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Abstract

This report describes how the two-dimensional planar flow solver PMB2D has been 

modified for axisymmetric flows. The equations describing axisymmetric flows are 

derived. The issue of conservation is discussed. The modified linear system arising 

at each implicit time step is detailed. Finally, results for inviscid, laminar and 

turbulent flow test cases are presented.
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Chapter 1 

Introduction

1.1 Background

The planar two-dimensional, steady-state flow solver PMB2D developed by the CFD 

group has reached a level of maturity enabling application to a diverse range of aero­

dynamic problems. The main features of the flow solver are outlined here; for full 

details see [1], [2].

A cell-centred finite volume method is employed. Osher’s scheme and MUSCL vari­

able interpolation are used to discretise the convective terms and central differencing 

for the diffusive terms. The linear system arising at each implicit time step is solved 

using a Generalised Conjugate Gradient method. A Block Incomplete Lower-Upper 

(BILU) factorisation is used as a preconditioner. A structured multi-block grid 

system is employed. The BILU factorisation is decoupled between blocks to reduce 

communication. This results in efficient implementation on distributed memory par­

allel computers. An important feature of the flow solver is the use of approximate 

Jacobian matrices for the left hand side of the linear system. This has led to sub­

stantial reductions in memory and CPU-time requirements compared to the use of 

exact Jacobians. The k — uj turbulence model is employed with MUSCL variable in­

terpolation and the Engquist-Osher scalar conservation law for the convective terms.





Methods for unsteady and incompressible flows are discussed in [3] and [4] respect­

ively.

1.2 Motivation

In order to simulate large, complex aerodynamic problems using CFD a fully three- 

dimensional flow solver is necessary, using a multi-block approach or otherwise to 

cope with geometric complexity. However, there is a class of aerodynamic flows 

for which it is not necessary to resort to the complexity and expense of a full 3- 

D method. It is possible to make use of an existing two-dimensional flow solver 

to develop an axisymmetric flow solver, thus achieving a level of three-dimensional 

capability, albeit limited to axisymmetric geometries at zero incidence and sideslip. 

For this type of problem an axisymmetric rather than a full 3-D solver is a more 

eSicient tool, considering the comparatively large amount of memory and CPU time 

required for 3-D calculations. The equations for axisymmetric flow can be cast in a 

form very similar to those for planar two-dimensional flow, which can then be solved 

using a numerical scheme with few alterations from the planar case. Examples of 

interest include slender bodies, base flows and nozzle/plume flows. This effort is 

therefore worthwhile because the modification required is relatively straightforward 

and the range of application surprisingly wide.

Several examples of computational aerodynamics codes solving the Euler and Navier- 

Stokes equations appear in the literature, for example for base flow applications [5], 

[6]) [7]) [8]> [9], [10], [11] and missile forebodies [12], [13], [14], [15]. Some other 

applications are hypersonic flow [16] and internal nozzle flow [17]. Applications to 

underexpanded jets are discussed in [18]. Some flow solvers use the present approach





of considering the axisymmetric case as an extension of the two-dimensional case [5], 

[6], [9], [10], [11], [12], [14], [16], [17], thus allowing one flow solver to be used for two 

different types of flow. This work aims to investigate the modifications for axisym­

metric flows to the method described above. This is worthwhile since the planar 

method has been observed to work well for high speed flows which are frequently 

encountered by axisymmetric bodies. Speciflcally, we shall consider supersonic flow 

around forebodies, underexpanded jet plumes and high speed base flows.

1.3 Structure of report

This report begins by presenting the equations for axisymmetric flow. Comparison 

is made with the equations for planar flow. The alterations made to the original 

linear system and the issue of maintaining a conservative numerical scheme are then 

discussed. The remainder of the report concerns the application of the axisymmetric 

flow solver to various test cases to evaluate accuracy and efficiency in solving a range 

of flows, and hence the utility of the flow solver to industry.





Chapter 2

The equations for axisymmetric 

flow

2.1 Introduction

In this chapter the Navier-Stokes equations and the two-equation k — lo turbulence 

model are presented in forms suitable for axisymmetric flow; the equations are writ­

ten in cylindrical coordinates (r, 9, z) with the assumptions of zero angle of incidence 

and sideslip {djdO = 0) and no spin [vq = 0). A large part of their derivation from 

general vector/tensor forms is also included for completeness. This should help to 

highlight the origins and purpose of the ‘extra’ terms present in the axisymmetric 

equations compared to the two-dimensional equations.

2.2 Mass continuity

The equation of mass conservation, or continuity equation, is written in conservation 

form as [20],[21]:

| + V.(,V) = 0 (2.1)

where p is the fluid density and V is the velocity vector which has components 

{yr.lVg,vz) in cylindrical coordinates. The divergence of a vector A in a cylindrical





frame is

V.A = dAr
dr ^ r r d0

1 dAe dA+ dz (2.2)

and therefore in a cylindrical frame equation (2.1) becomes

^ + ^(^r) + ;^(pn0) + -(pu2) = —

With our assumptions of axisymmetric flow with no spin this reduces to

(2.3)

(2.4)

2.3 Momentum conservation

The equations of motion or momentum equations neglecting body forces can be 

written in vector form as [20]

dV a+ Pv-vv + VP - Iv (V.V) -= 0 (2.5)

where V is the velocity vector. When expanding the vector terms in equation (2.5) 

it should be recalled that in cylindrical coordinates the unit vectors are not invariant

in space [21],[22]. Following equation (2.2), the divergence of velocity in cylindrical 

coordinates is given by

V V = ^Vt 4-^4-.! ^V° ^Vz 
dr r r dO dz

The strain tensor VV in cylindrical coordinates is:

(2.6)

/

VV =

dVr dvff
dr dr

1 dvr vq
r d$ T

1 dve . Ur
T ae T

dVr
dz

dVD
dz

dvz \ 
dr

1 dvzr ae

dvz 
dz '

(2.7)





Expanding the Laplacian of the velocity vector in cylindrical coordinates gives 

V2V = V. (VV) =

/ 
f̂ir
__  I Idv,
dr \ 9r /' r

d_
dr

1 dVr I / 1 dVr
r dr ' r de \r d9

V

—^-----4- ^ ^ (i dve , vr\ \
de r ) ^ dz\dz) ~ V + “j \

+ lA < Vr,\ , d_ (dt^\ IfldVr Vg \
r dr ^ rde\r de + r )+^ ) ~ f ~ fj

_i_ fldv7\
' r dr 'T r de \r de )

A (dv, \ 
dr \ dr J

d_ (dx^\ . 
dz \ dz )

I -I- A (^) 
^ dz \ dz /

(2.8)

Finally the pressure gradient term is

Vp =

/ ^ \ 
dr

1 dp 
r de

\ dz /

(2.9)

The equations (2.5) to (2.9) are the momentum conservation equations in cylindrical 

coordinates. It is convenient at this stage to introduce our assumptions concerning 

axisymmetry, viz. d/d9 = 0 and = 0 . The momentum equations in the radial 

(r) direction and axial (z) direction then become respectively

dvr dvT dp p d
dz ) + dr 

d (dvT
dr

1 dvr
dr \ dr J + r ~dr

dvr
3 dr \ dr 

d

dv.
r

dv.
dz

dz V dz 0 (2.10)

dt
dvz
dr

dvz \ + ^ fdvT
dz j dz 3 ^ 

d / dvz 
dr V dr-P Jz ' + ldVz 

r dr

dv
r dz 
d f dvz 
dz \ dz (2.11)

These equations can be simplified, using the continuity equation (2.4), to





where the shear stress components are written as

Pv'r + {Trr ~ Tee)

r
pvrvz + T̂  

r

(2.12)

(2.13)

= -lit 2
. dvT 
dr 
dvr.

2 / dvT vr
3 \ 9r r dz ) )

_ „ , 2 fdvr vr dvzr" “ A‘l,2a2 “3ia7 + 7+&
^ „ foVr 2 fdvr , '<Jr , dvz
™ = ■'‘i27-3lar + 7+a7

(2.14)

Trz -
' dvT dvz

■/‘la7 + aT

As will be seen later, it is convenient to re-arrange equations (2.12) and (2.13) to 

the following form (which resembles the planar equations)

d r s d ( 2 . d-(,mr)+J.(fKT+p)--
dr
d f . d 

+Tz(im'v^)^Yz

dr 3 \ dz

9 f ^ d f .9 
m {fm‘) + a; ^

dvz dvT
,‘l s7 +77

dvz dvr
77 +77

dvr 
dr

fru^ 4jj, (I dv-
^3 V r 9r

Vr

(2.15)

d+SK+P)

dz
n I 9^ _-f9Vz ^ 9Vr

dz 3 \ dz + dr
pVrVz p /1 dvr dvz

r r \3 dz ^ dr

(2.16)

2.4 Energy equation

The equation for the conservation of energy can be written as [21], [23]

de
P- + P(V.V) -v.q+f+4 (2.17)





ISwhere e is the internal energy per unit mass, q is the heat transfer vector and Q i 

the heat added per unit volume by external agencies. $ is the dissipation function, 

which can be written as

^ ~ H (VV + VVT): VV--(V.V)2
3 (2.18)

We are interested in the form of the energy conservation equation suitable for 

axisymmetric flow. In cylindrical coordinates, with the assumptions that d/dO = 0 

and V0 = 0, the dissipation function becomes

$ duT
dr

duz dur 
dr ^ dz

)

2 / dur uT du 
A dr r + dz

duz\ 
dz ) (2.19)

Equation 2.17 can then be written, with the same assumptions, in the form

de dVr Vr dv.
Pdt+P[W + V+ dz 

dv,

dqT _ ^ ^
dr r dz

dv.'T , (^VT . dvz\ dvz vr

+ I ^ + aT ]T" + a7T" + 7™ (2.20)

assuming also that there is also no external heat addition. It can be shown using 

the continuity equation (2.4) that

dt
9 ( 9 ( ^ 9 f 2^
S (FO.) + + - ((7f) + rpvTvz dvz

= P- dt

(2.21)

(2.22)

The following equation is obtained by substituting equation (2.21) into (2.12) mul­

tiplied by vr, and adding this to the equation obtained by substituting (2.22) into 

equation (2.13) multiplied by vz :

pJt W/2 + ”'/2) + - v'^ -
ai dr dz dr dz dr d:dz 'JZ dr dz

vT {ttt - Tee) , vzTr+ (2.23)





An equation representing the conservation of energy per unit mass is then obtained 

by adding together equations (2.20) and (2.23) :

dPdt + v2t/2 + U'/2) + ^ + 9'-) + ^ ^ + 9.)

-^{VrTrr+VzTTZ)~^{vzTzz + VTTTZ) = ^Tr + VzTrz ~
(2.24)

The total energy per unit volume Et is calculated as

Et = P{^e + \iVr^v2S^
It can be shown using the continuity equation (2.4) that

PJt{Etlp) = f+ |(-^0 + ^ + |(.^s)
Hence equation (2.24) becomes

dEt d Q fs
~m+d^{'Vr (^Et + + ^ (Et + ^ (Vr'^rr + VzTrz - qr)

Q
—^{vzrzz + VTTrz-qz) = ZV-i<Et^P) + Vrrrr+VzTTZ Qr (2.25)

As will be seen later, it is convenient here to express this equation in the following 

form (which resembles the planar equations):

dEt d . . Q
~^ + '^^Vr ^Et + + ^ + P))

d
¥r<'VT

dz
// I 2^_ 2 ^

dr Z\dr + dz

dz \ L V dz ^\dr ^ dz

. r (dur duz \ 1 I """ ~qT]
dr )\ Qzf

dur duy 
P 1 — +

dr 3 dz 3 dz 1 qr

(2.26)

2.5 Non-dimensional, Reynolds-averaged form

The equations shown above are in dimensional form. In practise it is more convenient 

to use non-dimensional quantities. The procedure used for non-dimensionalising is
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described in sections A.2 and B.l. The Reynolds-averaging procedure, see appendix 

A.3, enables consideration of turbulent flow. The equations for mass continuity

(2.4), momentum (2.16 and 2.15) and energy (2.26) become in non-dimensional, 

Reynolds-averaged form :

Mass continuity

dP , 9 t . d . x
» + a;(^r) + gj(^.) = pvT

(2.27)

Momentum

S + |:W+P>-|:
dr

, 9 ( . d
+Tz(->n”v-) ~ Tz

Re 

ii + Mr
Re

- (9dvT 2 fdvz dvr\ 2 \1

f j-
\dr + dz)

= _P^ + 4(m + Mr) (1 dvT 
r 3Re

(1 dvr vT \
r dr r2 )

(2.28)
8 {pvz) + -^{pvrvz)-^
dt

dz

fj- + Ht
Re

M +Mr
Re

(l)dvz 2 (dvz dvr\ 2 , V
+ arj + 3'’*)

fdvz dvr\-[ ^ d , 2
I aT +:&)]+& ('»•+!’)

_ _Pvrvz _j_ M T Mr
r rRe

(1 9Vt , 9vz\
\3 dz dr )

(2.29)

Energy

dEt d , , d
-gT + ^ (B, +P)) + Wr (V, {Et + p))

__a
dr + fJ’T f du

Re \ dz 
^J■+ ^^T f duT

Ih

f [m + Mt 2fdur duA 2
rl Jk l2-^-3+ s^J+^

-—!v [P + PT fnduz 2 (duT duA 2 V
dz\z[ Re 3[~^ + -dr) + 3pk)\+V\

--^1___+ d ( I fit
dr\{l- 1) Ml \Pr PrTj dr] ^2: ( (7 - 1) Ml l^Pr

-Vr [Et +p) + _
Re [ 2 dr 3 dz

(~
\Pr

+

+ ^)]}
Mr

(7-1) M2

Prx 
4wr duz 2vr
~T1a + ~Tpk

Mr \ dT+
Ptt J dr 

(2.30)
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2.6 The two-equation k — to turbulence model
The k — u turbulence model of Wilcox [24] is written in non-dimensional, general 
vector-tensor form in appendix B.l. In cylindrical coordinates, for axisymmetric 
flow with no spin, this becomes

Turbulence Kinetic Energy

-(pk) + -(Pkvr) + -(pkvz)--)y- , t dk{n + a Ht) — d
+ dz (/i + a* iiT) —U

dzjj
= fiTP - \PkS - !3*pku - ^ +

o r Re
(2.31)

Specific Dissipation Rate

{pP) + ±(Pu,vr) + fz(Pu,vi)-l-i(l:
dt

. du
{P + aPT) — d

+ dz
(jj

= “¥ PrP - ^pkS
0 2 pCJVr 1 f 1- ^ i -r ite 1 r

I \

(2.32)

In the above relations.

P = dvz dVr 
dr dz

-h2

S - — 4- ~ —
dr dz r

2 fdvr dvz Vr
3 \ dz r

2.7 Curvilinear form 

2.7.1 Mean flow equations
Compare the equations for axisymmetric flow, equations (2.27) to (2.30), with those 
for planar flow (see appendix A), swapping the radial ordinate r for y and the 
axial ordinate 2 for x] the left hand sides of the equations are identical. Hence the 
axisymmetric equations can be considered as consisting of the 2-D equations plus a 
source-like correction term for axisymmetry. See section (3.1) for a discussion of the 
numerical implications. The transformation of the left-hand side of the equations 
into (^, T)) space is therefore identical to that described for the two-dimensional equa­
tions in appendix A.4. The right hand side of the transformed system of equations 
is written simply as

i(s-+S”) (2.33)
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after splitting the source-like term into inviscid and viscous parts.

2.7.2 Two equation k — u; turbulence model
The axisymmetric (equations 2.31 and 2.32) and the two-dimensional (see appendix 
B) formulations for the k and uj equations can be compared in a similar manner to 
above; the axisymmetric equations can be considered as consisting of the 2-D equa­
tions plus a correction for axisymmetry. This correction is treated as an additional 
source term. Again the transformation of the left-hand side of the equations into 
i^yV) space is the same as for the planar equations, see equation (B.5). The right 
hand side of the transformed system of equations can be written as

i(sr + sj) (2.34)

where Sy is the original’ source term from the two-dimensional equations and Sy 
contains the additional axisymmetric terms.

I
I





Chapter 3

Modified numerical scheme

3.1 Axisymmetric source terms
In the present method, the equations for axisymmetric flow are formulated to look 
like the planar flow equations except for a non-zero right-hand side which is treated 
as a source term (sections 2.7.1 and 2.7.2). The fluxes on the left-hand side are 
treated as in the planar case. In this way an existing planar flow solver can be mod- 
ifled easily for axisymmetric flow. This approach, which we will call here approach 
A, is popular in the literature, see [5], [6], [9], [10], [11], [12], [14], [16], [17]. Another 
approach appearing in the literature [14], [15], [19], approach B, uses an alternative 
formulation. The equations (3.1) show the axisymmetric Euler equations written 
in this manner. In this approach the source terms of approach A do not appear, 
being contained in the radial flux terms on the left-hand side. The source term here 
consists only of a pressure term in the radial momentum equation. The manner 
in which the fluxes are calculated for approach B cannot be taken directly from a 
planar method since the flux quantities are different.

m {rp) + (r/Wr) + ^
^ (r/wr) + ^ (r + p]) + ^ {r(mTvz) 

irPvz) + {r(WTvz) + A (r [/TO2 + p-^ j
dt

m{rpE) + ^ ^ )

0

P

0

0

(3.1)

Good results are reported in the literature for both approaches and neither approach 
is reported to out-perform the other concerning accuracy or numerical implementa­
tion issues. Accepting then that both approaches are valid, it is nonetheless inter­
esting here to briefly discuss and compare the approaches since such a discussion 
does not appear in the literature, and at the same time hopefully gain some insight

13
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into the physical meaning of the source terms. For guidance we can refer to the 
application of the integral form of the conservation laws to a control volume fixed 
in space, which can form part of the derivation of the partial differential form of the 
equations [20]. This will shed some light on the origin and purpose of the source 
terms. Diagrams of control volumes for derivations in Cartesian (x, y, z) and cyl­
indrical (r, 6, z) space are shown in Figures 3.1 and 3.2.

Note that in Figure 3.2, the areas of the faces in the [0, z) plane of the control volume 
are not equal; one has area (r - dr/2) and the other (r dr/2). Note also that a 
pressure force acting normal to the control volume faces which are of area drdz has 
a component in the radial direction. This means that when the integral forms of the 
conservation laws are evaluated for this control volume, involving fluxes through and 
normal stresses acting on each face, terms are retained in the resulting equations 
which cancel out due to symmetry in the equivalent procedure for the Cartesian 
control volume. These terms are the axisymmetric source terms. An example is 
shown below; first the equation for conservation of x-momentum is derived using 
the Cartesian control volume, then the radial momentum equation is derived using 
the cylindrical control volume and assuming d/dO = 0 and = 0 . The equation 
for the conservation of momentum, discounting viscous effects and heat transfer, 
can be written in integral form as [20]

^J^pVdQ + jfpV(V.dS) = -fsPdS

where 5^ denotes the control volume and S its surface.

Momentum conservation in Cartesian coordinates (x-direction) 

Refer to equation (3.2) and Figure 3.1 :

(3,2)

dt dxdydz — dydz pu
d {pu2) dx

dx - \pu ~

dxdz

— dxdy

d ipuv) dy ((mv - - [puv 
d (puw) dz f

puw--- ^T-[puw-
= dydz

d {pu2) dx^ 

dx 2 ^
d {puv) dy' 

dy 2 / 
d {puw) dz'

dz Y,
dp dx f dp dx\

P dx 2 \ dx 2 )

which reduces to

^t{fm) + ^{pa2+p) + ^[puv) + ^z{(mw) = 0
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Momentum conservation in cylindrical coordinates with axisymmetry ( 
direction)

Refer to equation (3.2) and Figure 3.2 :

djpVr)
dt rdOdrdz — rdBdr pvrvz — d {pvTvz) dz

- (r

■ (-4)
dr 2 

dOdz

dz 2 

+

+ rdOdr pvTvz + d{pvrvz) dz
dz

d9dz(’4)
dp dr ~\ ( dr\

-[r + T)

2 d (pv^) dr
PV' + drY

dp dr 
P + —— y dr 2dOdz

d9 d9
+ p—drdx + p—drdx

Id 2d

which reduces to

~di {^pVr>i + '^^pv2t+p)+^ {(^rVz) =dr dz

The axisymmetric source terms can be interpreted physically as the additional mass, 
momentum or energy, compared to the planar case, which enters the control volume 
normal to the (r, z) plane due to the axisymmetry of the flow. The effect of these 
terms is therefore equivalent to the effect of a surface source acting on the (x, y) plane 
in the planar case. Restated, the axisymmetric equations written as in sections 2.7.1 
and 2.7.2 can be considered as the planar two-dimensional equations with additional 
surface sources of mass, momentum and energy which account for the shape of 
the control volume in cylindrical coordinates. We can therefore conclude that the 
present treatment of our right-hand side as source terms, approach A, is reasonable. 
Approach B may be attractive to the researcher developing an axisymmetric flow 
solver from scratch due to the neater appearance of the governing equations when 
written this way. The inclusion of the radial ordinate in the flux quantities, a feature 
which does not occur naturally from a direct application of the integral form of the 
conservation laws as shown above, does appear slightly artiflcial in that it is difficult 
to interpret physically.

3.2 Implicit scheme, mean flow equations
The inte^ation in time of the discretised equations to a steady state is done using 
an implicit time-marching scheme. The linear system arising at each time step for 
the 2-D planar formulation can be summarised as [2] ;

( I 3R\ .
At + SwjAW = -R<”> (3.3)
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■^x

Figure 3.1: Volume element in Cartesian coordinates

Figure 3.2: Volume element in cylindrical coordinates
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where W is the vector of primitive variables, AW is the update in W from time 
level n to n+1, R" is the flux residual arising from the spatial discretisation at the 
time level n, and At is the time step. For the axisymmetric case, there are extra 
terms on the right-hand side, see equation(2.33). The axisymmetric inviscid part is 
treated implicitly, but the viscous part is treated explicitly. Numerical experiments 
have shown that it is necessary to have an implicit treatment for the axisymmetric 
inviscid terms if a tight restriction on the allowable time step is to be avoided. The 
explicit treatment of the axisymmetric viscous terms does not have a deleterious 
effect on stability or limit the allowable time step, on comparison with the original 
planar code, so an implicit treatment was not attempted. See Section 4.2.5 for an 
example of the importance of the implicit treatment for the axisymmetric inviscid 
terms. The modified linear system for the axisymmetric case is then written as :

(±
\At

d(R- W)
AW = -R(n) + Hi(n) -f H,;(n) (3.4)

where H* and are the inviscid and viscous parts respectively of the discretised 
source term. System (3.4) is solved using an identical scheme [2] as used for (3.5). 
The inviscid source term Jacobian is evaluated as

dW
Im

1
r

V-rV^ PVr

M2
22 pVrVz

PVz

2pvr

Ivl

0

0

jp + p-i~ + pv; ^vr

(3.5)

where \ y ^ = v^ -\-v1z

3.3 Implicit scheme, k — uj equations
The equations forming the turbulence model are solved in essentially the same man­
ner as the mean flow equations. The linear system arising at each implicit time step 
for the 2-D planar formulation can be summarised as

I dCRT-HTyi
— + - —— 1 AWr =At dW7

R(n) I rjC71) 
I- A (3.6)
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where — 1/J (k,u)T is the vector of primitive variables, AWr is the update
in WT from time level n to n+1 and and are the flux and source term 
residuals arising from the spatial discretisation respectively. For the axisymmetric 
case, there are extra terms on the right-hand side, see equation(2.34). The ‘inviscid’ 
parts of the additional source term are treated implicitly. The modified linear system 
for the axisymmetric case is then written as :

(jT + 1(R.-Hr-HH|AWT =
At dWn -RJ1) -f- + H“(n) (3.7)

where HT^n^ are the additional source term elements of the axisymmetric formula­
tion. Its Jacobian is written as (discarding viscous terms)

dW

\pVr

0 (l -1- !«) pur
(3.8)





Chapter 4

Application of axisymmetric 

PMB2D

4.1 Laminar Poiseuille flow

4.1.1 Purpose of test case
An analytic solution of the Navier-Stokes equations exists for the case of laminar, 
incompressible, fully developed flow through a straight pipe of constant circular 
cross-section. A simulation of this type of flow using the laminar, axisymmetric 
version of PMB2D therefore provides a useful check on the formulation.

4.1.2 Description of test case
Fully developed flow in a pipe is characterised by a zero pressure gradient across 
the pipe, a constant pressure gradient along the pipe and a velocity proflle which is 
invariant along the pipe. This situation arises because the pressure forces which drive 
the flow are exactly balanced by shear forces such that no acceleration can occur. 
For fully developed, steady, incompressible, laminar flow through a pipe of radius 
r* (axisymmetric Poiseuille flow) the analytic solution for the velocity components 
is written as [22] :

V,
I dp* 

Ap,* dz* {rt2 - rl2)

where r and z are the radial and axial directions respectively. The superscript (*) 
denotes dimensional quantities. The flow solver uses non-dimensional quantities, so 
it is more convenient to use this expression in the form
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Vr

Vz

0
Rei dp 
Ap dz (r2 - rl)

(4.1)

where

r = r
F’

2’

Z = P Vr =
V* ’roo

u,, =

p = p
p* V*2'roo OO

PP=
Poo

Rei

V*

o* V*l*roo VOO1

P*oo

and I* is a characteristic length, for example the overall length of the pipe. Here 
the reference conditions are taken as the conditions at the centre-line of the inlet. 
A subscript oo is retained here to denote such conditions in order to follow the 
convention used in section A.2 . The Mach number and Reynolds number of the 
flow considered correspond to low speed laminar flow: = 0.01 and Ret = 500 .

4.1.3 Grid generation
The grid generation for this test case is straightforward. Two single block grids 
were used. Details of the grid dimensions and spacings are summarised in table 
4.1. The grids used are shown in figures 4.1 and 4.2. The flow is in the direction of 
increasing z. The grids are refined slightly towards the wall because of the higher 
viscous stresses expected in this area.

Name Dimensions Grid spacing at wall
Grid A 15 X 25 0.010
Grid B 31 X 51 0.005

Table 4.1: Grids used for Poiseuille flow test case

4.1.4 Boundary and initial conditions
At the outlet, the pressure is imposed at a value of p = 1.0 and the density and 
velocity components are extrapolated from the interior. At the inlet, the velocity 
is imposed using the analytic expression (4.1) normalised to unity at the centreline. 
The density is imposed at p = 1.0, the flow being incompressible, and the pressure 
is extrapolated from the interior. The walls are modelled as being adiabatic with 
no slip; the velocity components are set to zero and the pressure and density are
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0.4 -

Figure 4.1: Grid A used for Poiseuille flow test case

0.2 0.4 0.6 0.8

Figure 4.2: Grid B used for Poiseuille flow test case
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extrapolated from the interior.

The following initial conditions were used throughout the domain: p = 10 ?;r=00
= 1.0, p = 1.0. A' • >

4.1.5 Results
Solutions were obtained successfully using both grids. The convergence criterion 
used was the reduction by eight orders of magnitude of the L2 norm of the residual. 
The rate of convergence was slow in both cases, taking around 8000 work units in 
total . This was expected when using a compressible flow solver for such a low 
speed flow, but is unimportant here where we are interested solely in the accur­
acy of the solution. The solutions obtained with the coarser grid A are identical 
to those obtained with grid B therefore the solutions can be considered grid con­
verged. The pressure coefficient at every cell centre is plotted in figure 4.3 for the 
calculations on both grids. This clearly shows features which correspond with the 
analytic solution: there is a constant pressure gradient in the axial direction and 
no radial pressure variation. Figures 4.4 and 4.5 show the calculated velocity pro­
file for grids A and B respectively. Both are compared with the exact solution for 
the calculated pressure gradient. There is excellent agreement between the theory 
and the calculation. The computed profiles shown were taken from central sections; 
any section could have been used because the profile does not change along the pipe.

Here we are concerned with axisymmetric flow. The analytic solution for planar 
Poiseuille flow [22] is similar but the maximum velocity is twice the magnitude of 
the axisymmetric case for the same axial pressure gradient. Planar Poiseuille flow 
has also been calculated using PMB2D, see [25]. The same approach was used as 
above and again very good agreement with theory was obtained. This underlines
the important role played by the ‘additional’ viscous terms (section 2.7.1) in an 
axisymmetric formulation.

4.1.6 Conclusions
The laminar, axisymmetric version of PMB2D has been successfully applied to the 
case of Poiseuille flow through a pipe. Excellent agreement between theory and 
cornputational results has been obtained. The accuracy of the results establishes 
confidence in the axisymmetric viscous treatment.

T work unit corresponds to the CPU time for 1 explicit time step
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Figure 4.3: Pressure Coefficient for Poiseuille flow test case
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Radius (r)

Figure 4.4: Computed and Theoretical Velocity Profiles for Grid A, Poiseuille flow 
test case
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CFD
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Radius (r)

Fi^re 4.5: Computed and Theoretical Velocity Profiles for Grid B, Poiseuille flow 
test case
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4.2 ONER,A Bl and B2 ogive cylinders
4.2.1 Purpose of study
The ONERA Bl and B2 test case configurations appear frequently in the literature 
as benchmark test cases for slender-body supersonic fiow, see for example [26]. Data 
from the original wind tunnel tests and from other computations are available for 
comparison. These are therefore useful test cases for code validation.

4.2.2 Description of test cases 

ONERA Bl

The ONERA Bl configuration consists of a pointed convex forebody continued tan­
gentially by a circular cylinder of diameter D. The forebody is of length 3D and is 
described by the arc of a circle of radius 9.25D. The test conditions reported from 
the original experiment are as follows:

Laminar fiow 
Preestream Mach number,

Reynolds number, ReD 
Freestream stagnation pressure, ptoo 

Preestream stagnation temperature, Ttoo 

Wall temperature, Tw 

Incidence, a

2.0
0.16 *lO6 

50 * 103Pa 

330AT
315AT {adiabatic)

= 0°

ONERA B2

The ONERA B2 geometry is very similar to that of the Bl. The convex forebody is 
described by a parabolic profile, equation (4.2) rather than a circular arc. Again the
orebody is of length 3D. The test conditions reported from the original experiment 

are as follows:
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Turbulent flow 
Fixed transition dX z/D 

Freestream Mach number, M00 

Reynolds number, ReD 

Freestream stagnation pressure, ptoo 

Freestream stagnation temperature, Ttoo 

Wall temperature, Tw 

Incidence, a

0.15
2.0
1.2* lO6 

120 * 103Pa 

300RT
28bK [adiabatic) 

0°

D 3 \D/ 18 \dJ (4.2)

4.2.3 Grid generation
The grids used in this study were standard grids supplied by ONERA as part of a 
GARTEUR workshop. Two grids were supplied for each case, the coarser intended 
for inviscid (Euler) calculations and the flner for viscous calculations. Details of the 
grids are summarised in table 4.2. Grid Blc, the coarser grid for the B1 case, is shown 
in Figures 4.6 and 4.7. The other grids are very similar. All of the grids include a 
small nose boom, one cell in width, of very small but flnite radius (1.0xl0_7D). This 
feature was intended to aid contributors to the workshop using three-dimensional 
flow solvers which would not handle the singularity at the nose. It was not needed 
here, but was retained since experiments using a modifled grid with the nose boom 
removed showed that it has no effect on the solution.

Name Dimensions Grid spacing on cylinder surface
Blc 61 X 53 1.74* lO-'2 D
Blf 61 X 85 2.00 * 10“4 D
B2c 61 X 53 1.74* 10^2 D
B2f 61 X 85 2.50* lO-5 D

Table 4.2: Grids used for ONERA B1 and B2 test cases

4.2.4 Boundary and initial conditions
All variables were extrapolated from the interior across the outflow boundary. The 
wall boundary was modelled as being adiabatic with no slip. A characteristic-based 
far-fleld boundary condition was employed at the remaining two domain boundaries.
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Figure 4.6: Euler grid, ONERA B1 test case

Figure 4.7: Nose region detail of Euler grid, ONERA B1 test case
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4.2.5 Results
Solutions were obtained for all four cases; inviscid (Euler) calculations for B1 and 
B2, laminar Navier-Stokes for B1 and Reynolds-averaged Navier-Stokes with k — uj 
turbulence model for B2. A summary of the calculations performed is shown in 
table 4.3. Included in this table are the CPU times for each calculation on a Silicon 
Graphics Indy R5000. In each case, the calculation was considered converged when 
the L2 norm of the residual had reduced by eight orders of magnitude. Convergence 
histories for each case are shown in Figures 4.8 to 4.11. The B1 Euler calculation 
was also attempted using an explicit treatment for the axisymmetric inviscid terms 
to examine the effect of the implicit treatment, see Section 3.2. In order to obtain 
a solution it was necessary to use twice as many explicit steps before switching to 
the implicit scheme, and the implicit CFL number was limited to 50, rather than a 
value of 250 used in the calculation shown. As a result the overall time taken for 
the calculation was increased by 50%. This supports the present method where the 
implicit treatment is used.

Calculation Grid used CPU time
Bl, Euler Blc 50 s
B2, Euler B2c 47 s

Bl, Laminar Blf 288 s
B2, Turbulent B2f 822 s

Table 4.3: Summary of calculations for ONERA B1 and B2

Figures 4.12 to 4.17 show the calculated values of pressure coefficient, skin fric­
tion coefficient and local axial force. Comparison is made with experimental data 
[27] where possible and otherwise with other computations [28]. Table 4.4 shows a 
summary of the calculated total axial force coefficients: Cap denotes the pressure 
component, Co/ the viscous component and Ca is the total.

Calculation Cdp Caf Ca
Bl, Euler 0.0953 ~ 0.0953
B2, Euler 0.0947 - 0.0947

Bl, Laminar 0.0985 0.0511 0.1496
B2, Turbulent 0.0982 0.1310 0.2292

Table 4.4: Summary of calculated axial force coefficients

Good agreement was obtained with the experimental values of pressure coefficient 
for the B1 case, see Figure 4.12. The calculated skin friction coefficient curve, see 
Figure 4.13, agrees well with the ONERA computational results over the forebody. 
However, the two curves begin to diverge downstream, and at zjD = 15 the ONERA
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computation predicts nearly twice as much skin friction. The calculated local contri­
bution to the axial force for the B1 case, Figure 4.14, shows up the same differences 
between the results i.e. a good match for the pressure component and a poor match 
for the viscous component. The axial force coefficient values quoted in Table 4.4 are 
calculated as the area underneath the local axial force curves. The good agreement 
of the pressure values with experiment shown (and with ONERA pressure results 
not shown) is encouraging from the point of view of verification of the flow solver. 
It is not possible at present to say much about the skin friction results since we only 
have the results from two computations, although the difference in results is disap­
pointing. More computational results will be made available form the GARTEUR 
Action Group in the future.

The calculated pressure coefficient for the B2 case matches the experimental values 
very well over the forebody, but over the remainder of the surface the computational 
results seem to be offset slightly, see Figure 4.15. Comparison with the ONERA res­
ults for Cp values is not shown, but the agreement is very good. The calculated 
skin friction coefficient curves for the present calculation and from ONERA are in 
fairly good agreement, see Figure 4.16. Note that the k — u> turbulence model was 
used for the present calculation, and ONERA used a Baldwin-Lomax turbulence 
model. Comparing the local contribution to the axial force for the B2 case with the 
B1 case. Figures 4.14 and 4.17, for the B2 case the effect of viscous drag appears 
to be relatively more important. This is a trend that we expect since the B2 case 
is turbulent with a higher Reynolds number. Again it will be possible to read more 
into these results when other computational results become available.

4.2.6 Numerical implementation of the turbulence model
In the present method, a number of explicit (backwards Euler) iterations are per­
formed before switching to the implicit scheme with a high, constant CFL number 
(say 250). Experience has shown that this is an effective way of initiating the calcu­
lation. During this explicit stage in the turbulent B2 calculation the scheme became 
unstable. This seemed to be caused by the appearance of small and negative values 
of k and u>. Other workers have also experienced such difficulties in the initial stages 
of a calculation when using two- and one-equation turbulence models [6], [29], [30], 
[31]. The various remedies reported apply specifically to implicit schemes. Here the 
problem arises during the explicit stage, and the straightforward remedy of limiting 
the values of k and u to be no less than the freestream values was applied. These 
limits were only used during the explicit stage. Figure 4.10 shows a convergence 
plot of the calculation. It is noted that the number of explicit iterations required 
is relatively large and that the residual for the turbulent quantities is small in the 
initial stages. An explicit CFL number of 0.4 was used here for both the mean flow 
and the turbulence equations. In an attempt to speed up the calculation by making 
the turbulent quantities do more work, the calculation was re-run using an explicit
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CFL number of 0.4 for the mean flow equations and 0.6 for the turbulence equations. 
Figure 4.11 shows a convergence plot of the calculation. In this case less explicit 
steps were required and the overall CPU time for the calculation was reduced by 
nearly 20%.

When using an implicit scheme and a two- or one-equation turbulence model, the 
treatment of the source term Jacobian arising from the time linearisation of the 
updates for the turbulent quantities is reported to be important for stability, partic­
ularly during the initial stages of the calculation [6], [24], [29], [30], [31]. As discussed 
above, in our case the initial instability problem is dealt with during the explicit 
stage. The effect of the suggested modified implicit schemes was investigated in any 
case for the B2 problem. The modified schemes all involve some variation of the 
turbulent source term Jacobian in the form of neglecting off-diagonal terms, varying 
the size of coefficients or altering the terms in the matrix according to sign changes. 
The modified schemes showed no improvement, either regarding robustness (the 
number of explicit steps required was unchanged) or speed of convergence.

4.2.7 Conclusions
The axisymmetric version of PMB2D has been successfully applied to two supersonic 
slender-body aerodynamics problems. The results have been compared with exper­
imental data and computational data from other sources. At present the agreement 
with other data is encouraging although a fuller analysis will be possible in the future 
when further data becomes available. Together with other succesful applications of 
the code to this type of flow [32], this gives confidence in the accuracy of the code 
for this type of problem. Some useful insights into the numerical implementation of 
the k — u turbulence model have also been gained.
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150
Work Units

Figure 4.8: Convergence histories for B1 and B2 Euler calculations

Work°Units 40°

Figure 4.9: Convergence histories for Bl laminar Navier-Stokes calculation
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B2 mean flow 
B2 turbulent
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Experiment 
B1 Euler 

B1 Laminar0.3 -

-0.05

Axial Distance (z/D)

Figure 4.12: Experimental and calculated pressure coefficient, ONERA B1

B1 PMB2D 
B1 ONERA

0.0001

Axial Distance (z/D)

Figure 4.13: Calculated skin friction coefficient, ONERA Bl. (Comparison with 
ONERA results)
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B1 PMB2D pressure —i—
B1 PMB2D viscous ------

B1 ONERA pressure —x- 
B1 ONERA viscous ------

MXXXXXXlKXXXXMXXXXMXK

Axiai Distance (z/D)

Figure 4.14: Calculated local axial force coefficient, ONERA Bl. (Comparison with 
ONERA results)

Experiment 
B2 Euler 

B2 Turbulent

+ + ++ + +

-0.05

Axial Distance (z/D)

Figure 4.15: Experimental and calculated pressure coefficient, ONERA B2
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Figure 4.16: Calculated skin friction coefficient, ONERA B2. (Comparison with 
ONER A results)
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Figure 4.17: Calculated local axial force coefficient, ONERA B2. (Comparison with 
ONERA results)
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Figure 4.18: Mach number contours for ONERA B2 test case
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4.3 GARTEUR Base Flow

4.3.1 Purpose of study
The aerodynamics of the base region strongly influences the drag of a projectile. 
However, reliable prediction of base flow for the wide range of possible conditions 
(and geometric configurations) that a designer may wish to examine has still to be 
attained. Semi-empirical and multi-component methods are very useful in this field 
but the time-averaged Navier-Stokes approach is the most credible and promising 
[33], [34]. However, despite the apparent suitability of a Navier-Stokes approach to 
this type of aerodynamically complex problem results of studies to date have not 
always been quantitatively satisfactory [33]. Recent studies [6], [7], [35], [36] [37], 
have indicated the importance of grid generation and turbulence modelling . In 
particular, the algebraic Baldwin-Lomax turbulence model is dismissed as wholly 
inappropriate for base flows and the results for k — t models and variations are 
better although inconsistent. Some improvement is reported through the use of more 
sophisticated turbulence models [6]. The present study aims to evaluate the ability 
of the present method, which uses a k~uj turbulence model, to provide accurate base 
flow predictions by examining a test case particularly designed for Navier-Stokes flow 
solver validation. At the same time the robustness of the present method, the effort 
required by the engineer in its application and the overall calculation time are kept 
in mind since accuracy is not the only consideration of the designer operating in a 
commercial/industrial environment.

4.3.2 Description of test case 

AFTERBODY TEST CASE IB: CONICAL BOAT-TAIL

The afterbody geometry consists of a short cylindrical section followed by a conical 
boat-tail at 6° to the cylinder’s surface and one cylinder diameter D in length. The 
geometry and test conditions are described in detail in [38]. The flow conditions are 
summarised as follows

Fully turbulent flow 
Freestream Mach number,

Reynolds number, ReD 

Freestream stagnation pressure, ptoo 

Freestream stagnation temperature, Tt00
Incidence, a

0.35
1.54 * lO5 

lO5 Pa 

330A 

0°
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4.3.3 Grid generation
The grids used for previous numerical studies of this test case [34] vary widely 
in fineness, topology, stretching and far-field boundary extent. In addition, grid 
convergence checks were absent from these studies. In the present work, the far- 
field boundary extent was set at the largest values used in the previous studies (15 
diameters downstream of the base and 5 diameters normal to the axis of symmetry). 
In order to determine the number of grid points to use, the number of points in each 
direction from the coarser grids in [34] was noted, and a grid with four times as 
many points in each direction was constructed. Successively coarser grids were then 
obtained by extracting points from this very fine grid, see Table 4.5. This hierarchy 
of grids formed the basis of the grid convergence study, see Section 4.3.5. The finest 
grid used here has more than twice as many points as any used in the previous 
studies. Figure 4.19 shows the coarse grid.

Number 
of points

Grids used : 
a{very fine) b(/me) c{medium) d (coarse)

Along base 121 61 31 16
Along boat-tail 161 81 41 21

Along symmetric line 281 141 71 36
Normal to symmetric line 281 141 71 36

Total 105163 26583 6793 1773

Table 4.5: Summary of grid dimensions

4.3.4 Boundary and initial conditions
The boundary layer thickness at the infiow boundary is included in the report of 
the experimental results [38]. In order to obtain values to impose at the infiow 
boundary for the main calculation, a short preliminary calculation was performed 
using the same conditions on a cylindrical body to simulate the fiow upstream of 
the afterbody. At the axial position where the calculated boundary layer has grown 
to the reported thickness the values were extracted and used for the inflow con­
dition of the main calculation. All of the fiow variables are imposed except the 
pressure which is extrapolated from the interior since the fiow is subsonic. How 
the infiow boundary condition was tackled in the previous calculations was not in­
cluded in the respective reports. The conditions at the remaining boundaries are 
more straightforward. The wall boundary was modelled as being adiabatic with no 
slip. Symmetry was imposed along the axis of symmetry and a characteristic based 
far-field boundary condition was employed at the remaining two domain boundaries.

The calculation was initiated from freestream conditions in order to obtain the coarse 
grid solution. This solution was used as the initial condition for the subsequent 
medium grid solution and so on. In this way the calculations on the finer grids were 
initiated from already good’ conditions thus reducing overall run times.
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Figure 4.19: Coarse grid used for GARTEUR afterbody IB

4.3.5 Results
Results were obtained on the coarse and medium grids without any problem. How­
ever, on the two finer grids it was not possible to obtain a solution without altering 
the turbulence model implementation in an attempt to circumvent an instability 
problem. The solution would proceed apparently normally before becoming unstable 
in the vicinity of the free stagnation point and crashing. The initial manifestation 
of this instability is a sharp increase in the calculated turbulent kinetic energy pro­
duction term P*. (see Section B.2). A variety of alternative turbulent source term 
Jacobian matrices, see Section 4.2.6, were implemented in an attempt to improve 
stability with no success. In order to obtain a solution, the ratio of production to 
dissipation Pfe/D*, was limited. Using the fine and very fine grids the maximum 
value of this ratio resulting in a stable solution were 1.7 and 1.6 respectively. Note 
that for the coarser grid calculations (and for calculations on the finer grids em­
ploying first-order convective accuracy) this ratio could reach 4.0 in the converged 
solutions. Figure 4.31 shows a contour plot of this ratio for the solution on the 
medium grid. The highest values occur at the beginning of the boat-tail on the 
cylinder, in the free shear layer and in the recirculation region. Imposing a limit 
on this ratio forces a reduction on the amount of turbulent kinetic energy in the 
flow and aids stability in the vicinity of the free stagnation point. Note that at the 
free stagnation point the ratio becomes negative. In addition, a stable solution was 
also obtained on the fine grid by ‘freezing’ the turbulent quantities at their values 
20 iterations before the failure and continuing to update the mean flow quantities
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normally. The justification for this is that before the solution becomes unstable 
the residuals for the mean flow and turbulent quantities have already decreased by 
more than three orders of magnitude, the calculation having been initiated from the 
medium gr^ solution, so the turbulence field should be a reasonable approximation 
to the real solution. At the least a solution obtained in this way provides a useful 
comparison with the solution obtained by using a limit as described above.

Figure 4.20 shows the calculated pressure coefficient distribution along the symmet­
ric line using all four grid levels. The results shown for the fine and very fine grids 
are those obtained with the production-dissipation limit described above. Figure 
4.21 shows how the calculated pressure coefficient distribution along the symmetric 
^e for the frozen turbulence’ and ‘limit’ calculations on the fine grid differ slightly, 
ftom these figures it is clear that a grid converged solution has not been obtained. 
It IS not possible to blame the differences between the fine and very fine grids solely
0I! tfhVie U:iuCertaijnty caused hy the limit used in the calculation. To help indicate 
whether the ^id hierarchy should be sufficient to obtain grid independent results, 
aminar calculations were also performed. The calculated pressure coefficient dis­

tributions along the symmetric line are shown in Figure 4.22. These are also not 
grid converged. The calculated pressure coefficient along the base compared with 
experimental data is shown in Figure 4.23. These results again indicate that grid 
independence has not been achieved and also show poor agreement with experiment, 
i he present pressure coefficient results are similar to the numerical results presented 
in [34] regarding the location of the maximum and minimum pressures on the sym­
metric line and generally poor prediction of the base pressure. The present study 
has strongly indicted the necessity of performing a grid independence study, raising 
considerable doubt over the validity of computational results obtained without the 
benefit of such a study even before possible modelling shortcomings are considered 
Previous expenence and CFD results from other researchers had suggested that the 
^ids used here would be sufficiently fine so the lack of grid independence is disap­
pointing. To complete the study an even finer grid should be used, although solving 
the instability problems noted above is perhaps a higher priority.

Figures 4.24 to 4.29 show the calculated axial velocity and turbulence kinetic energy
Tgn Sd 0/« T r and flne gridS comPar«1 with experimental data. Figures 

.30 and 4.32 show the calculated pressure and velocity vector field for the medium 
grid respectively.

The initial calculation performed on the coarse grid took 18 minutes for the residual 
to converge by 8 orders of magnitude using a Silicon Graphics R5000 processor 

he medium and fine grid calculations required 1 hour 17 minutes and 3 hours 20 
minutes to converge by 4 orders of magnitude on the same machine. The very fine
S'inuSoMH rrT;? ! h0Uo 2 minUl'eS t0 COnVerge by four orders ot magnitude 
Zdlirk ntelf ent'umPro The strategy used for obtaining initial
conditions is explained in Section 4.3.4. The convergence criteria used here in terms





41

of residual levels are conservative. The overall execution time for these analyses 
is therefore very reasonable using widely available desktop computing power. For 
this case the problem geometry and grid topology are straightforward so the time 
required for preprocessing should also not be excessive. It is reasonable to conclude 
that the necessary effort and time required to perform this type of analysis for base 
flows with the present method should not be restrictive to the design or evaluation 
engineer.

4.3.6 Conclusions

The present method has been applied to an axisymmetric base flow test case de­
signed specifically for the validation of Navier-Stokes flow solvers. The issue of grid 
convergence has been shown to be very important for this type of flow. Validation 
of the present approach has been hampered by numerical instability thought to be 
due to the implicit treatment of the source term in the k-cj turbulence model. The 
results which have been obtained are in reasonable agreement with calculations by 
other researchers. The promise of this type of analysis for base flow problems has 
been underlined. The potential for relatively inexpensive and fast calculations has 
been demonstrated.
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medium

very fine

-0.05

Figure 4.20: Symmetric line pressure coefficient, IB
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Figure 4.21: Fine grid results, symmetric line pressure coefficient, IB
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Figure 4.22: Laminar results, symmetric line pressure coefficient, IB
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Figure 4.23: Pressure coefficient along base, IB

Figure 4.24: Axial velocity profile at x/D=0.1, IB
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Figure 4.25: Axial velocity profile at x/D=0.5, IB

Figure 4.26: Axial velocity profile at x/D—1.5, IB
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Figure 4.27: Turbulent kinetic energy profile at x/D=0.1, IB
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Figure 4.28: Turbulent kinetic energy profile at x/D=0.5, IB
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Figure 4.29: Turbulent kinetic energy profile at x/D~1.5, IB

Figure 4.30: Pressure contours, IB
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Figure 4.31: Pk/Dk contours, IB
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Figure 4.32: Velocity vectors, IB
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4.4 Discussion
In this chapter the applicability of the present method to aerodynamic problems of 
interest to industry has been assessed. Test cases representative of two classes of 
problem, namely missile forebody and base flows, have been examined. It should be 
noted that other types of problem, for example aerofoil flows, have been examined 
elsewhere [2], [3], [4].

It has been demonstrated that the present method performs well for supersonic 
missile forebody calculations involving strong oblique shocks. This conclusion is 
drawn not only from the results presented in this chapter but also from [32] where 
a range of forebody geometries and freestream Mach number were considered. The 
calculations were performed using widely available desktop computing power on a 
timescale measured in minutes. The B1 Euler case has been examined using a fully 
three-dimensional version of the present method. The calculation takes approxim- 
ately 100 times as long and requires 50 times as much memory. The solutions are 
identical. This clearly demonstrates the utility of an axisymmetric flow solver.

Application of the method to base flow proved more problematic. Although it is 
still possible to obtain solutions relatively quickly, the method is not robust due to 
an instability associated with the implementation of the k — u) turbulence model. 
Before the method can be applied routinely and with confidence to flows of this type 
this shortcoming must be redressed. An improved implicit treatment of the turbu­
lent source term may provide the solution to the robustness problem. On a more 
fundamental level, the deficiencies of two-equation turbulence models including the 
Boussinesq approximation are well known, see for example [24],[39]. The k — u 
turbulence model gives accurate results for two-dimensional boundary layer flows. 
However, when the normal components of the Reynolds-stress tensor become non- 
negligible compared to the shear components, such as in flows with boundary layer 
separation and sudden changes in shear strain rate, the Boussinesq approximation 
becomes inaccurate. It is therefore unlikely that close agreement with experiment 
can be obtained for base flow problems, as seen in the present results. This ob­
vious disadvantage has to be seen in the correct context. Simpler analyses, using 
semi-empirical methods or CFD with an algebraic turbulence model, give less ac­
curate results in general and/or require case-dependent fine tuning. A CFD analysis 
employing a more advanced non-linear turbulence model entails prohibitive added 
complexity.

For axisymmetric problems of this nature a bottleneck in the analysis process often 
associated with other aerodynamic problems is avoided; grid generation is straight­
forward due to the relatively simple geometries. An engineer familiar with a struc­
tured grid generation tool should be able to construct a grid within a few hours, 
or modify an existing grid within a few minutes. The post-processing stage of an 
analysis is now also straightforward due to the wide availability of accomplished
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software for this purpose. For missile forebody and base flows the pre- and post­
processing associated with the present method should not impede the engineer who 
requires routine and efficient analyses. For the calculation of axisymmetric forebody 
flows the present method therefore fulfills the criteria of accuracy and efficiency. Be­
fore the present method can be used with the same confidence for base flows further 
refinement of the numerical method is necessary, although the potential of a Navier- 
Stokes flow solver for these demanding problems is clear. At present, a standard 
two-equation turbulence model provides a good balance between accuracy and com­
plexity.





Appendix A

The two-dimensional (planar) 

Navier-Stokes equations

A.l Introduction
In this appendix the two-dimensional Navier-Stokes equations are presented in vari­
ous forms for the sake of completeness and ease of reference to the axisymmetric 
equations presented in the main body of the report.

A.2 Non-dimensional form
The derivation of the Navier-Stokes equations is included in most fluid dynamics 
texts, for example [23]. In a two-dimensional cartesian frame they can be written as

dW ^ d{Fl — F") ^ d(G* — Gu)+dt ' dx dy

The vector W is the vector of conserved variables:

= 0 (A.l)

W =
f P \

fm 
pv

V PE J
(A.2)

where p is the density, V _ {u, v) is the Cartesian velocity vector and E is the 
total energy per unit mass. The flux vectors F and G consist of inviscid (*) and (,/) 
VISCOUS diffusive parts. These are written in full as :

50





APPENDIX A 51

Fl -

G*

( pu \ 
pu2 + p 

puv
V puH J
f pv \ 

puv
pv2 +p

V f)vH }
(A.3)

( \

pi/
Re

1

>xy
\ '^‘Txx “t" '^'^xy P Qx )

I 0
GI/ = -^ 

Re

\
T.xy
T,yy

(A.4)

\ UTxy + VTyy P Qy /

The stress tensor and of the heat flux vector components are written as:

r^T,T. ----

Tyy ~~

Txy —

Qx =

Qy =

-p

-p

-p

^du 2 fdu dv
dx 3 \dx ^ dy

ĉdv 2 /du dv
dy 3 \9a:

du dv\
dy^ dx)

1 p dT

(A.5)

(7 — 1)M^ Pr dx
p dT

(7- l)M^Fr dy

Here 7 is the speciflc heat ratio, Pr is the laminar Prandtl number, T is the static 
temperature and and Re are the freestream Mach number and Reynolds num­
ber, respectively. The various flow quantities are related to each other by the perfect 
gas relations:
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H =

E =

P =
P
P

E + -

e + - («2 + V2)

{j-l)pe
T

(A.6)

Finally, the laminar viscosity /Lt is evaluated using Sutherland’s law:

E.
Po

ry/2r0 + iio
To) T +110 (A.7)

where //0 is a reference viscosity at a reference temperature T0. These can be taken 
as fio — 1.7894x10 5 kg/(m.s) with To = 288.16 K. It is stressed that the quantities 
presented here have been non-dimensionalised. The procedure used is as follows:

X =
X*

1?' Vi II

L'IVi,

u = u*
■ V*’

OO

V*

v ~ V7'
OO

p*
1 p = —,

Poo

p*
p =

p* T*T
P*J j)* y *2 ’

T'oo ¥ OO ^ OO

e = Y*2
OO

(A.8)

A.3 Reynolds-averaged form
The Reynolds-averaged form of the Navier-Stokes equations permits turbulent flow 
to be considered. The development is not presented here. It is merely noted that 
fundamental to this approach is the consideration of the flow variables as consist­
ing of two components, a time averaged component and a turbulent fluctuation 
component. For example, density and velocity components are decomposed as

u u -f u \ V = V -\-v , p + p
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The quantities k (the turbulent kinetic energy), (the turbulent viscosity) and 
PrT (the turbulent Prandtl number) are introduced via the important Boussinesq 
assumption in an attempt to model the fluctuating-variable stress terms arising 
from the Reynolds averaging. For a complete discussion of this subject see [23]. 
The Reynolds-averaged form of the Navier-Stokes equations are identical to those 
presented in appendix A.2, except for the stress tensor and heat flux vector com­
ponents shown below. The variables should be considered as mean flow quantities 
(superscripts are dropped for clarity). The turbulent nature of the flow is modelled 
via and k and a closure hypothesis or turbulence model, for example the fc - w 
model, appendix B.

Tt.T. ---

Tyy —

TXy —

Qx =

Qy =

(„ + w,) +
\ dx 3 \dx dy

I Qy 3 + Qy

f \ (du dv\
(A.9)

(7 - mi 
1

JL + J^] Ptt)
dT

Pr 1 dx

+ M
Pvt)

dT
Pr dy

(A.IO)

A.4 Curvilinear form
The governing equations are written in curvilinear (^,r/) form to facilitate use on 
curvilinear grids of arbitrary local orientation and density. A space transformation 
from the Cartesian coordinate system to the local coordinate system must then be 
introduced:

i
V = v{x,y) 
t = t

The Jacobian matrix of the transformation is given by

J =

The equations A.l can then be written as

d{x, y)

dW d{Fi-Fv) : d{&-Gv) 
dt + ae + =0 (A.ll)
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W

pi

Gi

pu

G"

w
T
1 feF‘ + f.G‘)

+ 7/yGI)

i&F” + ^yGv)

+ VyGv)

(A.12)

The expressions for the inviscid fluxes can be simplifled somewhat by deflning

(A.13)
; ^xU+ ^yV

V = Tjxu T rjyV

The inviscid fluxes can then be written as

/ pLf \ 
PuU + ^xp
froU + ^yp 

\ PUH 

pV

F* =

Gl =

\
puV + pxp
PVV + T]yP

V pVH )
(A. 14)

The derivative terms found in the viscous fluxes are evaluated using the chain rule, 
for example ’

du du du

The evaluation of the metrics of the transformation is clearly important, and i 
described in full in [23].

IS





Appendix B

The two-equation k — lo turbulence 

model

B.l Non-dimensional form
The k — (V turbulence model of Wilcox [24] in non-dimensional form can be written 
as follows:

Eddy Viscosity

k'T = pk/iUJ (B.l)

Turbulence Kinetic Energy

dk 1 2
+ pV.VA: — —V. [(/i-I-a*/xr) V/c] = PtP — i^pkS ~ pi*pkuj (B.2)

Specific Dissipation Rate

dpuj 1
p-^ + pV.Va; - —V. [(p + crpr) Vw] ui

ak PtP - -pkS - Pf)uj2{B.3)

Closure Coefficients

a = 5/9, P = 3/40, P* = 9/100, 0- = 1/2, a* = 1/2 (B.4)

In the above relations,

P

S

(VV -h VVr) : VV - - (V.V)2
3

= V.V
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The equations as shown above use the same non-dimensional quantities as in section 
section A.2, with the addition of

k*Re 
V*2 ’oo

u*L*
U) = II —Pt — —

/XTO

B.2 Curvilinear form
The equations for k and u) can be written in a curvilinear form analogous to that 
used for the mean flow equations in section A.4 . Written in full, the two-dimensional 
Cartesian form of equations B.3 and B.4 become

dWT djFir - Fvt) d{GlT - G^) _ Sr 
dt dr] J (B.5)

where the vectors of conserved variables, convective and diffusive fluxes are respect­
ively

Wr = -
I ( pk
J \ poJ

Pi pkU\
T J \ puU )

p.i _}L( pkV 
T J\pujV

= \ (CxM -h e^N) = \

where the tensors M and N are equal to

M = J- f + a*fJ'T) + Tf^kri)
Re \ {p + (TPt) + Vx(^ri)

^ = J_ f + (^*Pt) {iyk^ + riyk^) 
Re V (m + opr) 4- pyUJ^)

Finally, the source term is written as

St = Pjt - Dfc 
Pw - Dw

with the components
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. ,'du dvI + +2 du\2 2
dx) + \dy

2 /du dv'
3 \9a; + dyy

2 (du dv''
~3pk +

Dfc = (3*pu)k

Pa, = aJPk

Dw = ^fxjj2

Again the velocity derivative terms are evaluated in (^,77) space via the chain rule, 
as mentioned in section A.4, but remain unexpanded in the source term components 
above for brevity.
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