
(2.29)
Energy
0E;, 0 3}
o T3 (Ur(Et+P))+£(Uz(Et+P))
0 prpr (Our 2 (Ou. Ou, 2 U+ pr aur
0 {vr[ Re (287' —3(Br 8z>+§pk)}+vz[ Re Bz
0 p+pr (Ou, 2 [Ou, 8uz 2 L+ pr 8ur
0 {vz[ Re (28z __(6r 0z +§pk>]+vr[ Re 8z
0 1 oT 0
or | (v—1) M2, PrT or [~ 8z —1)M2 PrT
1 w+ pr ou, v, Ou, 4vr Ou, 2vr
== |u. (B e |
= “(“LPHR (UBT+362 3 B 3”k)

il n ” e
(v —1) M2 P'rT 8r

(2.30)
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2.6 The two-equation £ — w turbulence model

The k — w turbulence model of Wilcox [24] is written in non-dimensional, general
vector-tensor form in appendix B.1. In cylindrical coordinates, for axisymmetric
flow with no spin, this becomes

Turbulence Kinetic Energy

g (pk) + i (pkv,) + % (pkvz) w2 {% [(u + 0" pr) -g—ﬂ

oo az [(u +0*pr) g—i] }

+ 3,
2 kv, 1 (1 ok

= uTP—gka—ﬁ*pkw—p +—{ [(u+ ,UJT)a ]}
T /o

[
(2.31)
Specific Dissipation Rate
9 9 L0 L o7, ow 3(+a)3w]}
gr () + g (pwen) + 52 (povs) — oo\ 5y |(BHomn) 30| + 5 |k +oun) 32
. w 2 3 pwv, Ow
= g [ﬂTP—gka]_ﬁpw = { [M+UMT 87"]}
(2.32)

In the above relations,

ov, Ov, 2 ov, . ov, 2 U\ 2
Fo= (8r+az> +2[<8r) +<8z> +<7)]
ov, Ov,

S = temtT

2.7 Curvilinear form

2.7.1 Mean flow equations

Compare the equations for axisymmetric flow, equations (2.27) to (2.30), with those
for planar flow (see appendix A), swapping the radial ordinate r for y and the
axial ordinate z for z; the left hand sides of the equations are identical. Hence the
axisymmetric equations can be considered as consisting of the 2-D equations plus a
source-like correction term for axisymmetry. See section (3.1) for a discussion of the
numerical implications. The transformation of the left-hand side of the equations
into (£, ) space is therefore identical to that described for the two-dimensional equa-

tions in appendix A.4. The right hand side of the transformed system of equations
is written simply as

(8 + 5) (2.33)
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after splitting the source-like term into inviscid and viscous parts.

2.7.2 Two equation k£ — w turbulence model

The axisymmetric (equations 2.31 and 2.32) and the two-dimensional (see appendix
B) formulations for the k and w equations can be compared in a similar manner to
above; the axisymmetric equations can be considered as consisting of the 2-D equa-
tions plus a correction for axisymmetry. This correction is treated as an additional
source term. Again the transformation of the left-hand side of the equations into
(§,m) space is the same as for the planar equations, see equation (B.5). The right
hand side of the transformed system of equations can be written as

% (ST + Sg) (2.34)

where St is the ‘original’ source term from the two-dimensional equations and S%.
contains the additional axisymmetric terms.






Chapter 3

Modified numerical scheme

3.1 Axisymmetric source terms

In the present method, the equations for axisymmetric flow are formulated to look
like the planar flow equations except for a non-zero right-hand side which is treated
as a source term (sections 2.7.1 and 2.7.2). The fluxes on the left-hand side are
treated as in the planar case. In this way an existing planar flow solver can be mod-
ified easily for axisymmetric flow. This approach, which we will call here approach
A, is popular in the literature, see [5], [6], [9], [10], [11], [12], [14], [16], [17]. Another
approach appearing in the literature [14], [15], [19], approach B, uses an alternative
formulation. The equations (3.1) show the axisymmetric Euler equations written
in this manner. In this approach the source terms of approach A do not appear,
being contained in the radial flux terms on the left-hand side. The source term here
consists only of a pressure term in the radial momentum equation. The manner
in which the fluxes are calculated for approach B cannot be taken directly from a
planar method since the flux quantities are different.

0 0 0
p (rp) + ar (rpv,) + 9 (rpov.) = 0

0

0 0
g (TPvr) + o (r [pvf+p])+5;(rpvrvz) = p
0

9 0 2 _
a (Tpvz) I E (T,[)UT’UZ) + 52_ (T [p?}z = p]) =0
0 0 0
5% (rpE) + g (rpv.H) + % (rpv,H) = 0
(3.1)

Good results are reported in the literature for both approaches and neither approach
is reported to out-perform the other concerning accuracy or numerical implementa-
tion issues. Accepting then that both approaches are valid, it is nonetheless inter-
esting here to briefly discuss and compare the approaches since such a discussion
does not appear in the literature, and at the same time hopefully gain some insight

13
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into the physical meaning of the source terms. For guidance we can refer to the
application of the integral form of the conservation laws to a control volume fixed
in space, which can form part of the derivation of the partial differential form of the
equations [20]. This will shed some light on the origin and purpose of the source
terms. Diagrams of control volumes for derivations in Cartesian (z,y, z) and cyl-
indrical (7,0, z) space are shown in Figures 3.1 and 3.2.

Note that in Figure 3.2, the areas of the faces in the (6, z) plane of the control volume
are not equal; one has area (r — dr/2) and the other (r + dr/2). Note also that a
pressure force acting normal to the control volume faces which are of area drdz has
a component in the radial direction. This means that when the integral forms of the
conservation laws are evaluated for this control volume, involving fluxes through and
normal stresses acting on each face, terms are retained in the resulting equations
which cancel out due to symmetry in the equivalent procedure for the Cartesian
control volume. These terms are the axisymmetric source terms. An example is
shown below; first the equation for conservation of z-momentum is derived using
the Cartesian control volume, then the radial momentum equation is derived using
the cylindrical control volume and assuming 0/00 = 0 and vy = 0 . The equation
for the conservation of momentum, discounting viscous effects and heat transfer,
can be written in integral form as [20]

0
—/deQ + fpV (V.dS) = —fpds (3.2)
ot Jo s s

where {2 denotes the control volume and S its surface.

Momentum conservation in Cartesian coordinates (z-direction)

Refer to equation (3.2) and Figure 3.1 :

e L (R
R e B )
= dydz[p_g_zd;_ (p—égd;)-
which reduces to
%(pu)Jr%(pu?er)+%(puv)+ad_z(puw) LY
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Momentum conservation in cylindrical coordinates with axisymmetry (7-
direction)

Refer to equation (3.2) and Figure 3.2 :

a (pvr) 9 (pvrv;) dz 9 (pvrv;) dz ]
ot rdfdrdz — rdfdr | pv,v, — —a 5 + rdfdr | pv,v, + e T -
dr 2 0(pv?)dr dr 5 0(pv?) dr |

o (r = ?) dfdz [m, =y +|r+ 3 dodz | pvi + o
Y dr Op dr dr Op dr]

6 (7]
-+ pd—drdil: + pd—drdx
2 2
which reduces to

2
pV;

9 o, , 9 B
a(pvr)+5(pvr+p)+5(pvrvz) = <=

The axisymmetric source terms can be interpreted physically as the additional mass,
momentum or energy, compared to the planar case, which enters the control volume
normal to the (r, z) plane due to the axisymmetry of the flow. The effect of these
terms is therefore equivalent to the effect, of a surface source acting on the (z, y) plane
in the planar case. Restated, the axisymmetric equations written as in sections 2.7.1
and 2.7.2 can be considered as the planar two-dimensional equations with additional
surface sources of mass, momentum and energy which account for the shape of
the control volume in cylindrical coordinates. We can therefore conclude that the
present treatment of our right-hand side as source terms, approach A, is reasonable.
Approach B may be attractive to the researcher developing an axisymmetric flow
solver ‘from scratch’ due to the neater appearance of the governing equations when
written this way. The inclusion of the radial ordinate in the Aux quantities, a feature
which does not occur naturally from a direct application of the integral form of the

conservation laws as shown above, does appear slightly artificial in that it is difficult
to interpret physically.

3.2 Implicit scheme, mean flow equations

The integration in time of the discretised equations to a steady state is done using
an implicit time-marching scheme. The linear system arising at each time step for
the 2-D planar formulation can be summarised as (2]

I 08R
(Kﬁﬁ) AW = SR (3.3)
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dz

Figure 3.1: Volume element in Cartesian coordinates

dar

dz

Figure 3.2: Volume element in cylindrical coordinates
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where W is the vector of primitive variables, AW is the update in W from time
level n to n+1, R™ is the flux residual arising from the spatial discretisation at the
time level n, and At is the time step. For the axisymmetric case, there are extra
terms on the right-hand side, see equation(2.33). The axisymmetric inviscid part is
treated implicitly, but the viscous part is treated explicitly. Numerical experiments
have shown that it is necessary to have an implicit treatment for the axisymmetric
inviscid terms if a tight restriction on the allowable time step is to be avoided. The
explicit treatment of the axisymmetric viscous terms does not have a deleterious
effect on stability or limit the allowable time step, on comparison with the original
planar code, so an implicit treatment was not attempted. See Section 4.2.5 for an
example of the importance of the implicit treatment for the axisymmetric inviscid
terms. The modified linear system for the axisymmetric case is then written as :

I +a(R—Hi)
At oW

> AW = —R®™ L H® 4 ) (3.4)

where H* and HY are the inviscid and viscous parts respectively of the discretised
source term. System (3.4) is solved using an identical scheme [2] as used for (3.5).
The inviscid source term Jacobian is evaluated as

Uy 0 p 0
_ Ur v, PUr PV, 0
oHn* 1 (3.5)
oW T v? 0 2pv;, 0
12 12 .
I vrhzl U, 7—1—1P+P|V2' + pv? %UT :

iz
where | V |2 = v2 4 02

3.3 Implicit scheme, k — w equations

The equations forming the turbulence model are solved in essentially the same man-
ner as the mean flow equations. The linear system arising at each implicit time step
for the 2-D planar formulation can be summarised as

I 0 (RT = HT) ¥ (n) (n) .
(At e AW, < Rl (3.6)
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where W = 1/J (k,w)” is the vector of primitive variables, AW is the update
in Wy from time level n to n+1 and R,(T"> and H(;) are the flux and source term
residuals arising from the spatial discretisation respectively. For the axisymmetric
case, there are extra terms on the right-hand side, see equation(2.34). The ‘inviscid’
parts of the additional source term are treated implicitly. The modified linear system
for the axisymmetric case is then written as :

I  O0(Rr—Hr—H%) _ (n) (n) a(n)
( e AWy = —RP+HP +H®  (3.7)

where H?p(") are the additional source term elements of the axisymmetric formula-
tion. Its Jacobian is written as (discarding viscous terms)

5
oHZ 1| 3PV v
oW ¢







Chapter 4

Application of axisymmetric
PMB2D

4.1 Laminar Poiseuille flow

4.1.1 Purpose of test case

An analytic solution of the Navier-Stokes equations exists for the case of laminar,
incompressible, fully developed flow through a straight pipe of constant circular
cross-section. A simulation of this type of flow using the laminar, axisymmetric
version of PMB2D therefore provides a useful check on the formulation.

4.1.2 Description of test case

Fully developed flow in a pipe is characterised by a zero pressure gradient across
the pipe, a constant pressure gradient along the pipe and a velocity profile which is
invariant along the pipe. This situation arises because the pressure forces which drive
the flow are exactly balanced by shear forces such that no acceleration can occur.
For fully developed, steady, incompressible, laminar flow through a pipe of radius

7, (axisymmetric Poiseuille flow) the analytic solution for the velocity components

is written as [22] :

vt o= 0

<

- 1 dp* *2 *2
o 4#'* dZ* (T = TO )

(S 3

where r and z are the radial and axial directions respectively. The superscript (%)
denotes dimensional quantities. The flow solver uses non-dimensional quantities, so
it is more convenient to use this expression in the form

19
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v, = 0
Re; d
v, = —L(2_ .2
4p dz
(4.1)
where
’I'_T* Z—z‘K ’U—v: ’U—v:
—l*, —l*’ T_Vot)’ Z_vot)U
* * * V* l*
pz—*p =5 u=”,,, Rezz———p°°*°°
1 e Koo Koo

and [I* is a characteristic length, for example the overall length of the pipe. Here
the reference conditions are taken as the conditions at the centre-line of the inlet.
A subscript oo is retained here to denote such conditions in order to follow the
convention used in section A.2 . The Mach number and Reynolds number of the
flow considered correspond to low speed laminar flow: M, = 0.01 and Re; = 500 .

4.1.3 Grid generation

The grid generation for this test case is straightforward. Two single block grids
were used. Details of the grid dimensions and spacings are summarised in table
4.1. The grids used are shown in figures 4.1 and 4.2. The flow is in the direction of
increasing z. The grids are refined slightly towards the wall because of the higher
viscous stresses expected in this area.

Name Dimensions Grid spacing at wall
Grid A 15 x 25 0.010
Grid B 31 x 51 0.005

Table 4.1: Grids used for Poiseuille flow test case

4.1.4 Boundary and initial conditions

At the outlet, the pressure is imposed at a value of p = 1.0 and the density and
velocity components are extrapolated from the interior. At the inlet, the velocity
is imposed using the analytic expression (4.1) normalised to unity at the centreline.
The density is imposed at p = 1.0, the flow being incompressible, and the pressure
is extrapolated from the interior. The walls are modelled as being adiabatic with
no slip; the velocity components are set to zero and the pressure and density are
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Figure 4.2: Grid B used for Poiseuille flow test case
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extrapolated from the interior.

The following initial conditions were used throughout the domain: p = 1.0, v, = 0.0,
v, = 1.0, p = 1.0.

4.1.5 Results

Solutions were obtained successfully using both grids. The convergence criterion
used was the reduction by eight orders of magnitude of the L2 norm of the residual.
The rate of convergence was slow in both cases, taking around 8000 work units in
total'. This was expected when using a compressible flow solver for such a low
speed flow, but is unimportant here where we are interested solely in the accur-
acy of the solution. The solutions obtained with the coarser grid A are identical
to those obtained with grid B therefore the solutions can be considered grid con-
verged. The pressure coefficient at every cell centre is plotted in figure 4.3 for the
calculations on both grids. This clearly shows features which correspond with the
analytic solution: there is a constant pressure gradient in the axial direction and
no radial pressure variation. Figures 4.4 and 4.5 show the calculated velocity pro-
file for grids A and B respectively. Both are compared with the exact solution for
the calculated pressure gradient. There is excellent agreement between the theory
and the calculation. The computed profiles shown were taken from central sections;
any section could have been used because the profile does not change along the pipe.

Here we are concerned with axisymmetric flow. The analytic solution for planar
Poiseuille flow [22] is similar but the maximum velocity is twice the magnitude of
the axisymmetric case for the same axial pressure gradient. Planar Poiseuille flow
has also been calculated using PMB2D, see [25]. The same approach was used as
above and again very good agreement with theory was obtained. This underlines

the important role played by the ‘additional’ viscous terms (section 2.7.1) in an
axisymmetric formulation.

4.1.6 Conclusions

The laminar, axisymmetric version of PMB2D has been successfully applied to the
case of Poiseuille flow through a pipe. Excellent agreement between theory and
computational results has been obtained. The accuracy of the results establishes
confidence in the axisymmetric viscous treatment.

'1 work unit corresponds to the CPU time for 1 explicit time step
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4.2 ONERA B1 and B2 ogive cylinders

4.2.1 Purpose of study

The ONERA B1 and B2 test case configurations appear frequently in the literature
as benchmark test cases for slender-body supersonic flow, see for example [26]. Data
from the original wind tunnel tests and from other computations are available for
comparison. These are therefore useful test cases for code validation.

4.2.2 Description of test cases
ONERA B1

The ONERA B1 configuration consists of a pointed convex forebody continued tan-
gentially by a circular cylinder of diameter D. The forebody is of length 3D and is

described by the arc of a circle of radius 9.25D. The test conditions reported from
the original experiment are as follows:

Laminar flow
Freestream Mach number, M, = 2.0

Reynolds number, Re, = 0.16 % 10°

Freestream stagnation pressure, pio = 50 % 10®Pa
Freestream stagnation temperature, T;,, = 330K
Wall temperature, T, ~ 315K (adiabatic)
Incidence, o« = 0(°

ONERA B2

The ONERA B2 geometry is very similar to that of the B1. The convex forebody is
described by a parabolic profile, equation (4.2) rather than a circular arc. Again the

forebody is of length 3D. The test conditions reported from the original experiment
are as follows:
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Turbulent flow
Fixed transition at z/D 0.15
Freestream Mach number, M 2.0
Reynolds number, Rep 1.2 % 106
Freestream stagnation pressure, pyo 120 % 10*Pa
Freestream stagnation temperature, T}, 300K
Wall temperature, T, 285K (adiabatic)
Incidence, o 0°
L T (i) " (i>2 (4.2)
D 3\D 18\D

4.2.3 Grid generation

The grids used in this study were standard grids supplied by ONERA as part of a
GARTEUR workshop. Two grids were supplied for each case, the coarser intended
for inviscid (Euler) calculations and the finer for viscous calculations. Details of the
grids are summarised in table 4.2. Grid Blc, the coarser grid for the B1 case, is shown
in Figures 4.6 and 4.7. The other grids are very similar. All of the grids include a
small nose boom, one cell in width, of very small but finite radius (1.0x10~7D). This
feature was intended to aid contributors to the workshop using three-dimensional
flow solvers which would not handle the singularity at the nose. It was not needed
here, but was retained since experiments using a modified grid with the nose boom
removed showed that it has no effect on the solution.

Name Dimensions Grid spacing on cylinder sur face
Blc 61.x53 1+ 107%D
B1f 61 x 85 20010 D
B2c 61 x 53 1.74%x 1072 D
B2f 61 x 85 25010 D

Table 4.2: Grids used for ONERA B1 and B2 test cases

4.2.4 Boundary and initial conditions

All variables were extrapolated from the interior across the outflow boundary. The
wall boundary was modelled as being adiabatic with no slip. A characteristic-based
far-field boundary condition was employed at the remaining two domain boundaries.
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Figure 4.7: Nose region detail of Buler grid, ONERA B1 test case






28

4.2.5 Results

Solutions were obtained for all four cases: inviscid (Euler) calculations for B1 and
B2, laminar Navier-Stokes for B1 and Reynolds-averaged Navier-Stokes with k — w
turbulence model for B2. A summary of the calculations performed is shown in
table 4.3. Included in this table are the CPU times for each calculation on a Silicon
Graphics Indy R5000. In each case, the calculation was considered converged when
the L2 norm of the residual had reduced by eight orders of magnitude. Convergence
histories for each case are shown in Figures 4.8 to 4.11. The Bl Euler calculation
was also attempted using an explicit treatment for the axisymmetric inviscid terms
to examine the effect of the implicit treatment, see Section 3.2. In order to obtain
a solution it was necessary to use twice as many explicit steps before switching to
the implicit scheme, and the implicit CFL number was limited to 50, rather than a
value of 250 used in the calculation shown. As a result the overall time taken for
the calculation was increased by 50%. This supports the present method where the
implicit treatment is used.

Calculation  Grid used CPU time
B1, Euler Blc a0 s
B2, Euler B2c 47 s

B1, Laminar B1f 288 s

B2, Turbulent B2f 822 s

Table 4.3: Summary of calculations for ONERA B1 and B2

Figures 4.12 to 4.17 show the calculated values of pressure coefficient, skin fric-
tion coefficient and local axial force. Comparison is made with experimental data
[27] where possible and otherwise with other computations [28]. Table 4.4 shows a
summary of the calculated total axial force coefficients: Ca, denotes the pressure
component, Cay the viscous component and Ca is the total.

Calculation Ca, Cay Ca
B1, Euler 0.0953 - 0.0953
B2, Euler 0.0947 = 0.0947

Bl1, Laminar 0.0985 0.0511 0.1496

B2, Turbulent 0.0982 0.1310 0.2292

Table 4.4: Summary of calculated azial force coefficients

Good agreement was obtained with the experimental values of pressure coefficient
for the B1 case, see Figure 4.12. The calculated skin friction coefficient curve, see
Figure 4.13, agrees well with the ONERA computational results over the forebody.
However, the two curves begin to diverge downstream, and at z/D =15 the ONERA
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computation predicts nearly twice as much skin friction. The calculated local contri-
bution to the axial force for the Bl case, Figure 4.14, shows up the same differences
between the results i.e. a good match for the pressure component and a poor match
for the viscous component. The axial force coefficient values quoted in Table 4.4 are
calculated as the area underneath the local axial force curves. The good agreement
of the pressure values with experiment shown (and with ONERA pressure results
not shown) is encouraging from the point of view of verification of the flow solver.
It is not possible at present to say much about the skin friction results since we only
have the results from two computations, although the difference in results is disap-

pointing. More computational results will be made available form the GARTEUR
Action Group in the future.

The calculated pressure coefficient for the B2 case matches the experimental values
very well over the forebody, but over the remainder of the surface the computational
results seem to be offset slightly, see Figure 4.15. Comparison with the ONERA res-
ults for Cp values is not shown, but the agreement is very good. The calculated
skin friction coefficient curves for the present calculation and from ONERA are in
fairly good agreement, see Figure 4.16. Note that the k¥ — w turbulence model was
used for the present calculation, and ONERA used a Baldwin-Lomax turbulence
model. Comparing the local contribution to the axial force for the B2 case with the
B1 case, Figures 4.14 and 4.17, for the B2 case the effect of viscous drag appears
to be relatively more important. This is a trend that we expect since the B2 case
is turbulent with a higher Reynolds number. Again it will be possible to read more
into these results when other computational results become available.

4.2.6 Numerical implementation of the turbulence model

In the present method, a number of explicit (backwards Euler) iterations are per-
formed before switching to the implicit scheme with a high, constant CFL number
(say 250). Experience has shown that this is an effective way of initiating the calcu-
lation. During this explicit stage in the turbulent B2 calculation the scheme became
unstable. This seemed to be caused by the appearance of small and negative values
of k and w. Other workers have also experienced such difficulties in the initial stages
of a calculation when using two- and one-equation turbulence models [6], [29], [30],
[31]. The various remedies reported apply specifically to implicit schemes. Here the
problem arises during the explicit stage, and the straightforward remedy of limiting
the values of k£ and w to be no less than the freestream values was applied. These
limits were only used during the explicit stage. Figure 4.10 shows a convergence
plot of the calculation. It is noted that the number of explicit iterations required
is relatively large and that the residual for the turbulent quantities is small in the
initial stages. An explicit CFL number of 0.4 was used here for both the mean flow
and the turbulence equations. In an attempt to speed up the calculation by making
the turbulent quantities do more work, the calculation was re-run using an explicit
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CFL number of 0.4 for the mean flow equations and 0.6 for the turbulence equations.
Figure 4.11 shows a convergence plot of the calculation. In this case less explicit

steps were required and the overall CPU time for the calculation was reduced by
nearly 20%.

When using an implicit scheme and a two- or one-equation turbulence model, the
treatment of the source term Jacobian arising from the time linearisation of the
updates for the turbulent quantities is reported to be important for stability, partic-
ularly during the initial stages of the calculation [6], [24], [29], [30], [31]. As discussed
above, in our case the initial instability problem is dealt with during the explicit
stage. The effect of the suggested modified implicit schemes was investigated in any
case for the B2 problem. The modified schemes all involve some variation of the
turbulent source term Jacobian in the form of neglecting off-diagonal terms, varying
the size of coefficients or altering the terms in the matrix according to sign changes.
The modified schemes showed no improvement, either regarding robustness (the
number of explicit steps required was unchanged) or speed of convergence.

4.2.7 Conclusions

The axisymmetric version of PMB2D has been successfully applied to two supersonic
slender-body aerodynamics problems. The results have been compared with exper-
imental data and computational data from other sources. At present the agreement
with other data is encouraging although a fuller analysis will be possible in the future
when further data becomes available. Together with other succesful applications of
the code to this type of flow [32], this gives confidence in the accuracy of the code
for this type of problem. Some useful insights into the numerical implementation of
the k — w turbulence model have also been gained.
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Figure 4.18: Mach number contours for ONERA B2 test case
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4.3 GARTEUR Base Flow

4.3.1 Purpose of study

The aerodynamics of the base region strongly influences the drag of a projectile.
However, reliable prediction of base flow for the wide range of possible conditions
(and geometric configurations) that a designer may wish to examine has still to be
attained. Semi-empirical and multi-component methods are very useful in this field
but the time-averaged Navier-Stokes approach is the most credible and promising
[33], [34]. However, despite the apparent suitability of a Navier-Stokes approach to
this type of aerodynamically complex problem results of studies to date have not
always been quantitatively satisfactory [33]. Recent studies [6], [7], [35], [36] [37],
have indicated the importance of grid generation and turbulence modelling . In
particular, the algebraic Baldwin-Lomax turbulence model is dismissed as wholly
inappropriate for base flows and the results for k¥ — ¢ models and variations are
better although inconsistent. Some improvement is reported through the use of more
sophisticated turbulence models [6]. The present study aims to evaluate the ability
of the present method, which uses a k—w turbulence model, to provide accurate base
flow predictions by examining a test case particularly designed for Navier-Stokes flow
solver validation. At the same time the robustness of the present method, the effort
required by the engineer in its application and the overall calculation time are kept
in mind since accuracy is not the only consideration of the designer operating in a
commercial /industrial environment.

4.3.2 Description of test case
AFTERBODY TEST CASE 1B: CONICAL BOAT-TAIL
The afterbody geometry consists of a short cylindrical section followed by a conical

boat-tail at 6° to the cylinder’s surface and one cylinder diameter D in length. The

geometry and test conditions are described in detail in [38]. The flow conditions are
summarised as follows

Fully turbulent flow

Freestream Mach number, M, = 0.35
Reynolds number, Re;, = 1.54 % 10°
Freestream stagnation pressure, p,,, = 10°Pa
Freestream stagnation temperature, 7,,, = 330K
Incidence, o = 0°
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4.3.3 Grid generation

The grids used for previous numerical studies of this test case [34] vary widely
in fineness, topology, stretching and far-field boundary extent. In addition, grid
convergence checks were absent from these studies. In the present work, the far-
field boundary extent was set at the largest values used in the previous studies (15
diameters downstream of the base and 5 diameters normal to the axis of symmetry).
In order to determine the number of grid points to use, the number of points in each
direction from the coarser grids in [34] was noted, and a grid with four times as
many points in each direction was constructed. Successively coarser grids were then
obtained by extracting points from this very fine grid, see Table 4.5. This hierarchy
of grids formed the basis of the grid convergence study, see Section 4.3.5. The finest
grid used here has more than twice as many points as any used in the previous
studies. Figure 4.19 shows the coarse grid.

Number Grids used :
of points a(very fine) b(fine) c(medium) d(coarse)
Along base 121 61 31 16
Along boat-tail 161 81 41 21
Along symmetric line 281 141 71 36
Normal to symmetric line 281 141 71 36
Total 105163 26583 6793 1773

Table 4.5: Summary of grid dimensions

4.3.4 Boundary and initial conditions

The boundary layer thickness at the inflow boundary is included in the report of
the experimental results [38]. In order to obtain values to impose at the inflow
boundary for the main calculation, a short preliminary calculation was performed
using the same conditions on a cylindrical body to simulate the flow upstream of
the afterbody. At the axial position where the calculated boundary layer has grown
to the reported thickness the values were extracted and used for the inflow con-
dition of the main calculation. All of the flow variables are imposed except the
pressure which is extrapolated from the interior since the flow is subsonic. How
the inflow boundary condition was tackled in the previous calculations was not in-
cluded in the respective reports. The conditions at the remaining boundaries are
more straightforward. The wall boundary was modelled as being adiabatic with no
slip. Symmetry was imposed along the axis of symmetry and a characteristic based
far-field boundary condition was employed at the remaining two domain boundaries.

The calculation was initiated from freestream conditions in order to obtain the coarse
grid solution. This solution was used as the initial condition for the subsequent
medium grid solution and so on. In this way the calculations on the finer grids were
initiated from already ‘good’ conditions thus reducing overall run times.
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Figure 4.19: Coarse grid used for GARTEUR afterbody 1B

4.3.5 Results

Results were obtained on the coarse and medium grids without any problem. How-
ever, on the two finer grids it was not possible to obtain a solution without altering
the turbulence model implementation in an attempt to circumvent an instability
problem. The solution would proceed apparently normally before becoming unstable
in the vicinity of the free stagnation point and crashing. The initial manifestation
of this instability is a sharp increase in the calculated turbulent kinetic energy pro-
duction term P (see Section B.2). A variety of alternative turbulent source term
Jacobian matrices, see Section 4.2.6, were implemented in an attempt to improve
stability with no success. In order to obtain a solution, the ratio of production to
dissipation pk/ﬁk was limited. Using the fine and very fine grids the maximum
value of this ratio resulting in a stable solution were 1.7 and 1.6 respectively. Note
that for the coarser grid calculations (and for calculations on the finer grids em-
ploying first-order convective accuracy) this ratio could reach 4.0 in the converged
solutions. Figure 4.31 shows a contour plot of this ratio for the solution on the
medium grid. The highest values occur at the beginning of the boat-tail on the
cylinder, in the free shear layer and in the recirculation region. Imposing a limit
on this ratio forces a reduction on the amount of turbulent kinetic energy in the
flow and aids stability in the vicinity of the free stagnation point. Note that at the
free stagnation point the ratio becomes negative. In addition, a stable solution was
also obtained on the fine grid by ‘freezing’ the turbulent quantities at their values
20 iterations before the failure and continuing to update the mean fow quantities
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normally. The justification for this is that before the solution becomes unstable
the residuals for the mean flow and turbulent quantities have already decreased by
more than three orders of magnitude, the calculation having been initiated from the
medium grid solution, so the turbulence field should be a reasonable approximation
to the ‘real’ solution. At the least a solution obtained in this way provides a useful
comparison with the solution obtained by using a limit as described above.

Figure 4.20 shows the calculated pressure coefficient distribution along the symmet-
ric line using all four grid levels. The results shown for the fine and very fine grids
are those obtained with the production-dissipation limit described above. Figure
4.21 shows how the calculated pressure coefficient distribution along the symmetric
line for the ‘frozen turbulence’ and ‘limit’ calculations on the fine grid differ slightly.
From these figures it is clear that a grid converged solution has not been obtained.
It is not possible to blame the differences between the fine and very fine grids solely
on the uncertainty caused by the limit used in the calculation. To help indicate
whether the grid hierarchy should be sufficient to obtain grid independent results,
laminar calculations were also performed. The calculated pressure coefficient dis-
tributions along the symmetric line are shown in Figure 4.22. These are also not
grid converged. The calculated pressure coefficient along the base compared with
experimental data is shown in Figure 4.23. These results again indicate that grid
independence has not been achieved and also show poor agreement with experiment.
The present pressure coefficient results are similar to the numerical results presented
in [34] regarding the location of the maximum and minimum pressures on the sym-
metric line and generally poor prediction of the base pressure. The present study
has strongly indicated the necessity of performing a grid independence study, raising
considerable doubt over the validity of computational results obtained without the
benefit of such a study even before possible modelling shortcomings are considered.
Previous experience and CFD results from other researchers had suggested that the
grids used here would be sufficiently fine so the lack of grid independence is disap-
pointing. To complete the study an even finer grid should be used, although solving
the instability problems noted above is perhaps a higher priority.

Figures 4.24 to 4.29 show the calculated axial velocity and turbulence kinetic energy
profiles for the medium and fine grids compared with experimental data. Figures

4.30 and 4.32 show the calculated pressure and velocity vector field for the medium
grid respectively.
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