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SUMMARY

Linearization of the non-linear systems arising from fully implicit schemes in 

computational fluid dynamics often result in a large sparse non-symmetric linear 

system. Practical experience shows that these linear systems are ill-conditioned if a 

higher than first order spatial discretization scheme is used. To solve these linear 

systems, an efficient multilevel iterative method, the a-GMRES method, is proposed 

which incorporates a diagonal preconditioning with a damping factor a so that a 

balanced fast convergence of the inner GMRES iteration and the outer damping loop 

can be achieved. With this simple and efficient preconditioning and damping of the 

matrix, the resulting method can be effectively parallelized. The parallelization 

maintains the effectiveness of the original scheme due to the algorithm equivalence of 

the sequential and the parallel versions.
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1. Introduction

In the numerical solution of Euler and Navier-Stokes equations, there are two major 

classes of problems, steady and unsteady. For steady state solutions, a time dependent 
approach is usually followed using the unsteady governing equations. There are two 

advantages of doing so. Firstly, the starting of the solution is robust in the sense that 
non-physical states can easily be avoided as long as the initial flow field is physically 

defined and the time step is small enough so that a physical path can be followed during 

the process of the solution. Secondly, the same code can be used for both steady and 

unsteady problems if accuracy is maintained. However, this approach also brings out 
some problems. As an iterative procedure for steady state solution, the physical path is 

not necessarily a fast convergence path. Acceleration techniques based on the time 

dependent approach such as local time stepping, multigrid and the use of approximate 

implicit operators destroy the time accuracy and, therefore, the second advantage cannot 
normally be achieved.

In the time dependent approach, the unsteady governing equations can be discretized in 

time by an explicit or an implicit method. Using an explicit method, the convergence for 

a steady state problem can be extremely slow due to the stability restrictions on time 

steps even if some acceleration techniques were employed. Using an implicit method, 
unconditional stability can be achieved and as the time step approaches infinity the 

method approaches the Newton iterative method for the solution of the non-linear 

system corresponding to the steady state problem. However it is generally not easy (1) 
to get the real Jacobian of the non-linear system and (2) to solve the resulting large 

sparse non-symmetric linear system. Previous researchers in CFD have tried to avoid 

these two difficulties in the following ways respectively: (1) to construct simplified 

implicit operators, e.g. to use only first order inviscid implicit operators; (2) to use 

approximate factorization for the multidimensional implicit operator so that the resulting 

linear system can be solved easily. Both of these naturally negate the advantages of the 

implicit scheme. The time step size for a simplified implicit method is still limited due to 

the inconsistency of the implicit operator and the right hand side (the non-linear system) 

and the factorization error which increases with the time step. Simplified implicit 
methods will thus obviously not approach a Newton iterative method as the time step 

approaches infinity.

Instead of avoiding the difficulties for a fully implicit method, Qin and Richards (Ref.l) 

tried to tackle the problem directly in order to achieve fast convergence for the steady 

state solution. The sparse quasi-Newton method(SQN) and the sparse finite difference



Newton method(SFDN) were proposed so that the difficulty in getting the Jacobian of 
the non-linear system is tackled.

After the linearization of the non-linear system is achieved, a large sparse non- 

symmetric linear system results. For one dimensional problems, a block pentadiagonal 
matrix solver was devised to obtain a direct solution of the resulting linear system. For 

multidimensional problems, the block line Gauss-Seidel iterative method was used. As 

pointed out in (Ref.l), the convergence of the method for the linear system is still not 
satisfactory if higher than first order spatial discretization is used. A similar problem 

resulting from the use of high order schemes was also found by Hemker and his 

colleagues (Ref.2-4) to achieve an effective application of the multigrid method. They 

introduced a defect correction technique to tackle the problem.

In this paper, we propose a new efficient multilevel iterative method for the solution of 

the sparse non-symmetric linear system arising from the application of the fully implicit 
method for steady state solutions or from the SQN method and the SFDN method for 

the non-linear system corresponding to the steady governing equations. We denote the 
linear system by

Ax = b (1)

where the structure of A depends on the spatial discretization scheme used. Typically 

we consider the following system resulting from a second or third order high resolution 

scheme using a structured grid for a two dimensional Navier-Stokes solution. The 

linear system will be a block 13-point diagonal matrix which can be denoted as

\\m



2. The a-GMRES Method 

2.1 The GMRES Method

The generalized minimal residual (GMRES) algorithm was proposed by Saad and 

Schultz (Ref.5) for solving non-symmetric linear systems. It seeks a solution x under 

the form x = xq + z where xq is the initial guess and z belongs to the Krylov subspace 

K=<to, Ar0,Ak-1ro> (ro=b-Axo). The solution x is chosen such that lib-Axil is the 

minimum.

First we find an orthonormal basis of space K via Gramm-Schmidt orthonormalization. 
In this process, a (k+l)xk Hessenberg matrix Hj, is formed. The following calculations 

are performed.

Initially, we set

rnvi=ro' vi=4i’

and for i=l to k

1

Vi+i = Avi - 2 Pi+i,jVj, where pi+1,j = (Avi, vj)
j=i

V , - Vi+l

After k steps, the Hessenberg matrix is formed as

P2.l P3,l Pk+1,1
llv2ll p3,2 ■ • • Pk+1,2

Hk = 0 llv3ll j
I 1 Pk+l,k
0 0 livk+ill (k+l)x k.

From the analysis in Ref. 5, we have

min II b - Ax II = min II 5ei - Hky II,
zeK yeR



where z = x-x0, 5 = llr0ll, et = (1, 0, 0)Tk+1 and y= (y^ y2,yk)Tk.

The problem is now reduced to the solution of a smaller least squares problem. Due to 

the special structure of the Hessenberg matrix Hk, a QR factorization algorithm can 

easily be applied.

For an efficient practical calculation, the dimension of the Krylov subspace, k, is very 

small as compared to the order of the matrix A because storing all the previous 

directions is very costly. In application, the algorithm is restarted every k steps until the 

required accuracy is achieved. In the numerical tests given below, we choose k = 30.

2.2 Preconditioning and Damping of the Matrix

The linear GMRES method has been applied to finite element solutions of CFD 

problems by Mallet et al.(Ref.6) and in its non-linear version by Wigton et al.(Ref.7). 
All successful applications required an efficient preconditioning. Bearing in mind the 

possible parallelization of the preconditioner, we devise a simple preconditioner. Its 

effectiveness is further enhanced by the introduction of a damping factor, which we 
describe as follows:

Let D=diag(A), such that if A is a block-structured matrix, D represents a block 

diagonal matrix. For Eq.(l), the following diagonal preconditioning is applied

D'1Ax = D‘1b. (2)

This diagonal preconditioning has the following advantages: (1) it is simple to 

programme; (2) the operation is localised so that parallelization can be implemented 

effectively. However, it has been found from numerical tests of current problems that 
this simple preconditioning alone is not able to overcome the non-convergence using 
the GMRES method as illustrated in Fig. 1.



100 J
number of restarts of GMRES algorithm

Fig.l Convergence of GMRES algorithm for (D‘1A)x=D_1b 

We now introduce a damping factor a into Eq.(2)

(cd+D-1A)x = D'1b (coO) . (3)

It was found through numerical tests that Eq.(3) can now be solved very efficiently by 

the GMRES method. Fig.2 shows the convergences of the GMRES method as applied 

to Eq.(3) with different values of the damping factor a. The figure illustrates that the 

larger the a the faster the convergence. However, it should also be noted that with a 

very small a the non-convergence mentioned does still appear.

a = 0.05

a = 0.10
a = 0.20
a = 0.50
a = 0.80

number of restarts of GMRES algorithm 

Fig.2 Convergence of GMRES algorithm for (aI+D’1A)x=D'1b
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2.3 The a-GMRES Multilevel Iterative Method

It is clear that Eq.(3) is not equivalent to Eq.(2). To solve Eq.(2), an outer loop has to 

be introduced. This is done through a multilevel iterative scheme and written as

(al + D-!a ) xn+1 = D-ib + axn (4)

Given xn, Eq.(4) is solved for x"+l using GMRES method. This procedure is 

continued until the sequence x" is converged. We have proved the following 

convergence theorem for the iterative procedure (4) as follows:

Theorem:
(1) If xn converges to x*, x* will be the solution of Eq.(2).
(2) There exists a positive number p> 0 such that if 0 < a < p, the iterative procedure 

(4) converges.

Proof:
(1) This is an obvious result of Eq.(4).
(2) From Eq.(4), we have

xn+l - xn = (al + D-lA )-l [(D-lb + axn) - (D-i5 + axn.i}]
= a (al + D-iA)-! (xn - x"-1)
= an (al + D^A )-n (x1 - x°).

Thus
II xn+1 - xn II < an ll( al + D^A )-n IIII x1 - x° II < [a ll(al + D-!A )-1 ll]n II x1 - x° II.

Let us define a positive function f: f(a) = ll(al + D-U )-l||. The function f is obviously 

a continuous function of a and f(0) = II D^A II is a constant. From the continuity of f, 
given a constant c> 0, we can find a] > 0 such that when 0 < a < aj, we have 

0 < f(a) < f(0) + c.
On the other hand, for a given constant e: 0 < e < 1, we can find a2 > 0 such that 

a2[f(°) + c] < 1-e.
Let P= min {a!, a2} and choose a: 0 < a < p, we have 

a ll( al + D^a )-1 II = a f(a) < a2[f(0) + c] < 1-e.
Thus

II xn+1 - xn II < (l-e)n IIX1 - xO II.
Therefore we have proved the convergence of the iterative procedure (4).

We now make the following remarks:



(i) In practical application, a value of a has to be selected to balance the convergence of 

the outer iterative procedure (4) and that of the inner GMRES algorithm.
(ii) From Eq.(4), we have

II D-iA xn+1 - D-ib II = a II xn+1 - xn II 
Thus we can estimate the residual of Eq.(2) from II xn+1 - xn II.

2.4 Numerical Tests and Discussion

The foregoing numerical tests have been carried out on a typical matrix resulting from 

the use of the SFDN method to solve the locally conical Navier-Stokes equations for 

compressible flow. The spatial discretization scheme used is the Osher flux difference 

splitting scheme. The formal accuracy is third order for the convective fluxes and 

second order for the diffusive fluxes. The case is a laminar Mach 7.95 flow around a 

sharp cone with a cold wall and at an angle of attack of 24°. This case produces a flow 

which has a large separated flow region with embedded shock wave, in the leeward 

side of the cone and strong gradient in the thin boundary layer on the windward side. 
Accurate validation with experiment was achieved in flow field and heat transfer 

distribution. The grid in the cross section is 33x33. Thus the resulting matrix to be 

solved is a block 13-point structured matrix of order 31x31x5. Fig.3 shows the 

convergence histories for different values of damping factor a. Let ei be the 

convergence criterion of the inner GMRES algorithm and £2 be the convergence 

criterion of the outer loop of a-GMRES algorithm. In the calculation plotted in Fig.3, 
we choose ei = 10_1 and £2 = 10'10. Since the main calculation time is spent in the 

inner GMRES algorithm we use the total number of restarts of the GMRES algorithm 

as a unit to measure the progress of the calculation.

a = 0.05
a = 0.10

- a = 0.15
a = 0.20

0 100 20C
total number of restarts of GMRES algorithm

Fig.3 Convergence of a-GMRES algorithm for Ax=b



Table 1 shows the details of the calculation for different a. It should be noted that for 

the case of a = 0.05 the GMRES algorithm cannot converge to the machine zero but 
this does not influence the convergence of the a-GMRES algorithm because the full 
convergence of the inner iteration is not required. From this table we can also see that 
the performance of the multi-iterative method is not sensitive to the choice of a tested.

Table 1
a ITERATIVE NUMBER of OUTER

LOOP of a-GMRES ALGORITHM
TOTAL RESTART NUMBER of

GMRES ALGORITHM
0.05 62 193
0.10 no 192
0.15 159 201
0.20 206 214

Table 2 shows the cpu time required using different computers for solving the linear 

system of the test case where a = 0.1, ei = 0.5 and £2 = lO'10.

COMPUTER CPU-TIME (sec)

IBM 3090 with VECTORIZATION 330

IBM 3090 without VECTORIZATION 776

IBM RS/6000 777

MEIKO CS with 1 T800 TRANSPUTER 20852

Fig-4 shows the overall convergence of the solution of the NS equations using the 

SFDN and SQN methods, where the solution is started using approximately 1000 steps 

of an explicit time dependent approach using the Runge-Kutta method with local time 

stepping. Let £3 be the convergence criterion of the solution of the NS equations. In the 

Fig-4 we have chosen £l = lO'1, £2 = 10'2 and £3 = lO’lO in the SFDN method and £1 
= lO'1, £2 = lO-1 and £3 = lO-10 in the SQN method.

-J; r.-«-
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cpu (sec)
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SFDN
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Fig.4 Convergence of SFDN and SQN methods 
using a-GMRES solver for NS solution

3. Parallelization of the a-GMRES Method on a Distributed Memory Parallel Computer

Parallelization of the GMRES method on a shared memory parallel computer is 

straightforward. But on distributed memory machines, which are becoming popular 

because of their low cost and ability to employ large overall memory, communication 

between processors has to be considered. Furthermore preconditioning needs more 

serious consideration in the parallel environment. Incomplete LU (ILU) factorization as 

a preconditioner for the GMRES algorithm appears effective for many applications 

using a sequential computer. The full parallelization of ILU however is difficult to 

achieve. To apply ILU on vectorised shared memory multiprocessors, Radicati and 

Robert (Ref.8) and Vankatakrishnan et al. (Ref.9) used local ILU techniques. Although 

it still serves as a useful preconditioner, its effectiveness is degraded as compared with 

the global ILU preconditioner on a sequential computer. The a-GMRES method 

presented above which combines a diagonal preconditioner with a damping procedure 

to provide an effective GMRES algorithm is fully parallelizable as described below. 
The parallelization maintains the effectiveness of the original scheme due to the 

algorithm equivalence of the sequential and the parallel versions.

3.1 Matrix and Vector Storage

Assume there are M processors available and the matrix A is of order N (N>M).
We can write the matrix A in columns as

1 1
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A = [ Al, A2, am ]

where Am is an NxL matrix, m=l,2,...,M, and L=N/M, if N/M-[N/M] = 0; L=[N/M] 

for some Am and L=[N/M] +1 for the other Am, if N/M-[N/M] > 0.

The vectors x and b can be written as

X =

fxM
X2 and b = b2

iXMi ibM'

where xm and bm are vectors of order L corresponding to Am, m=l,2,...,M.

With the above splitting of matrix A and of vectors x and b described alone, we store 

Am, xm and bm in processor m.

3.2 Parallelization of the Multilevel Iterative Method

From the GMRES algorithm described in 2.1, the main tasks of parallelization are (i)the 

parallelization of the block diagonal preconditioner (ii)the product of a matrix and a 

vector and (iii)the inner product of two vectors. We describe these aspects in the 

following subsections before dealing with the overall scheme.

3.2.1 Parallelization of the Block Diagonal Preconditioner

As described in Sec.3.1, the matrix A is stored in the processors according to columns. 
Thus Dm is stored in processor m and D‘1A results in a row transformation to A. In this 

way, some elements of Dm are required for the neighbouring processors and 

corresponding communication needs to be arranged.

3.2.2 Parallelization of a Matrix-Vector Product 

Let y = Ax, i.e.

yM fx1\
y2

.yM.

= (a1,a2,- X.2

12



we have

a

f

Ax = (a1, a2,Am)(
fx1]

0 + X.2 + ... +
( 0 \ 

0

.6- .6;
= A1x1 + A2x2 + • • • + Amxm

/ *
*

+
* ^ 
* +... +

*
*

1 * j

(y1
*/

/o
* /

0
0 + y.2 +••• + 0

v6- ' 6>

where "=>" indicates the communication of data among different processors to form y. 
In this way, we divide the task of calculating Ax to M processors by calculating Amxm 

on processor m and the resulting vector y is again distributed to the M processors. The 

only communication required in the calculation is in the formation of y. Due to the 

sparsity of the matrix A, this communication is only of a limited nature. The 

distribution of the matrix data in columns can be mapped to that carried out in the 

geometric domain decomposition approach to parallelization.

3.2.3 ParalleUzation of Inner Product of Vectors

The calculation of the inner product of two vectors a and b is equal to the sum of the 

inner products of their corresponding components and therefore can easily be 

parallelized as illustrated below.

M
(a, b) = £ (am, bm)

m=l

3.2.4 Parallelization of the GMRES Method

The GMRES method as outlined in Sec.2.I is implemented in parallel as follows.

In processor m, we perform the following calculations and communications.

Initially, we set

^ = 1^,

13



M
IMI = V X (r81,rg1),

m=l

where the calculation of llr0ll requires the collection of the partial inner products earned 

out on each processor, and we obtain

tJTlvf = i^ 1 llroll

t

«

■0

For i=l to k

AmVf = vj11,

where the matrix-vector product operation and its parallelization have been discussed 

Sec.3.2.2. The elements of the Hessenberg matrix are calculated using

M
Pi+i,j = X vf)

m=l

in

which also requires the collection of the partial inner products carried out on each 

processor. We then calculate

^+i=^-XPi+i.jvr,
j=i

1

t

and

ll^ii+iii=V M
X (^i.^i)

m=l

which is again a collection procedure. Then we normalise the base vector as follows

Cm
vm Vi+1
vi+l — -

llVi+lll

After k steps, the Hessenberg matrix is

14



Hk =

From

' P2,l Ps.l Pk+1,1
llv2ll P3,2 Pk+1,2
0 Il93il •

; # , Pk+l,k
0 0 livk+ill

min II b - Ax II = min II 5ei -Hkyll,
zgK yeRk

«

ti

0
we solve the same least squares problem on all the processors.

3.4 Numerical Tests and Discussion

The parallel a-GMRES algorithm has been tested on the University of Glasgow Meiko 

Computing Surface, which consists of 32 T800 transputers. The speedup achieved 

using from 1 to 4 processors is illustrated in Fig.5.

t

w

ideal
parallel tests

number of processors

Fig.5 Speedup using parallel computer

The parallel efficiency for 2, 3 and 4 processors are 93.8%, 91.7% and 88.1% 

respectively. The parallel procedure produces the same results as those produced by the 

sequential procedure. Therefore the accuracy and the convergence of the sequential 
procedure are maintained by the parallelization.

15



4. Concluding Remarks

♦

t

An efficient multilevel iterative solver has been developed for the large sparse non- 

symmetric linear systems, which result from fully implicit or Newton-like solutions of 

the steady Navier-Stokes equations. Fast convergence, which is insensitive to the 

choice of a tested, has been achieved in solving a practical matrix problem. 
Parallelization of this new linear solver has also been presented showing promising 

results. In a similar fashion to a geometric domain decomposition approach to 

parallelize a code, the data of the matrix are distributed according to columns. The 

parallelization maintains the effectiveness of the original scheme due to the algorithm 

equivalence of the sequential and the parallel versions.
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