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Progress in Control Actuators for Dynamic Stall Alleviation

1 ■ Summary

This paper reports on a continuing investigation into trailing edge actuators for use in 

dynamic stall alleviation. A discrete vortex code is used to model the flow over a 

NACA 0015 section as it pitches from 0 to 40 degrees at pitch rates from 0.0266 to 

0.0974. Various static actuators have been modelled, including a blunted trailing 

edge, notches of varying depths, and trailing edge flaps. These experiments show that 

static actuators do not have enough of an affect on the flow over the airfoil to provide 

an effective solution. This investigation will therefore continue by investigating the 

use of dynamically moving actuators.

2. Introduction

Retreating blade stall is detrimental to the performance of helicopters as it limits the 

flight envelope and places high vibratory loads on the blades. As the need for more 

manoeuvrable aircraft grows the interest in dynamic stall alleviation has increased. 

Dynamic stall occurs during forward flight on the rapidly pitching retreating blade. 

As the airfoil pitches past the static stall angle, flow reversal starts near the trailing 

edge. The reversed flow region expands upstream towards the leading edge growing 

to form a large scale vortical structure known as the Dynamic Stall Vortex. As it 

convects across the airfoil surface it produces increased lift until it detaches when 

there is a large loss of lift accompanied by a large nose down pitching moment break.

Two approaches to the problem of controlling dynamic stall could be taken. One 

could be to harness the increased lift generated by the dynamic stall vortex, this 

would involve attempting to capture the vortex on the airfoil surface. The second





approach is to prevent the formation of the Dynamic Stall Vortex altogether. A lot of 

research into the seeond approach has been done with most of it concentrating on 

leading edge actuators. Very positive results have been gained using actuators such as 

leading edge flaps4, a rotating nose5, dynamically deforming leading edge6 and 

leading edge suction7.

However the environment at the leading edge is hostile, erosion problems and the 

large loads applied here would make any complicated leading edge devices very 

difficult and expensive to apply to real airfoils. This study will therefore concentrate 

on actuators situated behind the leading edge, however it is not known whether 

trailing edge actuators will affect the flow enough to provide a realistic solution, this 

will be investigated in this report.

This study will be confined to incompressible flow and will use a two-dimensional 

discrete vortex modelling code of the flow over a NACA 0015 section. Dynamic Stall 

is particularly hard to model because the intricate vortex structure requires 

complicated grid generation to match the moving boundaries. This code is particularly 

suitable because the results produced using this code compare well to the 

experimental data available at Glasgow University, and it is fast, producing results in 

a matter of hours making it a useful engineering tool. One further advantage to this 

code is the animation feature which helps to analyse the effect that the actuators may 

have on the flow over the airfoil.
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Fig 1. Example of animation

3. Project Outline

The project will take the following form:

1. Validate code by comparing results with experimental data.

2. Compare dynamic stall on clean airfoils and airfoils with static actuators (e.g. 

fixed flaps, notches.).

3. Compare dynamic stall on clean airfoils and airfoils with dynamic actuators (e.g. 

oscillating flaps, scheduled flaps.).

4. Code Validation
The first step is to validate the code by comparing the results gained using the code 

with experimental data available at Glasgow University. The general trend of the lift 

and pitching moment curves compare well, in particular the pitching moment break 

point is predicted accurately. The post stall behaviour does not compare as well 

because there is no turbulence modelling in the code and therefore the vortices do not 

dissipate as they should. This should not affect this study as we are mainly interested 

in the pre stall behaviour.
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Fig 2. Typical comparison between experimental and computational results

(NACA 0015, k= 0.0974, Re = 1.225 x lO6)





5. Static actuators

The next step is to model various static actuators to see how they affect the flow over the 

airfoil. Several different static actuator types have been modelled so far,

5.1 Blunt Edged Airfoils

Fig 3. Blunt edged airfoil

The blunt edged airfoil does not affect the flow significantly, the lift is decreased slightly 

but the pitching moment break point occurs at around the same point.
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Fig 4. Comparison between clean airfoil and blunt airfoil

(NACA 0015, k= 0.0974, Re = 1.225 x lO6)

2. Notched Airfoils

Two different types of notches have been investigated so far, a shallow notch and a deep 

notch.

Fig 5. Airfoil with shallow notch
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Fig 6. Airfoil with deep notch

The result for the airfoil with the shallow notch show that the lift is not affected 

significantly until after the pitching moment break when the peak lift produced is not as 

large. The animation showed that the notch inhibited the flow reversal across the airfoil 

with the dynamic stall vortex never reaching the leading edge of the airfoil and detaching 

from around the notch area. The pitching moment break is much larger as the vortex is 

kept closer to the airfoil as it detaches.
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Fig 7. Comparison between clean airfoil and airfoil with shallow notch

(NACA 0015, k= 0.0974. Re = 1.225 x lO6)

The results for the airfoil with the deep notch show a change in pitching moment near the 

beginning of the pitching motion. The animation showed a large vortex rolling out of the 

notch.
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Fig 8. Comparison between clean airfoil and airfoil with deep notch

(NACA 0015, k= 0.0974. Re = 1.225 x lO6)

5.3 Airfoils with static flaps

Fig 9. Airfoil with flap





The airfoil was modelled with a 15% chord flap at flap angles from -20 ° to +20°. The 

flap is just a simple attached flap. The results for the airfoils with positive flap show that 

the lift is increased with the pitching moment break occurring sooner, and as can be 

expected the airfoils with negative flap do the opposite, decreasing lift and delaying the 

pitching moment break.

airfoil with 5
airfoil with 10 deg flap
clean airfoil
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Fig 10. Comparison between clean airfoil and airfoil with positive flap

(NACA 0015. k= 0.0974, Re = 1.225 x lO6)

Dynamic Actuators

As the code is incompressible the main problem with modelling dynamic actuators is that the 

volume within the body must remain constant. We started with the simplest actuator to model 

which is the flap. The flap was modelled statically as a simple wedge shape, but the volume 

inside the wedge is different for each flap angle so another way of modelling the flap had to 

be found. We then investigated modelling the flap as a separate airfoil free to rotate inside the 

main airfoil, however as the flap rotated the volume changed inside the main airfoil. One 

solution is to have slight notches where the main airfoil meets the flap so that only the 

circular leading edge is able to rotate inside the main airfoil with the volume remaining 

constant.
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Fig 11. Airfoil with flap

The notches may however affect the flow giving false results so we compared the results 

from the clean airfoil case with the airfoil with the flap at 0°. The notches on the airfoil do not 

affect the flow significantly.

airfoil with Odeg flap
clean airfoil

Angle of attack (degrees)
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airfoil with Odeg flap 
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Fig 12. Comparison between clean airfoil and airfoil with flap at 0°

(NACA0015. k = 0.0974. Re = 0.1225 x lO6)

7. Conclusions

All of the static actuators investigated in this report so far have affected the flow over 

the airfoil to some extent. None of them however provided a solution to the problem 

of dynamic stall. Further investigation into the use of dynamic actuators may provide 

more useful results.

8. Future Work

Future work on this project will include continued investigation into different static 

actuators. This would include different sizes and types of flaps, possibly including 

gurney flaps and

13



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I



slotted flaps. Further investigation will also be carried out into different depths, lengths and 

types of notches, for example, a notch where the back wall blends into the airfoil trailing 

edge. The addition of dynamically moving actuators to the code will also be carried out, for 

example, oscillating and scheduled flaps. There will also be investigation into other possible 

solutions. A wind tunnel test will be designed and ultimately a model will be built and tested 

in the wind tunnel.
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