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Nomenclature
Symbols
Ai, A2
AR
bi, 62 

h
Cl

CP
c
df
E

f
k0
ki
k2
Kd

Kn

M
P

q
s
s
t
Ti

TP
T
U

Definition Units
Coefficients given by Jones [6]
Aspect ratio AR = ^
Coefficients given by Jones [6]
Semi-chord length & = f m
Coefficient of Lift
Lift curve slope for particular Mach number 

Non-dimensional centre of pressure 

Chord length m
Function of M (For 0.3 < M < 0.8, 4.0 > df > 0.5)
Vortex dissipation s
Separation point / = ^
-0.16 <ko< -0.10 

-0.10 <ki< 0.28
-0.115 <k2< 0.04 

Given by KD = 2.7 exp —dff 

Kirchoff approximation 

Mach number
Pressure NmT2
Non-dimensional pitch rate 9 = ff
Rotor planform area m2
Non-dimensional time
Dimensional time s
Time constant (Impulsive loading) s
Time constant Tp oc M s
Time constant (Impulsive loading due to pitch rate) s 

Freestream velocity ms -1



X Chordwise axis m
xac Aerodynamic centre m 

y Spanwise axis m

Greek Symbols Definition
a
a
5 

A

V
A

Ms)
Ms)
Ms)
9

P
6

Angle of incidence
Step change in angle of incidence
Shock deflection angle
Infinitesimal increment
Function of sweep back angle
Sweep back angle
Circulatory indicial lift function
Impulsive indicial lift function
Impulsive indicial lift function due to pitch rate
Pitch rate about | chord position
Density
Shock angle
Vortex time 0 < r < TVl

Units
rad
rad
deg

deg

rads 1 
kgm^3 
deg
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Subscripts Definition
1 Upstream values (shock)
2 Downstream values (shock)
oo Freestream values
ac Aerodynamic centre
AM Apparent mass terms
DD Divergence angle For 0.3 < M < 0.8, 10.3 > aon > 0
MV Moment due to vortex
NV Normal force due to vortex
n Sampling steps
sp Separation point
V Vortex terms
Superscripts Definition

Compressibility effects included
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1 Introduction

The aerodynamic model developed by Tom Beddoes [1], in conjunction with 

WHL, was aimed at calculating the unsteady aerodynamic forces encountered 

in helicopter rotor operating environments. The method was developed based 

on several criteria including simplicity to allow for quick computational times, 
incorporation of both attached flow conditions and separated flow conditions 

and the ability to include arbitrary forcing functions. The need to include 

arbitrary forcing terms originates from the phenomenon of blade vortex in­
teraction which occurs mainly in forward and manoeuvring flight. In these 

operating environments, the aerodynamic forcing on the blades is often out 
of phase with the blade response, and this can result in resonance and flutter. 
Also the encountering of wake vortices can excite higher natural frequencies, 
and have the same undesired effect. The interaction between blades and vor­
tices can also result in large changes in incidence due to the induced velocity, 
which can in turn cause a large increase in the lift and pitching moment, or 

cause the blade to stall locally.
Based on these criteria, the model assumed the form of an indicial re­

sponse function for the attached flow regions. For the separated flow regions, 
another approach is taken. This part of the model is based purely on empir­
ical observations of dynamic stall on aerofoil sections. These two approaches 

allow for the calculation of the lift and pitching moments due to variations 

in the incidence of aerofoil sections and the Mach number of the flow as a 

function of both time and azimuth angle. The effects of supercritical flow 

for both transonic and high incidence aerofoil conditions are included in this 

model [2]. Also the effects of leading edge and trailing edge separation and 

the effects of these phenomena on the pressure distributions are accounted 

for. The effects of stall vortex shedding on the lift and pitching moment are 

modeled using a critical pressure rise criterion. Further developments include



the ability to handle arbitrary planforms and 3-dimensional effects including 

spanwise separation points based on a method developed by Kiichemann. 
These inclusions extend the viable range of rotor conditions that can be han­
dled by the method. While this method for rotor load calculations is quick, 
there are a number of issues that are not addressed. These include the in­
corporation of the 3-Dimensional viscous effects in the tip region, and the 

effects of span-wise flows along the blades during flight operations.

2 Derivation of Indicial Lift Function

The Indicial Lift Functions which form the basis of this numerical model are 

constructed from exponential functions in time [3]. This approach allows for 
a simple derivation of the response using Laplacian transformations to give 

the lift transfer functions. Also this approach allows for the calculation of 

arbitrary forcing of the blades using a superposition procedure. The non- 

dimensional time is given by:
2tU

s = (1)

Where ^ is the time required for the airfoil to travel a distance of one 

semi-chordlength. The equation (1) is further modified to account for Mach 

number effects using the Prandtl-Glauert transformation [8]:

s' = s(l - M2)

This gives the indicial lift response to pitching motion as:

CL{s') = CLa{M)a(f)c{s') + (j)i{s')a + (f)q{s')q

(2)

(3)

Where CLa{M) is the lift curve slope for the corresponding Mach number, 
a is the step change in angle of attack defined as the downwash angle 1 at the

1 Definition?



Ic position, and q is the non-dimensional step change in pitch rate about the
|c position defined as This general form of the indicial lift response can be 

broken down into the lift due to the impulsive and circulatory components of 

the response. From (3) the circulatory component of the indicial lift function 

is given by:
^cis') = 1 - A1e(-6lS') - A2e(-62S') (4)

The impulsive loading contribution to the indicial lift response is repre­
sented by the last two terms of equation 2 (3). Firstly, the general impulsive 

component of (3) is given by:

*<s') =

Where

-)

2UT[ = Ti{l - M2) —

Secondly, the impulsive loading due to the pitch rate about |c:

(5)

(6)

(7)

3 Attached Flow Model 

3.1 Numerical Methods

Due to the nature of helicopter rotor aerodynamics, there is a requirement 
to incorporate both harmonic forcing functions and arbitrary forcing func­
tions into the calculations of rotor load calculations. The harmonic forcing 

originates from the nature of a rotating blade in a uniform flow field, i.e. the 

variation of Mach number and hence incidence to avoid unbalanced loading 

of the rotor disc. The arbitrary forcing comes from the effects of blade vor­
tex interaction which is caused by the vortex shed from the preceding blades 

2Definition of T;, Tq?



impacting on the following blades. To incorporate these effects, an Indicial 
Method is used to calculate the harmonic forcing terms for the attached flow 

regions. A modifled Wagner Function [6] is used for this purpose, and the 

modiflcation incorporates the effects of compressibility. The original Wagner 

Function was developed to give the unsteady aerodynamic forces on a thin 

2-dimensional aerofoil undergoing unsteady motion. The function is only ap­
plicable for incompressible flows, and is derived from the impulsive increase 

in circulation about the aerofoil due to an inflnitesimal angle of attack. With 

the impulsive motion starting from the origin (i.e. when s = 0) there is a 

downwash flow due to the tangential nature of the flow to the aerofoil. This 

is given hy w = Usina = Ua. Assuming that there is a flnite velocity at the 

trailing edge, the circulatory lift is given by:

L = 27rbpUw4>{s) = 27r^pUUa(f){s) = (2na) (^pU2S'j(j){s)

where
^(s) = 0ifs<0, s = ^

0

(8)

(9)

This function can not be used for the calculation of lift in the current form 

due to the nature of the helicopter operating environments. This is because 

there are large variations in Mach number from low subsonic at the root to 

transonic at the tip, and hence effects of compressibility can not be ignored. 
Also the constant variation in the incidence means that an approximation 

must be found. The Wagner function is :

0-b2S(/)c(s) = 1 - A1e-blS - A2e 

Where the coefficients are given by [6] such that:

(f)c{s) = 1 - 0.165e-° O455s - O.335e_0’30s

(10)

(11)

The modiflcation of the Wagner function for compressibility uses the



s, distance travelled, in semi-chords

Figure 1: Wagner Function using Coefficients Given by Jones [6]

Prandtl-Glauert [8] transformation approach which results in a modified func­
tion:

Ms') = Ms) (12)
Vl-M2

Using the above modified Wagner function, the lift due to harmonic variations 

in the incidence 3 of the aerofoil section can be calculated. This is done using 

equation (8) as follows:

since

CL = CLa{M)AaMs) (13)

(14)

3For generalised motion, the incidence is taken to be the downwash angle at the | 
chord position



To incorporate the harmonic and arbitrary forcing terms, it is necessary to use 

an exponential approximation to the Wagner function. This approximation 

also incorporates the influences of time, and hence covers the hysteresis effects 

encountered in dynamic systems. The lift is calculated as follows:

CL - CLa{M)aE{s)

Where aE{S) is given in time as exponential lift decrements:

(^n=0 + ^ ^

Where the exponential lift decrements are given by:
— 26, UA(t)

Xn = Xn-ie c + Ao;n
-2b9UA{t)

Yn — Yn-ie c + A2Ao;n

This approximation also allows for the use of experimental lift curve slope 

values to be incorporated into the sampling process. For each sampling 

interval given by:

At(l - M2)2U

(15)

(16)

(17)

(18)

As' = s(l - M2) = (19)

in real time, it is possible to calculate the lift produced by the aerofoil section. 
The pitching moment and drag for the attached flow model are calculated by 

curve fitting experimental data for the relevant incidence. It is also necessary 

to include the effects of the apparent mass [6] for the system. This produces 

an additional lift term, and the pitching moment terms. The lift resulting 

from the apparent mass is given by:

Lam = pT^b2(h - ai,ba) (20)

where h is the vertical displacement of the aerofoil section, and a is the 

rotation of the aerofoil section about an axis a distance ah away from the



mid-chord position. The pitching moment is also given is this manner:

—fMhA ..
Mam — —3—ot

O
(21)

Unfortunately, the pitching moment due to the apparent mass is only valid 

for the incompressible cases, but for simplicity, this term is retained, and 

modified using the Prandtl-Glauert transformation as before.
This model applies only to attached flow regions of the aerofoil. For 

helicopter operations near to the flight envelope, there are highly separated 

regions encountered by the rotors, and hence it is necessary to incorporate 

the effects of separation using a separate model. Beddoes achieved this using 

an empirically based Dynamic Stall Model.

4 Dynamic Stall Model

The Calculation method for the rotor loads when the boundary layer over 
the rotor surface can no longer overcome the adverse pressure gradient due 

to high incidences, uses an approach based on analysis of large quantities 

of experimental data. The main dependence of this model is on the static 

characteristics of the aerofoil sections which in turn depend on the profiles, 
Mach numbers and Reynolds numbers of the flow conditions. The boundary 

between the Attached Flow Model and the Dynamic Stall Model is defined by 

the separation of the boundary layer. This point is demarked by a break in 

the static aerofoil pitching moment curve which is defined by an incidence ai. 
As separation occurs in a dynamic case, a vortex is shed from the leading edge 

of the pitching aerofoil, and travels chordwise along the section towards the 

trailing edge. As this vortex travels, the position of the centre of pressure also 

travels rearwards. At a second angle of attack a2 the position of the centre 

of pressure restabilises, and the lift begins to diverge. From the analysis of 

experimental data, two time delays demarking firstly the onset of pitching

7



moment, and secondly the onset of lift divergence have been observed. These 

time delays are essentially independent of the frequency or amplitude of the 

harmonic oscillations, aerofoil profile, or flow conditions. Dynamic stall is 

initiated by separation of the boundary, but for different aerofoil sections, 
the mechanism of separation is different. Also the effects of supercritical 
flow influence the separation of the boundary layer.

Cn

Dynamic

Figure 2: Normal Force and Pitching Moment during Dynamic Stall

4.1 Application of dynamic Stall Model

The approach that the model takes in calculating the lift and pitching mo­
ment during dynamic stall of the aerofoil is as follows:

1. As the incidence a increases above cki, the Dynamic Stall Model is 

employed.

• For a time ti after the static pitching moment break, the lift and 

pitching moment are calculated as for the attached flow model.

• After Ti, it is assumed that a vortex is shed from the leading edge.
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• For a time period r2 during which the vortex traverses the chord 

of the aerofoil, the lift is calculated as for the attached flow model, 
but the pitching moment diverges, as a result of the movement of 

the centre of pressure variation caused by the vortex.

• After this second time delay,there is a stabilisation of the centre 

of pressure, due to the vortex leaving the trailing edge. At this 

point, there is lift divergence, and a process of reattachment is 

initiated. This continues until such time as a is less then cri when 

lift and pitching moment are calculated as for the attached flow 

model.

During the vortex shedding, the centre of pressure is calculated as a function 

of incidence and time. The representation of the centre of pressure travel is 

the exponential response to a step change in Cp, and is implemented in the 

same manner as the Attached Flow Model. The representation of the step 

input is given by the Laplacian function:

1
^ (1 + TiiS,)(l + r2<Sl)

The response to a step input is given by:

/(r) = A(1 + 3e-°-75T - 4e -1.3125T)

Where the step input A is given by:

A — Cpfiem Cpold

(22)

(23)

(24)

The implementation of this movement of the Centre of Pressure allows the 

blending between the positions of the Centre of Pressure for attached flow 

conditions and separated flow conditions between pitching moment diver­
gence, and lift divergence.



5 Region Between Attached and Dynamic Stall 

Models

There are a number of aspects which define the limits of the dynamic stall 
region. These include the effects of separation on the lift and pitching mo­
ments of the airfoil. Separation can occur in a number of different ways, and 

most importantly are the effects of leading and trailing edge separation and 

the effects of shock induced separation.

5.1 Mechanisms of Separation leading to Dynamic Stall

From the studies of Dynamic Stall, two basic mechanisms of separation were 

identified. Firstly, the stall resulting from the progressive separation of the 

boundary layer from the trailing edge gives relatively gradual stall charac­
teristics. Secondly, stall resulting from separation of the boundary layer at 
the leading edge due to separation bubbles failing to re attach has rapid 

stall characteristics. Leading edge stall characteristics are reproduced effi­
ciently with the Dynamic Stall model, but the trailing edge stall is less well 
predicted. To overcome this problem:

• The initial angle of attach a\ is modified to better simulate the effects 

of dynamic stall resulting from trailing edge separation. This modifi­
cation is based on observations of dynamic stall during low frequency 

oscillations.

• A second method of determining the onset of dynamic stall is based on 

the pressure at the leading edge leading to a pressure criterion which 

starts the onset of dynamic stall.

This pressure criterion may be used to redefine the initial angle of attach at 
which the dynamic stall process occurs. It was decided that this criterion

10



is more appropriate even though it is limited in terms of the range of Mach 

numbers for which is is applicable. The thinking behind this decision is based 

on the fact that the process of dynamic stall is most often encountered in the 

low Mach number range, and hence the criterion applies.

5.2 Trailing Edge Separation

Trailing edge separation is the gradual separation of the boundary layer from 

the surface of the aerofoil from the trailing edge forwards. This form of sep­
aration is gradual in terms of the effect on the lift and pitching moment, 
and possesses no hysteresis effects [9]. The effect of trailing edge separation 

causes a loss of circulation which introduces non-linearities into the lift and 

pitching moments, and also causes a a delay to the onset of critical condi­
tions at high incidences. The analytical methods used to incorporate the 

effects of trailing edge separation into this model are based on the work of 

Kirchhoff. kirchhoff developed a relationship between the lift coefficient and 

the separation point as a function of the chord length.

I (25)C’i = 2Ira(i + i/i

Where f is the location of the separation point non-dimensionalised using the 
chord length = f ^ • This equation applies for a flat plate at incidence, 

and from this, it is possible to deduce a ratio between the actual lift, and the 

potential unseparated value.

I (26)27ro; 4 V J

From this, it is possible to calculate the separated lift value provided the 

separation point is known. From experimental data, and assuming that the 

separation point is defined by the flow reversal point, a relationship between

11



the separation point and the incidence angle was found. This relationship is 

simply formed using three defining points, and two exponential curves. The 

defining points are:

• the fully attached and

• fully separated flow separation points and

• the breakpoint at / = 0.7 with the corresponding value of incidence 

q;i.

Thus the separation point for an aerofoil at any incidence can be calculated 

using a curve defined by three parameters:

• a\ is the incidence defining the breakpoint at / = 0.7

• Si, S2 are the exponential factors defining the curves from the fully 

separated and fully attached flow conditions to the breakpoint.

From static test data, it is possible to construct the separation point variation 

with incidence. The values of ai, Si, and S2 may be curve fitted to these 

experimental results, and hence the corresponding lift curve calculated for 
any incidence using (26). It is also possible to calculate the pitching moment 
variation and drag variation due to the changing separation point. This is 

achieved by assuming the centre of pressure may be found for any angle of 

attack from the ratio The variation is plotted against the corresponding 

separation point, and a curve of the form:

Cm

Cn
ko + kif + k2f (27)

is fitted. This then can be used to find any pitching moment corresponding 

to an incidence and separation point. The pressure drag is also calculated

12



in a similar manner, but in this case, there is more emphasis on empirical 
observations.

Cd = Cdo + O-OSSCat sin a + KdCn sin(o; — aDu) (28)

Here auD represents a divergence angle which is obtained from test data for 
each Mach number. For:

ct < (Xdd Kjj — 0, q; > (Xdd Kd — 2.7e (29)

These formulations for forces and moments resulting from the position of 

the separation point can be extended to cover the effects of trailing edge sep­
aration in dynamic flow conditions. From empirical observations of dynamic 

conditions, it was found that there was a lag between the forward progression 

of the reversal point, and the static variation with incidence. The behaviour 

can be represented using a first order lag given by:

wr = ttV (30)f(p) 1 + ^fP
where f(p) is the separation point response to the pressure distribution, and 

f'(p) incorporates the boundary layer response. From experimental results, 
the time constant Tp has a value equivelant to 3 semi-chordlengths of travel 
for /' < 0.7. Beyond this point, the reversal speed accelerates, and this is 

represented by halving the time constant.
The above analysis covers the effects of trailing edge separation on the 

pressure distribution and moments generated, but this only applies to a cer­
tain range of Mach numbers and Reynolds numbers. From test results at 
moderate Reynolds numbers and for low and high Mach numbers, separa­
tion starts at the trailing edge, but may also suddenly start at the leading 

edge, or at the shock location. This behaviour is represented by methods 

which are discussed later, and when this occurs, the critical pressure rise 

method overrides the trailing edge separation method, and the forces and 

moments are calculated using the critical pressure criterion.

13



5.3 Critical Pressure Rise

The effects of supercritical flow are incorporated into the model using a 

pressure criterion based on the shock motion. As the surface flow velocity 

exceeds the speed of sound, the supersonic region forming on the surface is 

terminated by a shock wave. As the flow increases in velocity, this region of 

supersonic flow increases in size, and the terminating shock moves towards 

the trailing edge. Eventually, the position of the shock will be such that the 

boundary layer will separate momentarily, and reattach forming a separa­
tion bubble. This bubble will increase in size with increasing velocity, and 

eventually will not be able to reattach, thus resulting in complete separation. 
Dynamic stall is initiated when this occurs, and this is where the pressure 

criterion is defined. As separation occurs, the position of the shock moves 

towards the leading edge under static conditions, and there is a break in the 

pitching moment, and lift divergence. At this point, the pressure rise across 

the shock is the criterion at which the dynamic stall process is applied, and 

the model is used to calculate the resulting lift and pitching moments.
To derive a suitable criterion for the critical pressure rise, it is necessary 

to know the behaviour of the fluid properties across the shock wave. The 

governing equations relating to the pressure rise across a shock as presented 

in [8];
p. 0^, _ n

(31)?2_M1^in29-^ 
1 (7 + 1)

?1 =
Pi (7 + 1)

Which for 7 = 1.4 gives:

P2 7Ml sin2 e - 1 (32)
Pi 6

From this we can calculate the pressure rise as a non-dimensional 4value as 

follows:
AP Po

4Definition of Ho ?
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l + 0.2M^V'57/)1/f2 . 2. X
----------- ^ - (Mf sin2 6-1]1 + 0.2Mi J s'- 1 >

(34)

Figure 3: Definition of Shock Parameters

For a supersonic upstream velocity, there is a relationship between the 

shock angle 6, the velocity deflection angle 5 and the upstream Mach num­
ber [8]. From this relationship, it is possible to define two flow deflection 

angles which are of importance to the critical pressure rise. The first de­
flection angle 5max occurs when the shock becomes oblique, and beyond this 

point, the flow deflection angle decreases again. The second deflection angle 

5* occurs when the shock become so oblique that the downstream flow veloc­
ity is sonic. The differences between these angles are usually small, but when 

dealing with subsonic freestream cases, sonic flow downstream of a shock is 

not possible. These angles have been correlated with experimental data, and 

seem to behave in a similar manner to the pressure rises corresponding to 

separation bubble formation and shock motion reversal. Thus for a pressure 

rise of ^ = 0.28 it is possible to assume that shock reversal and separation
oo

15



will occur. The correlation between experimental and numerical calculations 

for this critical pressure rise only apply for freestream Mach numbers above 

0.6, but deteriorates below 0.5.
This critical pressure rise criterion can be used for both static and dy­

namic flow conditions [2]. From experimental results, it was found that there 

was a phase shift in the lift response followed by a phase shift in the pressure 

response during dynamic conditions. The final pressure rise at the critical 
stage before shock reversal was found to be the same for both the static and 

dynamic cases. Also the onset of pitching moment break occurs at the point 
when this reversal takes place, hence without further delay.

5.4 Application of the Critical Pressure Rise

It was found there were no significant variations in the critical pressure 

rise across the shock during shock reversal between the static and dynamic 

regimes for aerofoil sections. It was also found that the correlation of critical 
pressure rise across the shock was independent of the profile of the aerofoil. 
To be able to use the critical pressure rise across the shock as a criterion 

for finding the pitching moment break defining the dynamic stall region, it 
is necessary to know the pressure just prior to the shock, and a relationship 

between the pressure and the normal force Cn- From experimental results, 
it was found that the phase lag in leading edge pressure with respect to the 

normal force coefficient is linear, with a time delay equivelant to 1.7 semi- 
chordlengths of travel. As this relationship is linear, it is possible to relate the 

pressure as a function of time P{t) and the normal force coefficient as a func­
tion of time C'iv(t) to the static relation. To avoid calculating the pressures on 

the surface, it is possible to relate the effects in the changes in pressure to the 

changes in normal force coefficient. This relationship produces a new normal 
coefficient C'N which may be related directly to the variation in pressure and

16



vice versa. Thus from experimental data, it is possible to find this critical 
normal coefficient which directly relates to the critical pressure rise across 

the shock the appropriate Mach number. Using a simple transfer function, 
the values of Cat and C'N may be calculated:

^n{p) _ 1 ('35')
CN{p) 1 + Tpp

Where Tp is the time constant equivelant to 1.7 semi chordlengths of travel 
at a Mach number of 0.3.

This linear relationship is only applicable at low Mach numbers. At 
higher Mach numbers it becomes non-linear, but the same approach is still 
appropriate. It was found that the only variation for higher Mach numbers 

is the value of the time constant. This criterion is useful for both leading 

edge separation, and shock induced separation.

5.5 Deep Stall and Vortex Shedding

Another phenomenon that occurs during dynamic conditions is stall vortex 

shedding [2, 5]. As the separation point traverses the chord length, vorticity 

may be assumed to be shed locally, and convected downstream in the shear 

layers. When the point is reached that leading edge, or shock induced sep­
aration becomes dominant, there is an abrupt change in the location of the 

separation point, and significant vorticity will be shed in the vicinity of the 

leading edge. This vorticity will be convected downstream over the upper 

surface, and in the process cause a large variation in lift. Also, due to the 

location of the additional lift of the vortex, there will be a large variation in 

the pitching moment particularly when the vortex leaves the trailing edge.
The vortex lift is calculated as for the lift due to trailing edge separation. 

Using the Kirchhoff approximation for circulatory lift, the corresponding lift 
is given by:

Cvn = CNvn (l - KNri^ (36)

17



Where

ir"- - j(1 + v/?)1 (37)

The total vortex lift, Cj^v, is allowed to decay exponentially with time, but 
may be updated by a new increment in lift:

CnVu — CnVu-iEv + (Cvn — CVn_1^Ev2

Where:
E,

( At 2U ) 
= p\Tv c J

(38)

(39)

Thus when the rate of change of lift is low, the vortex lift is being dissipated 

as fast as it builds up. When the leading edge of pressure rise criterion applies 

abruptly, there is an rapid build up of vorticity, and this is convected down­
stream. The rate at which this is convected is determined experimentally. 
This experimental behaviour has been modeled as:

CPv = T 1 -f- sin 7T
T,Vi

1
(40)

Where the vortex time r„ = 0 at the point of vortex shedding from the 

leading edge, and rv = Ty1 when the vortex passes the trailing edge. Thus 

the change in pitching moment due to vortex lift is given by:

Emv„ — CPyCjvvn (41)

The vortex decay constant, Ty, and the centre of pressure travel constant, 
Ty1 are evaluated from experimental data.

5.6 Sweep Effects and Separation Points

The methods outlined so far make use of a strip theory analysis process. This 

method is suitable for mid-sections of rotors away from either tip effects, but 
takes no account of the effects of planform changes such as swept rotor tips, or

18



BERP tip planforms. Using a modified method developed by Kuchemann [7] 
to analyse wing sweep and tip effects, it is possible to calculate the loading 

of a rotor blade of arbitrary planform [4]. The original method aimed to 

modify the lift curve slope using a value derived from the lift achieved at 
the centre of a doubly infinite swept back wing. From this, a lifting line 

method was used to find the spanwise lift distribution including the effects 

of locally induced downwash. For a doubly infinite swept back wing (A) the 

local sectional lift curve slope is given by:

cos A
CLa = 27rr7—

sm (?)
Where

77= 1-

(42)

(43)

The spanwise variation was achieved by making rj a function of the absolute 

distance y. This also modifies the aerodynamic centre:

A \
liy) = 1 - 4>(y)

where

(f){y) = 1 +
Sttt/

The aerodynamic centre as a function of y is given by:

£«c = 1 _ ’?(»)' 
c 2 r 2

(44)

(45)

(46)

From these equations, it is possible to calculate the effects of sweep on the lift 
generated by the rotor sections. To include the effects of the tip, the above 

equations are used but with the sign of the sweep angle reversed. Thus 

between these sections, the lift is simply the sum of these two contributions. 
During the original development of this method, it was found that for low 

aspect ratio wings, this method was not applicable. To overcome this problem

19



when considering closely spaced discontinuities in planform it is desirable to 

minimise the value of ry(y) as the panel aspect ratio tends to 0. Thus a factor 

similar to the first order lift curve slope correction is used to eliminate this 

problem:
A N

(47),'(y) = ,(y)r^

With the above equations, it is possible to calculate the effects of arbitrary 

plan forms on the forces and moments generated by the rotor blades.

5.7 Application to Arbitrary Planform Rotor Sections

To apply the above equations to arbitrary planforms, it is necessary to un­
derstand that:

• the local sectional lift curve slope is modified using the above sweep 

laws, and

• the local sectional lift curve slope is further modified due to local kinks 

in the planform.

Kinks in the planform may be viewed as the centre of a doubly infinite swept 
back wing of the appropriate sweep angle A. Then for the complete rotor, 
these local kink contributions are simply summed to give the spanwise force 

distributions. From this it is possible to calculate the effects on the separation 

point by linking this degree of freedom to the kink factor (77). The square of 

the kink factor is used to modify the forcing for the separation parameter, 
and this suppresses the possibility of separation at the centre section. The 

reverse is true at the tip. The leading edge pressure criterion is also modified 

in a similar manner.
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6 Conclusion

The aerodynamic model developed at WHL to predict unsteady aerodynamic 

loads on helicopter rotor blades is a quick and efficient design tool. It is ca­
pable of predicting the loads under steady and unsteady conditions, and 

incorporates the effects of dynamic flows. The physical model for predict­
ing dynamic stall is based on empirical observations, and uses static airfoil 
data to reproduce the effects. Arbitrary forcing is also handled in a step­
wise manner allowing for the phenomena of blade vortex interaction to be 

considered. Further to the original model, a number of improvements were 

made to allow for more accurate predictions. These include the modeling 

shock induced separation and leading edge separation using a critical pres­
sure rise criterion. Trailing edge separation, and the effects on the loading of 

the blade have been included using a modification of the Kirchhoff method. 
Also the ability to match the loading to the position of the separation point, 
and predicting when leading edge separation becomes dominant over trailing 

edge separation during dynamic stall. The effects of vortex shedding on the 

loading and pitching moments has been included.
The effects of separation in 2-dimensions has been investigated, and ex­

tended to 3-dimensions on a finite rotor using a modification of the Kuche- 

mann method. The modifications allow for the prediction of the effects of 

arbitrary planforms on the loads and moments. The ability to predict any 

rotor shape extends the capabilities of the code into modern rotor design 

areas.
While the code is very versatile, and capable of handling a wide range of 

flow conditions and rotor designs, there are a number of issues that have not 
been addressed. These include the effects of the true 3-dimensionality on the 

spanwise load distributions, tip vortex effects on the local loading at the tip, 
and any later interactions.
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