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Abstract 7 

The Spatial Urban Data System (SUDS) is a spatial big data infrastructure to support UK-wide 8 

analytics of the social and economic aspects of cities and city-regions. It utilises data generated 9 

from traditional as well as new and emerging sources of urban data. The SUDS deploys 10 

geospatial technology, synthetic small area urban metrics, and cloud computing to enable urban 11 

analytics, and geovisualization with the goal of deriving actionable knowledge for better urban 12 

management and data-driven urban decision making. At the core of the system is a programme 13 

of urban indicators generated by using novel forms of data and urban modelling and simulation 14 

programme. SUDS differs from other similar systems by its emphasis on the generation and 15 

use of regularly updated spatially-activated urban area metrics from real or near-real time data 16 

sources, to enhance understanding of intra-city interactions and dynamics. By deploying public 17 

transport, labour market accessibility and housing advertisement data in the system, we were 18 

able to identify spatial variations of key urban services at intra-city levels as well as social and 19 

economically-marginalised output areas in major cities across the UK. This paper discusses the 20 

design and implementation of SUDS, the challenges and limitations encountered, and 21 

considerations made during its development. The innovative approach adopted in the design of 22 

SUDS will enable it to support research and analysis of urban areas, policy and city 23 

administration, business decision-making, private sector innovation, and public engagement. 24 
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Having been tested with housing, transport and employment metrics, efforts are ongoing to 25 

integrate information from other sources such as IoT, and User Generated Content into the 26 

system to enable urban predictive analytics. 27 

Keywords: Urban Big Data Infrastructure; Urban Analytics; Spatial Urban Indicators; Small 28 

Area Assessment; Spatial Big Data 29 

1. Introduction 30 

Cities play critical role in society and have increasingly become the focal points for the 31 

economy, with the current trend towards increasingly knowledge-intensive economies 32 

(European Commission, 2013). At the same time, increasing population concentration in urban 33 

areas put pressure on the use of limited city resources and services such as energy, 34 

transportation, water, buildings and public spaces (European Commission, 2013b). Cities also 35 

account for over 70% of current global CO2 emissions (OECD, 2012), posing serious 36 

challenges arising from environmental pollution, congestion, waste management, and the need 37 

for urban sustainability. As a result, cities have been recognised as one of the key elements for 38 

future decision-making (Albino et al., 2016; Mori and Christodoulou, 2012). 39 

The transformation of urban areas to smart cities has resulted in the continuous generation of 40 

enormous volumes and varieties of data from different sources. Thakuriah et al (2017) noted 41 

that the sources of urban data are many, including sensor systems monitoring different aspects 42 

of the city, user-generated content such as social media, private business data collected from 43 

transaction and customer usage records, as well as traditional sources such as those held by 44 

government agencies (registrations, statistics, and archives) and non-government actors (e.g., 45 

housing sales and rental data from property agents, and energy usage from energy companies). 46 

Together, these have given rise to the urban big data phenomenon. However, for a city to be 47 

efficiently managed, data from these disparate sources need to be efficiently integrated, in order 48 
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to enable a holistic understanding of the interactions between various city subsystems. Based 49 

on the fact that most of the data obtained from cities are spatially-referenced, the interactions 50 

between the various city components will be better understood through the deployment of 51 

geospatial techniques. In the past, the integration and analysis of huge volumes of data 52 

presented an enormous task, but with advances in big data analytics, cloud computing and 53 

geospatial technology, intra-city interactions can now be monitored and assessed in real time 54 

or near-real time, feeding into Urban Informatics, or the utilisation of novel sources of urban 55 

data for knowledge discovery, public engagement and business innovations.  56 

In this paper, we describe the Spatial Urban Data System (SUDS), a multi-component system 57 

that serves data on multiple social and economic aspects of urban living. SUDS captures key 58 

economic and social data of interest and integrates such measurements to generate small-area 59 

data in a timely fashion. This approach helps derive new insights that are useful for smart city 60 

management. Key capabilities of the system include: automatic acquisition and processing of 61 

data from heterogeneous sources, generation of relevant science-based small-area synthetic 62 

metrics from acquired data that could potentially be used to generate intra-city indicators for 63 

monitoring and assessing the performance of relevant urban area aspects (subsystems); cloud 64 

computing infrastructure for the storage, integration and manipulation of urban big data from 65 

different sources; robust tools to support spatial urban big data analytics, policy and business 66 

decisions tools, public engagement; scenario/predictive modelling and analytics based on 67 

generated intra-city metrics, and visualisation tools that will support understanding of the 68 

spatial dimensions of the sub-city interactions.  69 

The novelty of this research is fourfold. Firstly, the use of non-traditional sources of data for 70 

the generation of synthetic metrics enables the tracking of urban dynamics across an entire 71 

country on a regular basis. Secondly, the spatial disaggregation of the metrics (small-area) 72 

allows unprecedented insights into sub-city interactions of the various aspects of the urban 73 
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area, with an emphasis on assessments of status, needs, disparities and well-being. Thirdly, the 74 

spatial big data system developed allows the integration and processing of data from varying 75 

sources, with complex geospatial processing, and modern cloud computing systems capable of 76 

handling big data. Fourthly, the research developed series of strategies to process and utilised 77 

various socioeconomic variables, to understand and manage urban area dynamics. 78 

Section 2 provides an overview of this project – its purpose, significance and contributions. 79 

Section 3 reviews related concepts and works that have been undertaken on smart city 80 

performance and urban informatics and similar systems that have been proposed to support 81 

smart city implementation and management. Section 4 provides a discussion on the design and 82 

development of the SUDS, while Section 5 explores some ongoing application of the SUDS. 83 

Section 6 discusses certain limitations, constraints and issues encountered and a conclusion is 84 

presented in Section 7. 85 

2. Purpose, Significance and Contributions of the Research 86 

SUDS infrastructure is part of the Urban Big Data Centre (UBDC), funded by the Big Data 87 

Phase 2 of the UK Research and Innovation’s Economic and Social Research Council. The 88 

UBDC is a nationwide data service that provides access to urban data to academic researchers, 89 

local governments and businesses. The uniqueness of the data service lies in its data collections 90 

sourced from a variety of public, private and internet sources including: Zoopla, Experian, 91 

Registers of Scotland, Strava,  BGS, Met office, Springboard, Twitter, and Facebook; which 92 

are used create a big data infrastructure to study dynamic resource management, transport, 93 

housing, economic development, migration, lifelong learning, productivity and other social and 94 

economic aspects of urban living. The SUDS integrates geospatial data from multiple 95 

subprojects to these urban living themes and serves as a capstone project that links these 96 

projects to the spatial data infrastructure (SDI).  97 
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The key objectives of SUDS are: 98 

Research, knowledge discovery and evaluation: The first and foremost objective of SUDS is 99 

to bring together, in one platform, geospatial data on a number of urban living themes, with the 100 

ambition of facilitating research and knowledge discovery of social and economic conditions, 101 

as well as cross-theme analysis (eg, between economic and health factors, social and 102 

environmental factors). By building a platform for the entire UK, SUDS provides the ability to 103 

understand regional variations in social and economic factors, and to conduct detailed analysis 104 

of how these factors affect poverty, regional deprivation, productivity and other issues of 105 

relevance to quality of life and sustainable urban living. Through specially-constructed urban 106 

indicators (more details in Section 4.2), we enable research to utilise comprehensive 107 

information from multiple sources that utilise novel sources of data, which puts together into 108 

composite measures, a number of social and economic variables.  109 

Policy implementation, evaluation and urban operations and service delivery: A second 110 

ambition is to support urban policy implementation and evaluation. For instance, aiding in the 111 

identification of areas that need attention: improving infrastructure to access jobs, or for better 112 

rental housing conditions. Where should policy action be taken and investments made to 113 

promote educational outcomes, and for better connection between graduates and local labour 114 

markets?  Furthermore, national and regional policies often have local effects. For example, 115 

cuts in local government funding have critically affected public bus services across England 116 

and Wales, especially in deprived areas, thereby limiting peoples access to jobs and education 117 

(Topham, 2018). At the same time, decision-makers from specific areas may wish to 118 

understand how policies implemented in their areas led to outcomes at the local level, compared 119 

to other areas in where such policies were not implemented.  120 
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An ambition of SUDS is to provide a framework for longitudinal, over-time content that allows 121 

tracking of key measures, changes to which can lead to a determination of the effect of policies 122 

and plans. This necessarily implies that data are captured and archived over long periods, under 123 

a stable governance model, for which a persistent research platform is needed to ensure 124 

research continuity and to deliver persistent services. This in fact is a major motivation of 125 

SUDS — to facilitate improved temporal analysis, through the creation of longitudinal 126 

synthetic data, by tapping into historical data or by archiving real-time data feeds over time. 127 

Such synthetic temporal data will, for instance, enable social scientists to study the dynamics 128 

of patterns of interest and link them to changing behaviours and outcomes. They will also help 129 

analysts monitor risks to urban areas and the resilience of urban areas to policy and natural 130 

interventions (e.g., changes in economic or welfare policy, episodes of extreme weather). 131 

Additionally, local administrators are increasingly interested in how to operate improved city 132 

services using data-driven practices. SUDS provides a data-driven framework with which to 133 

monitor how services could be improved, and offers mechanisms to bring in new types of data 134 

that are relevant to the operational problems at hand.  135 

Urban Indicators: A central aspect of SUDS is the utilisation of novel forms of data to generate 136 

small-area urban indicators. We discuss this aspect in greater detail in Section 4. The goal of 137 

such indicators is typically to facilitate performance monitoring, assess trends over time, set 138 

future targets and support inter-city comparisons. They also inform urban planning, operations 139 

and a variety of decision-making regarding urban management, raise awareness on critical 140 

issues, encourage political interventions and citizen activism, support strategies for health 141 

behaviours and well-being, promote public engagement and civic participation, and improve 142 

communication among stakeholders working in urban sectoral siloes. However, city-level 143 

indicators can mask important variations in performance and well-being within specific 144 

neighbourhoods and local areas within a city. This is a critical gap since such indicators can 145 
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provide essential information for local community-level action in poorly performing parts of 146 

the city. Our focus in SUDS is entirely on creating small-area synthetic data on key policy-147 

relevant factors by drawing on multiple sources of information to enable appropriate place-148 

based decision-making. 149 

Open source development: A key objective of the SUDS platform is to use open source 150 

technology as a backbone so that the platform can be replicated elsewhere. The general benefits 151 

of open source SDI and extensive growth of open source geospatial technologies have been 152 

extensively noted elsewhere (e.g., Hu et al. 2017; Brovelli et al., 2016; Steiniger and Bocher, 153 

2008) and will not be repeated here. Here, our objective is to demonstrate, through the selection 154 

of technology components and the configurations employed, how novel forms of urban big 155 

data can be offered for use through an open geospatial platform, or replicated by local 156 

governments, smart cities SMEs, SDI in less-developed nations, or even how they can form 157 

the basis for SDI with other themes as a focus (e.g., health, the environment). However, we 158 

also note that with new forms of data, many of which are privately held or are confidential 159 

administrative records, not all data services can be open, and there is a need for SDI to be able 160 

to support delivery of confidential and private-sector business data.  The SUDS platform brings 161 

together processes offering security and access control technologies that ensure that data can 162 

be accessed and that analytics can be conducted in the safeguarded environment that is 163 

obligatory for the processing of such private data. 164 

Larger infrastructure and data acquisition: SUDS is part of a larger data infrastructure (the 165 

UBDC), which grows organically with new users, data and technology, and with new 166 

government or business initiatives. These characteristics result in SUDS being not a well-167 

defined system (Vandenbroucke, et al., 2013), but rather a “complex, multi-faceted and 168 

dynamic environment” that is responsive to new forms of data and stakeholders that enter into 169 

the work processes. SUDS benefits from processes in place within the wider infrastructure to 170 
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proactively engage with private and government data owners, towards supporting UK 171 

industrial strategy. A part of this engagement process leads to new data acquisition from 172 

stakeholders. More broadly, the system will play a central role in our stakeholder engagement 173 

activities, particularly with policy-makers, businesses and non-profit organisations.  174 

3. Related Works  175 

In this section, we review two strands of literature pertinent to our work – performance 176 

monitoring and assessment in small cities, and data systems and infrastructure to support smart 177 

city analytics. 178 

3.1 Smart city performance monitoring and assessment 179 

Due to the increasing importance of cities to society, and the need to create a sustainable urban 180 

environment, there is a growing interest in robust and efficient methods of monitoring and 181 

measuring policy impacts, infrastructure developments, socio-economic factors, resource use, 182 

environmental pollution and other processes that contribute to and benefit from the city’s 183 

metabolism, prosperity and quality of life (European Commission, 2015). Hence, urban 184 

metrics/indicators are increasingly important in smart city performance monitoring and 185 

assessment, trend assessment over time, and future target-setting (Albino et al, 2016; 186 

Airaksinen, 2016; Berardi, 2013). Although a wide range of available indicators (Huovila, 187 

2016; Albino et al., 2016; European Commission, 2015) is being used to monitor smart city 188 

performance, most of the indicators are calculated at the national, regional, or city levels. This 189 

is because the goals of such indicators are mainly to facilitate performance monitoring, assess 190 

trends over time, set future targets and support inter-city comparisons. However, they can mask 191 

important intra-city variations (in performance and well-being within specific neighbourhoods 192 

and local areas within a city). Furthermore, the indicators are not regularly updated as most 193 

tend to be produced from data acquired during censuses. Hence, a major strength of SUDS is 194 
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the capability of creating and using small-area synthetic metrics of key policy-relevant factors, 195 

based on the data obtained from the various aspects of the city to facilitate small-area analyses 196 

that will shed light on underlying city dynamics and inform local and community-level action 197 

for poorly performing parts of a city.  198 

Indicators for smart city performance monitoring are classified in different ways (Airaksinen, 199 

2016; European Commission, 2015). The Canadian International Development Agency, (2012) 200 

identified three broad categories of indicator: social, economic and environmental (Figure 1).  201 

The SUDS programme focuses mainly on social and economic indicators, with less emphasis 202 

on environmental aspects, which have received considerable attention from researchers (Shen 203 

et al, 2011; Lynch, et al 2011). 204 

 205 

206 

Figure 1. Urban area subsystems and key urban area indicators targeted by SUDS. 207 

3.2 Smart city data infrastructure  208 
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In the last two decades, the concept of smart cities has generated great interest within and 209 

beyond the research community. With the advent of big data and supporting technologies, 210 

urban area and smart city-related studies are becoming prevalent. Different aspects of the smart 211 

city are being studied and relevant theoretical and practical steps explored. As a result, a 212 

number of authors have proposed various ways smart city could be implemented.  However, 213 

the use of granular spatially referenced small-area metrics to drive urban area or smart city 214 

analytics is still at the nascent stage and the data have not been extensively explored. This gap 215 

is among the things compelling the development of the SUDS.  216 

To some extent, SUDS could be perceived as a spatial data infrastructure (SDI) for urban area 217 

analytics. SDI has been defined by Hu et al. (2017) as the technology, policies, standards, and 218 

human resources necessary to acquire, process, store, distribute, and improve utilisation of 219 

geospatial data, services, and other digital resources. This definition is in line with the aim of 220 

SDIs as noted by several authors (Grus et al., 2011; Crompvoets et al., 2008), which essentially 221 

is to facilitate the exchange and sharing of spatial data between stakeholders in the spatial data 222 

community. However, SUDS differs from conventional SDIs by not fundamentally focusing 223 

on the storage and dissemination of geospatial data, but rather focusing on the combination of 224 

spatial and non-spatial data to generate metrics with the aim of providing new insights. In this 225 

sense, even though SUDS has storage capability, it mainly serves as an analytics platform that 226 

draws data from multiple sources. Hence, SUDS combines the storage capabilities of SDIs with 227 

the data processing and analytics capabilities of conventional smart city data infrastructures. 228 

There have been a number of studies on smart city-related infrastructure, most of which have 229 

focused on the deployment of internet of things (IoT) to facilitate smart city implementations. 230 

Some authors have developed smart city platforms essentially to collect data from sensors 231 

without focusing so much on the analysis of the collected data (Bain, 2014, Murty et al., 2008). 232 

Zanella et al. (2014) proposed a general reference framework for the design of an urban IoT 233 
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that will be based on a centralised architecture through which a set of web services can be 234 

exposed. The proposed system was tested with a proof of concept (Padova Smart City) project, 235 

which comprises a system for the collection of environmental data (CO level, air temperature 236 

and humidity, vibrations, noise, etc.) and monitoring of public street lighting (light intensity) 237 

via wireless nodes.  238 

Very recently, Lv et al. (2018), deployed 3D GIS and cloud computing to develop a government 239 

affairs service platform for facilitating and handling smart city planning. Soille et al. (2018) 240 

proposed a data-intensive computing platform for retrieving information from big geospatial 241 

data from earth observation satellites. The platform will facilitate the storage, processing, 242 

analysis, and visualization of the satellite images, essentially for applications in agriculture, 243 

forestry, environment, disaster risk management, development, health, and energy. For their 244 

part, Cicirelli et al. (2017) proposed the iSapiens platform for Smart City applications. This 245 

platform operates as an agent-based distributed IoT platform where the bulk of the 246 

computations are executed at the edge (instead of within the data core) of the network of 247 

computing nodes spread over a city area by agents residing in each node, while all the others, 248 

such as computationally demanding tasks, are executed in the cloud. Other previous works, 249 

such as the SmartSantander project, have focused on the development of smart city 250 

infrastructure with extensive networks for the monitoring of environment pollution (air quality, 251 

noise and luminosity levels), outdoor parking, and automated irrigation systems (Sanchez et 252 

al., 2014). 253 

Khan et al. (2015; 2013) proposed the development of a cloud-based analysis service that could 254 

be used to generate information intelligence and support decision-making for smart future cities 255 

management. This system is similar to SUDS, other than in terms of its lesser concern for 256 

spatial aspects. Similarly, Babar and Arif (2017) proposed a smart city architecture, based on 257 

big data analytics that will comprise a data acquisition and aggregation module (which will 258 
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collect varied and diverse data related to city services), a data computation and processing 259 

module (which will perform normalization, filtration, processing and data analysis), and an 260 

application and decision module (which will formulate decisions and initiate events) to support 261 

solutions for smart urban planning and decision making. This system is similar to the SUDS in 262 

many respects in the sense that it incorporates data acquisition, processing and analysis 263 

components, and is based on big data analytics. However, whereas its central aim is to improve 264 

the data processing efficacy to facilitate real-time decision-making, SUDS’ main focus is on 265 

the rapid or frequent generation of synthetic small-area metrics from a variety of data sources 266 

over the long term, and on integrating these metrics to derive new urban area insights and 267 

knowledge. 268 

Other studies, such as the IES Cities project, focus on exploiting a combination of open 269 

Government data, network sensors and user-supplied data to develop user-centric mobile 270 

services constructed around the IoT as a means of supporting smart city applications (Aguilera 271 

et al., 2017). Gaur et al. (2015) proposed a Multi-Level Smart City architecture based on 272 

semantic web technologies and Dempster-Shafer uncertainty theory to support smart city 273 

applications by facilitating the interaction between wireless sensor networks and ICT. 274 

SUDS differs from already existing spatially enabled smart city analytics infrastructure, such 275 

as those proposed by Lv et al. (2018) and Khan et al. (2015) by focusing largely on the 276 

generation and use of small-area socioeconomic metrics on a countrywide basis collected at 277 

regular intervals. Previous indicators and metrics used in studying urban area dynamics are at 278 

a higher spatial scale such as regional or national levels. Those that are at smaller scales are 279 

limited in extent as they focused on specific areas. However, the small-area metrics generated 280 

in this project are at smaller scale (higher spatial detail), higher temporality and covers an entire 281 

country. Hence, comparisons can be made at various spatial levels from neighbourhoods, 282 

through city-, regional- and national-levels. This facilitates the understanding of intra-city 283 
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dynamics and provides “urban health checks” with an emphasis on assessments of status, 284 

needs, disparities and well-being. Potential information from IoT sensors forms only part of 285 

the data sources for computing urban area metrics, unlike in other systems (Cicirelli et al., 286 

2017; Sanchez et al., 2014), in which IoT forms the core of the infrastructure. The SUDS is 287 

designed to be compatible to any modern cloud computing systems such as Snowflake 288 

Computing system, Azure SQL Data Warehouse, Amazon Redshift, Oracle Data Warehouse 289 

with advanced capabilities for handling big data. The development of the SUDS is informed 290 

by multiple global efforts aimed at smart city performance monitoring and comparison. 291 

However, SUDs focuses on the generation of synthetic metrics that can be deployed to 292 

understand underlying dynamics and to derive deeper insights into sub-city interactions, and 293 

which could be extended to generate relevant indicators for urban area monitoring and 294 

assessment. 295 

With regards to security, the system was designed to ensure that critical information are 296 

protected from unauthorised access and deletion, theft, and data leakage. Modern data 297 

warehouses such as those used in SUDS are built to safeguard datasets stored in them. For 298 

instance, the Snowflake Data Warehouse uses a comprehensive set of features (IP whitelisting, 299 

multi-factor authentication, federated authentication, role-controlled access, automatic 300 

encryption of data, maintenance of historical data) that help protect data stored in it against 301 

human error, malicious acts, software or hardware failure and ensures data recoverability 302 

(Continuous Data Protection – CDP). Another consideration was the choice data centre. The 303 

European Union (EU) regulation requires cloud-hosted data to be physically stored within the 304 

continent, hence, the cloud system used has secured data centre in two locations (Dublin and 305 

Frankfurt) in the EU. This differs from that used by Khan et al. (2015), which was essentially 306 

Hadoop-based cloud infrastructure hosted on a server. However, similar security 307 

considerations as was made in SUDS were made by Soile et al., 2018, which used Kerberos 308 
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authentication and a specific access control list (ACL) mechanism to ensure multi-user 309 

environment data security. 310 

4. The SUDS Platform Design and Development - Methods and Approach  311 

SUDS comprises four main components: the Urban Indicator (UI) programme, geospatial 312 

processes and analytics, web visualisation (BI and geovisualization dashboards) and cloud 313 

computing (Figure 2). The system was designed to use a range of open source and commercial 314 

software and tools, including: Extraction Transformation and Loading (ETL) tools (FME and 315 

Talend), a spatial database (PostgreSQL/PostGIS), a webmap publishing tool (Geoserver), a 316 

cloud-based data warehouse (Snowflake), and business intelligence tools (Tableau/PowerBI). 317 

The system can be deployed for medium-scale analytics as currently implemented with 318 

countrywide synthetic small-area datasets, and can be scaled up to handle big real-time data 319 

when the data inflow increases (e.g., from city sensors or other IoT infrastructure). 320 

 321 

 322 
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Figure 2. Graphical representation of the SUD system, showing the various components and how they connect to 323 
each other 324 
 325 

4.1 Main features, functions and processes 326 

The following subsections provide a brief description of the main components of the SUDS. 327 

4.1.1 SUDS geospatial and geovisualization components 328 

SUDS interactive geospatial processing and visualisation components were designed to be a 329 

self-service business intelligence system for insight generation and planning. They comprise 330 

the geospatial processing and analytics, and the web visualisation (BI and geovisualization 331 

dashboards) components of the system. Supported by a powerful geographic database, it has 332 

multiple sub-components including: a backend Geographic Information System/spatial 333 

processing and analytics; an online web-mapping platform that gives users the ability to have 334 

an interactive mapping experience and conduct on-the-fly spatial analytics; a business 335 

intelligence dashboard that shows insights; and other specialised tools that enable users to 336 

interact and interrogate underlying data in the database. Users can engage with the platform by 337 

querying the underlying datasets or conducting multi-metric analyses to gain better insights 338 

into multiple dimensions of the city.  Figure 3 illustrates the SUDS geospatial processing and 339 

visualisation architecture. 340 

  341 
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 342 

Figure 3. SUDS geospatial component architecture showing how the relevant subcomponents are integrated 343 
 344 

The following strategies were adopted in the development of the various subcomponents.  345 

4.1.1.1 Spatial database 346 

PostgreSQL, an open-source object relational database management system, with a powerful spatial database 347 

extension (PostGIS), was used to create the SUDS spatial database. This was based on the fact that it is a robust 348 

object relational database with advanced spatial analysis functionalities, that can seamlessly connect to: web map 349 

publishing tools, most ETL systems such as FME, Talend etc., prominent data warehouses/lakes such as 350 

Snowflake computing, Amazon Redshift, Azure SQL Data Warehouse etc., and supports interactive online spatial 351 

analytics (dynamic spatial querying of underlying datasets). The spatial database primarily serves as an initial 352 

repository for relevant spatially referenced urban area data as well as synthetic or simulated small-area data and 353 

derived urban indicators. It is also used as geospatial processing platform considering the fact that most cloud data 354 

warehouses capable of dealing with structured and unstructured big data have limited spatial data processing 355 

capabilities. This is in line with the proposal of Shaojun et al. (2017), which suggests for a NoSQL database such 356 

as (MongoDB, Neo4J, OrientDB etc) to be used as a spatial big data warehouse and a traditional relational spatial 357 

database such as PostgreSQL and SQLite used as the application server.  358 

However, in view of progress that have been made in developing open-source geospatial big databases such as 359 

GeoMesa (GeoMesa, 2018), GeoWave (LocationTech, 2018) and OmniSci (OminiSci Inc., 2018), we are 360 

currently testing the integration of GeoMesa or Geowave in the system. 361 

 362 
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4.1.1.2 Map publishing tool  363 

As the synthetic metrics were spatially referenced, there was a need for them to be published 364 

as web maps. Hence, Geoserver, an open-source server for publishing online geospatial data 365 

was deployed as the SUDS web map serving tool. The SUDS spatial database was connected 366 

to the Geoserver using the appropriate tools, from which the interactive maps were published. 367 

The Geoserver component also served as a link between user web map interactions and the 368 

spatial database. Users’ queries are sent to the database and results in the form of published 369 

maps are returned to them from the database through the Geoserver. 370 

4.1.1.3 Interactive web interface  371 

 The public-facing online interface of SUDS was developed with a number of standard web 372 

development tools (HTML, PHP, JavaScript and CSS). The web tools drive the web interactive 373 

capabilities of the system. The interactive mapping components of the interface were developed 374 

with Leaflet, a leading open-source JavaScript library for user-friendly online interactive maps, 375 

PHP, and JavaScript codes.  376 

4.1.1.4 Online spatial analytics  377 

Web analytics tools that allow online spatial queries were implemented on the SUDS platform 378 

with a combination of JavaScript, PHP and geospatial analytics, to enable users to interact with 379 

the underlying datasets. These tools were designed to be simple and easy to use mostly for 380 

drilling down into or aggregating information from one or more aspects of the urban area using 381 

the indicators/datasets. More complex queries (Multi Criteria Analysis) through which users 382 

can integrate information from multiple indicators or sectors of the urban areas were developed 383 

to enable a wider understanding of causes and effects of particular outcomes or changes.  384 

4.1.2 Business intelligence and visualisation tools  385 
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Chart JS, a flexible JavaScript charting library was initially used alongside PHP and JavaScript 386 

codes that queried the database to produce dynamic charts that illustrate BI insights. Through 387 

the BI dashboard users can quickly gain insights about the relationship between the spatial 388 

query results and other urban area information, such as demography, economic outlook, etc. 389 

We are currently revising and testing a new implementation of the BI dashboard with Power 390 

BI and Tableau. 391 

4.2 The urban metrics/indicator (UmI) component 392 

The urban metrics/indicator (UmI) is a prominent component of SUDS, whose goal is to 393 

develop a range of synthetic metrics that summarise and highlight relationships among multiple 394 

dimensions of functional urban sectors. The UmI component comprises a range of 395 

spatiotemporal-synthetic or simulated small-area metrics describing diverse aspects of the 396 

social, economic, natural, built-environment and physical infrastructure aspects of urban areas 397 

that were generated from various datasets. Data used for the UmI component were accessed 398 

through a variety of data acquisition and retrieval techniques (APIs and ETL), and processed 399 

and formatted using specialised data management methods such as Python and R. These tools 400 

together with ETL tools were used to load and wrangle (cleanse, process and transform) the 401 

data into suitable formats/standard and transforming them to the same spatial units. Positional 402 

information in the raw datasets were converted to coordinates that enabled them to be spatially 403 

linked to other spatial datasets. This spatial linkage enabled the processing of the datasets at 404 

varying spatial scales such as at intra-neighbourhood-levels (lower super output area – LSOA, 405 

and Middle Layer Super Output Areas – MSOA), county-or regional-levels. Subsequently, 406 

spatially-activated synthetic data were created from the datasets using a complex set of 407 

specialist urban models and simulations, data science and GIS methods. The Spatial ETL tool 408 

Feature Manipulation Engine (FME) was used to extract, transform and load spatially-409 

referenced data into the data lake, while non-spatial datasets were handled with Talend 410 
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integration software, which has capabilities for data quality and preparation, data integration 411 

and management, big data manipulation, cloud storage, and master data management. The 412 

synthetic data were post-processed (when possible) in many ways to create simple summaries 413 

or composites of information through a process of indicator generation, to yield urban 414 

indicators that will help monitor performance. This spatially indexed synthetic data, generated 415 

from the UmI programme forms the core of the SUDS database. Some of the metrics covering 416 

key city subsystems currently deployed in SUDS include transport availability metrics (TAM), 417 

housing affordability metrics (HAM), employment-accessibility metrics (EAM), and 418 

education-related metrics (ERM).  419 

4.3 Cloud computing component 420 

The cloud computing component comprises a data warehouse (data lake) in which information 421 

from the various components is collated and processed. In addition to serving as a central 422 

storage and data processing system, a key purpose of the cloud system is to facilitate real-time 423 

information streaming from sensor network gateways and integration and processing of such 424 

data with other metrics. In this way, information from urban IoT sensors can be integrated with 425 

other urban area information to generate new insights in real time. We are currently testing the 426 

development of the data warehouse with Snowflake Computing, which is one of the most 427 

promising enterprise data warehouses for big data analytics. Snowflake was chosen because of 428 

its relatively high performance, scaling capabilities, speed of computing, simplicity in handling 429 

big data and unlimited concurrency support. 430 

 5. Application and Results 431 

This section presents an application that identifies UK-wide areas with low levels of public 432 

transport quality, labour market accessibility, housing quality and educational barriers. It first 433 

describes how we capture, clean and curate the data from multiple novel sources, using a 434 
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variety of technological and simulation approaches. We then identify how the different aspects 435 

of SUDS allow the areas of interest to be identified.  436 

5.1 Transport Availability Metrics (TAM) 437 

Public transport service data were obtained from the UK Traveline Information Limited 438 

(UKTIL), which offers schedule (timetable) data for bus, light rail, tram and ferry services in 439 

England, Wales and Scotland (Traveline National Dataset, TNDS 440 

[http://www.travelinedata.org.uk/traveline-open-data/traveline-national-dataset/]). Train 441 

service schedule data for the entire country was obtained from UK Rail Delivery Group 442 

(www.gbrail.info). The public transport schedule data obtained from the UKTIL were in 443 

TransXchange format for bus, light rail, tram and ferry services, and in CIF format for train 444 

services (Rail Delivery Group, 2016). They were subsequently transformed to the General 445 

Transit Feed Specification (GTFS) format, using a modified version of a Python conversion 446 

tool (Mooney, 2016).  In total, data from 329,314 bus stops/17,880 bus routes, 2,514 rail 447 

stations/5,770 rail routes, 1,325 tram stations/93 tram routes, and 306 ferry stations/139 ferry 448 

routes in operation in Great Britain (England, Wales, and Scotland) were obtained. 449 

The acquired timetables and locations of stops/stations were used to compute the service levels 450 

(frequency of service) at these locations. These were subsequently used to generate useful 451 

public transport availability metrics, including average hourly frequency (AHF), density of 452 

stops (DOS), density of nighttime stops (DONS), and Density of Routes (DOR) for the whole 453 

of Great Britain at LSOA and MSOA levels, which were chosen as the lowest spatial levels of 454 

aggregation for SUDS.  455 

The average hourly frequency (AHF) at the stop/station-level was computed as:  456 

 457 
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𝐴𝐻𝐹(𝑖) =
1

5
∑ 𝑐𝑛𝑡_𝑡𝑟𝑖𝑝(𝑖, 𝑡) 

𝑡 ∈ 𝑇

 (1) 

where i is a stop/station, cnt_trip (i,t) is the total count of trips passing through the station (stop) 458 

i within a one-hour time slot t on five working days (Monday to Friday); T is the set of one-459 

hour time slots. We focused on working days as a representative of public transport availability 460 

because the vast majority of the trips to basic destinations such as workplaces and schools occur 461 

mainly on such days. Thus, the public transport availability indicators calculated on working 462 

days reflect the extent to which public transport can serve people and support their basic 463 

activities. 464 

We used the AHF in conjunction with proximity to compute the transport-availability metrics 465 

at the LSOA level. Previous studies measured public transport availability using proximity 466 

(walking distance) to stations/stops and service frequency (Minocha et al., 2008; Currie, 2010; 467 

Delbosc and Currie, 2011). To measure public transport availability accurately for each LSOA, 468 

we took into account the service areas (the area within which people are willing to walk to the 469 

station/stop) and service levels (hourly service frequency). The willingness of people to walk 470 

to a station decreases as the walking distance to a bus stop increases (Langford et al., 2012). 471 

Some studies have suggested 400m (for bus and tram stops) and 800m (for rail and ferry 472 

stations) as acceptable maximum walking distances for the different public transport modes 473 

(Currie, 2010; Delbosc and Currie, 2011; Langford et al., 2012). These are based on distances 474 

that 75 - 80% of people would walk to access a stop/station according to a travel survey 475 

(Kittelson and Associates et al., 2003). 476 

The service areas of stations/stops were delineated using spatial buffering. A circular buffer 477 

centred on a station/stop is conventionally used to represent the service area of the station/stop. 478 

The buffer represents the area where walking distance to a station/stop along the road network 479 

is within the acceptable maximum walking distances. The delineated service areas for the 480 
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stops/stations were subsequently overlapped with the LSOAs and any stop/station that 481 

intersected with an LSOA is allocated to that LSOA, which it is assumed to serve. For each 482 

LSOA, the stop-level AHFs for all the allocated stops/stations were aggregated. The LSOA-483 

level AHF is subsequently computed as a combined measure of service level (aggregated AHF) 484 

and walking distance using the following: 485 

𝐴𝐻𝐹(𝑎) =  ∑ 𝐴𝐻𝐹(𝑖) ∗𝑖∈𝑆(𝑎)   
𝐴𝑟𝑒𝑎 (𝑖 ∩ a)

𝐴𝑟𝑒𝑎 (𝑎)
                  (2) 486 

where a is the LSOA of interest, i is stations/stop, and S(a) is the set of 487 

stations/stops whose buffers intersect a. Area (i∩a) represents the 488 

overlapping area between i and a; and Area (a) is the area of a.  In addition 489 

to AHF, two other metrics, density of stops/stations (DOS) and density of 490 

nighttime stops/stations (DONS - services between 6pm and 5am) serving an 491 

LSOA, were also computed as measures of public transport availability. The 492 

DOS for an LSOS (a) was calculated according to the following: 493 

𝐷𝑂𝑆(𝑎) =
𝑁𝑂𝑆(𝑎)

𝐴𝑟𝑒𝑎 (𝑎)
                                        (3) 494 

Where NOS(a) is the number of stations/stops serving a, and Area(a) is the area of a.  495 

The DONS was calculated as: 496 

𝐷𝑂𝑁𝑆(𝑎) =
𝑁𝑂𝑁𝑆(𝑎)

𝐴𝑟𝑒𝑎 (𝑎)
                                        (4) 497 

where NONS(a) is the number of nighttime stations/stops serving a, and Area(a) is the area of 498 

a.  499 

The computed indicators were subsequently loaded into SUDS data lake for integration with 500 

other data using a series of appropriate ETL tools (see Figure 4). With these metrics, public 501 
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transport service in various census output areas, counties and regions could be evaluated, 502 

compared and ranked. For instance, using global and local spatial clustering approaches (Theil 503 

indices – generalized entropy, and Multidirectional Optimal Ecotope-Based Algorithm 504 

(AMOEBA) implement via ClusterPy), the TAM was used to identify and levels of spatial 505 

inequalities in public transport availability at intra-city, city- and regional-levels across the 506 

county. These were subsequently used to identify areas of low PTA at local and global scales; 507 

and populations/neighbourhoods at risk of transport poverty. Further details of this process are 508 

provided in another report currently under review.  509 

 510 

Figure 4. Maps showing one of the Transport Availability Metrics (average hourly frequency - AHF) for all output 511 
areas across the UK and output areas with AHF less than the 25th percentile of the countrywide values, displayed 512 
on SUDS interface. 513 

 514 

5.2 Housing Affordability Metrics (HAM)  515 
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Housing indicators are used to highlight the most important features of housing markets (Flood, 516 

1997).  Some prominent housing indicators include: house price-to-income ratio, house rent-517 

to-income ratio, floor area per person, mortgage-to-credit ratio, housing investment, household 518 

income distribution, housing tenure type, mortgage affordability (Flood, 1997). Computation 519 

of the indicators depends on an accurate knowledge of housing dynamics. Currently, there is a 520 

considerable knowledge gap concerning the scale and nature of housing dynamics, such as the 521 

UK private-rented sector, as most of the available information comes from Census data that 522 

are updated only every 10 years. This undermines a clear understanding of changes and 523 

associated issues by local authorities, central government and academic researchers. However, 524 

to undertake continuous monitoring of the sector over time, housing market information has to 525 

be obtained from alternative sources.  526 

Data from the house listings aggregation service Zoopla (https://developer.zoopla.co.uk/) was 527 

considered a suitable alternative source for this crucial information. Housing data from 528 

properties advertised for sale or rent across Great Britain, from 2010 till present, were acquired 529 

under licence, and complemented by price paid data from the Land Registry of England and 530 

Wales and Registers of Scotland. Zoopla has over 27 million residential property records in 531 

their archive. Access to active and historical property listings is allowed via an Application 532 

Programming Interface (API), made available to developers by Zoopla. The UBDC has a 533 

licence to access this API with an agreement to download data for the United Kingdom as part 534 

of the Centre’s housing data catalogue. 535 

Baseline property listings (which contain various types of important historical information 536 

about properties) comprising 8 million property records (5 million advertised for sale and 3 537 

million for rent) across Great Britain were initially generated via the Zoopla API with FME 538 

data extraction tools (Figure 4), and continuously updated as more properties left the market 539 

(closed listings).   540 
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 541 

Figure 5. Representation of the workflow of housing data acquisition and transformation with FME  542 

To generate the housing indicators, relevant housing attributes such as property IDs, address, 543 

price, description, date of advert, category, number of floors, were extracted from the Zoopla 544 

dataset. The data were linked to the LSOA spatial boundaries through the postcodes. Following 545 

this, aggregate data for key statistics (mean, median, maximum price, minimum for the rent 546 

and sale prices) of the properties, were computed at LSOA level. These were subsequently 547 

combined with demographic data at the LSOA to generate further synthetic metrics (Figure 6). 548 
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549 
Figure 6. Maps showing monthly median rent price for all output areas across the UK and output areas with 550 
median rent greater than the 75th percentile of the entire country.  551 

  552 

5.3 Employment Accessibility Metrics (EAM) 553 

The generation of employment accessibility indicators is driven by the need to continuously 554 

obtain more detailed geographical estimates of jobs and locations of workers at small-area 555 

levels such as postcodes or output area levels over time (quarterly, annually), rather than using 556 

those currently available from the census or the ONS, which are either disclosed at fairly highly 557 

aggregated levels or are available only once every 10 years. This is expected to enhance the 558 

understanding of the performance of different types of jobs (e.g., low-wage jobs or those in the 559 

service sector), as the economy goes through expansions, recessions or stagnation, by breaking 560 

down estimates of jobs and workers into different categories of interest. Thus, the metrics are 561 

designed to measure the structure and conditions of the local economy and labour markets at 562 
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intra-city levels. In addition, the metrics could be extended to become composite synthetic 563 

measures of the links between the economy and infrastructure.  564 

Travel to work data from the 2011 census, obtained from the UK Data Service’s Flow Data 565 

portal was used to determine the number of people reporting that they worked in each output 566 

area. This was used as a proxy for employment. Table WF03UK_oa 567 

(https://wicid.ukdataservice.ac.uk/), which provides the location of people’s residence and 568 

work (excluding quasi-workplaces) at the level of output area for the UK, was used. The level 569 

of employment in each output area was proxied by aggregating the data by workplace output 570 

area. These employment data, combined with travel time information derived from the 571 

OpenStreetMap, were used to generate a number of labour market accessibility measures 572 

(Figure 7), using the gravity-based measure of potential accessibility developed by Hansen 573 

(1959).   574 

To calculate these, a measure of the cost of travelling between each pair of origins and 575 

destinations was required. Distance along the road network was used as the measure of travel 576 

cost. The road network was represented using OpenStreetMap. An all-pairs shortest-path 577 

algorithm was then used to estimate a distance matrix.  578 

Many different methods have been developed to measure accessibility. A popular one, which 579 

we used here, is the gravity-based measure of potential accessibility developed by Hansen 580 

(1959). This is generally represented as: 581 

𝐴𝑖 =  𝛴𝐷𝑗𝑓(𝑐𝑖𝑗)                                                   (5) 582 

where 𝐴𝑖is the accessibility index for zone i, 𝐷𝑗is a measure of the opportunities available at 583 

destination j, 𝑐𝑖𝑗is the cost of travel between zones i and j, and f() is a cost deterrence function 584 

which captures how distance affects the accessibility of opportunities. For our purposes, D was 585 
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used to represent the number of people stating they worked in each output area and 𝑐𝑖𝑗 will be 586 

the network distance between output areas i and j. 587 

The deterrence function also has to be defined. Many options are available, but we opted for a 588 

simple threshold function of the form: 589 

𝑓(𝑐𝑖𝑗)  =  {
0 𝑖𝑓 𝑐𝑖𝑗 > 𝜏

1 𝑖𝑓 𝑐𝑖𝑗≤𝜏
                                                             (6) 590 

We evaluated the function for different levels of the parameter 𝜏. The accessibility measure 591 

gives the number of employment opportunities that can be reached within a given distance. 592 

One advantage of this measure is that it is easy to interpret. Further details of this are not within 593 

the scope of the current paper, but are covered in another report.  594 

595 
Figure 7. Maps showing employment opportunities within 5km (access 5km) of for all output areas across the 596 
UK and output areas with access 5km less than the 25th percentile of the entire country. 597 

 598 
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5.4 Education-Related Metrics 599 

The creation of education-related metrics (ERM) has been prompted by the desire to examine 600 

small area-based drivers of inequalities in educational outcomes (Bell, 2003; Kerr et al, 2014), 601 

from Secondary School, through Further and Higher Education and into employment, and 602 

against the background of Scotland’s Attainment Challenge 603 

(https://education.gov.scot/improvement/learning-resources/Scottish Attainment Challenge), 604 

which was launched by the Scottish Government in 2015 to achieve equity of educational 605 

opportunity and thereby reduce the poverty-related “attainment gap”.  606 

Secondary school data were obtained from the Scottish Exchange of Data (ScotXed - 607 

http://www.gov.scot/Topics/Statistics/ScotXed), covering the eight local authorities 608 

comprising the Glasgow City Region (Glasgow City, East and West Dunbartonshire, North 609 

and South Lanarkshire, Renfrewshire, East Renfrewshire, and Inverclyde).  The datasets 610 

feature individual student-level data from the pupil census and data on all 31 publicly funded 611 

secondary schools for the academic years 2007/8 to 2015/16. Pupil data consisted of age, 612 

gender, nationality and ethnic background, level of English, receipt of Gaelic education, 613 

attendance, and post-school destinations. Educational attainment was measured for all units 614 

and courses at levels S4-S6 (senior secondary education, typically of those aged 14-17 years). 615 

Schools data cover staffing levels, and proportions of pupils’ speaking particular languages at 616 

home.  The linked pupil and school datasets are extended with other derived and administrative 617 

data: the distance (Euclidean) travelled by students between home and school and accessibility 618 

to different types of greenspace from the home and school neighbourhoods were calculated 619 

from postcode centroids, and home and school locations were linked at datazone level to assign 620 

measures of deprivation and rurality. 621 
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A broadly similar Higher Education dataset was developed from data supplied by the Higher 622 

Education Statistics Agency (HESA- https://www.hesa.ac.uk/). This is a secured data obtained 623 

through electronic Data Research and Innovation Service (eDRIS) special licencing 624 

arrangement (Safe Haven). It contains approximately 44.7m records for all students attending 625 

a Higher Education institution in the UK between 2000/1 and 2015/16, comprising personal 626 

characteristics (including home location at postcode sector level), and subject, level and mode 627 

of study of courses pursued, level and classification of qualification, and post-HE destination.  628 

The various datasets are currently being used to develop appropriate spatiotemporal indicators 629 

of student- and institution-based educational disadvantage at these stages of the educational 630 

career. New insights are expected to be derived via the linkage of ERM with other metrics in 631 

SUDS, such as the EAM (synergising labour market dynamics with quality of education) and 632 

using TAM to provide information about journeys between home and educational institution. 633 

These will give a richer understanding of the urban basis of educational inequalities, generating 634 

more flexible and locally tailored policy-relevant information and, thereby, solutions to these 635 

inequalities. 636 

5.5 Urban Analytics 637 

It is expected that SUDS will be used by policy-makers to undertake several projects that will 638 

enhance urban sustainability and smart city management. Some of the potential applications of 639 

SUDS include small-area multi-criteria evaluation, where the various metrics can be 640 

interactively integrated and explored to understand the dynamics of underlying relationships 641 

and locational variability of various city components.  642 

Figure 8 illustrates the SUDS web interface, showing the results obtained from the combination 643 

of three SUDS metrics (transport, housing prices and access to employment). The figure shows 644 

the spatial distribution of output areas of low liveability (high rent, poor transport services and 645 
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low employment opportunities). The following thresholds were used: rent price greater than 646 

the 75 percentile, average hourly frequency (AHF) of transport services less than 25 percentile 647 

and available jobs within 5 km, less than 25 percentile of countrywide values. 648 

649 
Figure 8. SUDS was used to identify output areas with high monthly rents (>75 percentile), poor access to jobs 650 
(<25 percentile) and transport (<25 percentile). 651 

 652 

It highlights sub-city variability of these metrics across the country (see Figure 9), which is 653 

often masked in other similar systems.  For instance, with the exception of London where no 654 

output area was identified as having low liveability, others such as Manchester, Glasgow, 655 

Aberdeen and Cardiff had few output areas in the low liveability category. This buttresses one 656 

of the important aspects of SUDS – identifying intra-city variations that would have otherwise 657 

been missed. The interactive nature of SUDS also ensures that users such as city administrators 658 

or researchers can set or test different thresholds or use alternative criteria to explore particular 659 

aspects of the urban area.  660 
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 661 
Figure 9. Sub-city variations of low liveability in selected UK cities.  662 
 663 
This example demonstrates how SUDS can be applied to understand and manage various 664 

aspects of the urban area. Although its primary focus is on social and economic aspects, its use 665 

could be extended to include environmental attributes. For instance, social scientists could use 666 

SUDS to tap into a variety of contextual neighbourhood-level factors that partly explain 667 

economic, social, behavioural and attitudinal outcomes of individuals, firms, markets or other 668 

institutions and organisations, without which their analysis would potentially suffer from 669 

various endogeneity or omitted-variable biases, among many other methodological limitations. 670 

For example, suppose a researcher wishes to analyse labour market outcomes such as hours 671 

worked or wages earned by low-income single mothers living in urbanised areas in the UK. 672 

Aside from the usual sociodemographic, human and social capital factors, SUDS enables the 673 

analyst to control for background factors such as transport access, general labour market and 674 

industry conditions in the area, and broader economic trends in the region to be introduced into 675 

the analysis, thereby facilitating a more complete analysis of the outcomes of interest. For 676 

environmental applications, a researcher may be interested in analysing public health outcomes 677 

for which SUDS may be able to provide small-area estimates of the characteristics of the built 678 
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and physical environments in which people live, work or go to school, such as housing density 679 

and accessibility, alternatives to driving such as walking or cycling infrastructure, and access 680 

to high-quality food outlets, green space, clean air and clean water.  681 

SUDS was also designed to inform policy-making, invite public, private and citizen action to 682 

address challenges in urban transport, housing, the environment, education, land-use, urban 683 

design, labour markets and employment conditions, public health, social care, and other policy 684 

areas. In this respect, SUDS will enable the public to engage with academic outputs relevant to 685 

the understanding of urban areas. The goal is to stimulate a range of civic and business 686 

innovations with the adoption of SUDS by urban digital infomediaries (Thakuriah et al, 2017). 687 

It is the aspiration that debates stimulated by SUDS will lead to improved services and 688 

wellbeing of people, places and infrastructure, and facilitate communication and exchange of 689 

information among stakeholders towards these objectives.  690 

The system will also serve as a tool that will support data-related engagement with data owners, 691 

and encourage data owners to contribute data. More broadly, the system is intended to play a 692 

central role in stakeholder engagement activities, particularly with policy-makers, businesses, 693 

data providers and non-profit organisations. Hence, an important component of SUDS is the 694 

development of visualisation and interactive mapping components that provides a unique 695 

opportunity for intentional, meaningful interactions on city life that provide opportunities for 696 

mutual learning between urban researchers and members of the public. “Mutual learning” here 697 

refers not just to the acquisition of knowledge, but also to the increased familiarity with a 698 

breadth of perspectives, frames, and worldviews (American Association for the Advancement 699 

of Science, 2018) and helps to “empower people, broaden attitudes and ensure that the work of 700 

universities and research institutes is relevant to society and wider social concerns” (RCUK, 701 

2018). 702 
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Specifically, the employment availability metrics will be useful for job-accessibility studies 703 

that involve matching workers to jobs. For example, those involving non-standard shift-work, 704 

which are often low-wage jobs, may not be available to workers who are dependent on public 705 

transport, or who have no car, or who have difficulty running a car during periods of high fuel 706 

prices, or to other transport users if otherwise suitable jobs are located in areas that are not 707 

well-served by transit during off-peak periods. Similarly, manufacturing enterprises located in 708 

areas with high levels of congestion may be affected by the inability of just-in-time freight 709 

delivery during certain hours of the day, or even the ability to attract employment for non-710 

standard work shifts. Non-standard shifts may further affect the quality of access to local 711 

services and social activities in the absence of reliable transport.  712 

These reasons underline the need to estimate the spatio-temporal locations of workers and jobs 713 

in terms of precise estimates of the geographical location of policy-relevant categories of 714 

worker residences and jobs, as well as the temporal shifts of those jobs.  715 

The housing metrics could be used to gauge the effect of certain changes in policy or industrial 716 

activities. For instance, the effects of disruptors or accelerators in a society, such as the 717 

establishment of new industries or the collapse of existing ones, could be measured in terms of 718 

changes in house sales and rent prices. It is important in smart city management for these sorts 719 

of dynamics to be picked up as quickly as possibly at very detailed spatial levels without having 720 

to rely on Census statistics, which are gathered much less frequently, in order to use this 721 

information to quickly cushion the adverse effects of utility-associated benefits.  722 

Another future application of SUDS is in the area of urban predictive modelling and analysis, 723 

where machine-learning could be used in conjunction with the metrics generated by SUDS to 724 

gain deeper insights about urban area dynamics such as those associated with: predicting future 725 

outcomes from structural, infrastructural, commercial and industrial changes and impacts on 726 



35 

 

35 

 

urban dwellers such as where job losses might happen, or where house prices might rise or fall; 727 

gauging urban area emotions or reactions to policy changes;  and predicting the location of 728 

events, such as riots and various types of crime, through the use of existing datasets. 729 

Incorporating data from urban IoT would facilitate real-time monitoring of environmental 730 

quality using SUDS. Hourly air pollution data automatically generated by monitoring networks 731 

could be streamed into the SUDS cloud data lake to facilitate real-time monitoring of air quality 732 

across cities. This could subsequently be integrated with other datasets to generate further 733 

insights, for example, by combining active travel data (e.g., from Strava) to dynamically 734 

monitor exposures to pollution. In the same vein, available data from smart meters and street 735 

lights could be used to gain a detailed understanding of energy usage over time across cities. 736 

These data could also be used to derive metrics and indicators for measuring socioeconomic 737 

factors such as household poverty. 738 

6. Challenges, Limitations, and Issues 739 

There are certain challenges, limitations and issues encountered in the development of the 740 

SUDS infrastructure, especially relating to data governance, data acquisition, information 741 

management, and system reproducibility, which are briefly discussed below. 742 

6.1 UBDC Data Services and Data Governance 743 

SUDS is a manifestation of UBDC’s data service. Unlike comparable data platforms, SUDS 744 

uses not only open data and derived data products, but also data licensed by UBDC under more 745 

restrictive agreements. This demands additional controls and governance mechanisms but 746 

offers opportunities to achieve broader, higher spatial resolution insights, reflecting a broader, 747 

growing emphasis on data sharing, versus open data. As a public good, open data is highly 748 

desirable but many factors, often related to privacy or commercial sensitivities, limit the 749 

feasibility that all potentially useful data can be made available under open licences. The 750 
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benefits of data sharing for doing research work have been widely discussed (Chatham House 751 

Data Sharing Advisory Group, 2016), albeit offset with concerns – that wealthier stakeholders 752 

are best positioned to benefit, at the cost of poorer communities, or that data subjects’ privacy 753 

may be at risk because of the practice (van Panhuis et al., 2014). UBDC’s data service aims to 754 

minimise barriers to the use of data in the resolution of urban challenges. Broadening access 755 

means providing a service that is free at the point of use, and negotiating with data owners to 756 

agree terms for data sharing that are as unrestrictive as possible, while protecting the interests 757 

of individuals and organisations affected. UBDC partly achieves this by offering data owners 758 

reassurances through its policies for managing data access. 759 

  760 

UBDC datasets are grouped into one of three categories and members of each are candidates 761 

for publication within the SUDS platform. The first is the Centre’s open data collection –762 

typically licensed under Open Government or Creative Commons data licences, these datasets 763 

are accessible via a public portal to any prospective user. They can likewise be published on 764 

the SUDS platform with few limitations. The second category, which involves additional 765 

restrictions, is UBDC’s safeguarded data collection. This comprises of datasets that have 766 

associated bespoke licensing and data sharing arrangements. End users wishing to access these 767 

data must agree to the relevant terms and the permitted uses of such data, and the nature of 768 

permitted outputs are more strictly limited. The limitations imposed, and the possibilities for 769 

platforms like SUDS are specific to each data sharing agreement. The third category is 770 

controlled data, those datasets with additional restrictions related primarily to the sensitivity of 771 

their content. These are mostly individual level data, such as administrative health or social 772 

care datasets, where there is an onus on protecting individuals’ privacy. In such cases, physical 773 

access is restricted to within secure safe environments. Outputs are subject to formal approval 774 

processes (particularly to ensure that risks of disclosure are managed). In many cases UBDC’s 775 

role with respect to controlled data is to broker access between third parties (typically data 776 
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owners, users and administrators of safe indexing, access and analytics environments) with no 777 

custodial role. 778 

  779 

UBDC has infrastructure and governance controls in place to support users wishing to access 780 

datasets across each collection, with data released via SUDS subject to the same processes and 781 

limitations. Informing licensing, ingest and data processing, UBDC’s data accessioning policy 782 

defines seven primary stages. These are 1) negotiation of dataset licensing, where data sharing 783 

agreements and end user licensing arrangements are agreed and formalised; 2) physical 784 

acquisition of data, where data and associated metadata are physically transferred and received; 785 

3) dataset assessment, where datasets are evaluated and additional processing requirements 786 

identified; 4) dataset processing, where applicable processing is undertaken; 5) data 787 

documentation, where accompanying documentation is created, validated and standardised; 6) 788 

dataset definition, where one or more agreed data packages are defined and their manifests 789 

recorded; and 7) dataset publication, where data is published to one or more delivery platforms. 790 

Several stages operate iteratively with new data products defined, produced and published in 791 

response to emerging researcher requirements or data additions/changes. In terms of the user 792 

experience, UBDC’s end user delivery policy controls access to data within UBDC’s 793 

collections. This establishes several stages whereby end users’ purposes are defined and 794 

compared with relevant data sharing policy(ies); sub-licensing documentation is exchanged, 795 

completed and stored; and data is securely transferred or made accessible to authorised, 796 

authenticated users through a secure platform. For the most sensitive controlled data that 797 

UBDC facilitates access to (e.g. individual-level health data) additional governance processes 798 

require prospective users to satisfy an independent committee of the scientific and public 799 

benefit impacts of their proposed work, and of the appropriate mitigation of associated risks. 800 
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Predictability, negotiating these policies and processes is much simpler for acquiring and 801 

sharing open data, than, for example, commercially sensitive business data. 802 

  803 

UBDC approaches the accessioning of a given dataset with its safe accessibility of foremost 804 

importance. Agreements with data owners may not permit widespread sharing of raw data to 805 

general audiences but it may be possible to negotiate rights to publish derived aggregate data 806 

products instead. Data requirements vary by projects and circumstances – for instance, 807 

although one community of users may require access to individual level higher education 808 

attainment data another may benefit just as much from aggregate, rounded summary data 809 

(particularly if accessible with few practical restrictions). Similarly, synthetic data offers 810 

opportunities to create widely shareable resources that are more credible if produced with 811 

reference to real-world, but highly controlled, datasets. Furthermore, although SUDS is 812 

available online and built primarily using open source technology, it is by no means a wholly 813 

open data platform. Limitations to data availability are supported, and end user licensing 814 

constraints can be enforced to ensure that only authorised, authenticated users may access 815 

particularly datasets or higher resolution data content. 816 

  817 

6.2 Data acquisition, processing and software integration issues 818 

Some of the challenges and limitations encountered in the development of SUDS revolve 819 

around data acquisition, licensing and protection, as well as the choice of software to be used 820 

for the various components of SUDS. Access to some of the data from commercial vendors 821 

through APIs is usually subject to certain conditions, which must be considered when designing 822 

the workflows for data retrieval.  823 

Another issue is the choice of the appropriate level of spatial and temporal resolution of the 824 

metrics that should be made publicly available. SUDS aims to calculate and display the urban 825 
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area metrics at highly granular levels, in finer detail than has been achieved with previously 826 

computed metrics/indicators. However, this is also subject to data licensing agreements and the 827 

need to preserve anonymity, especially with the implementation of the General Data Protection 828 

Regulation (GDPR) in Europe in May 2018. This informs the use of Census output areas as the 829 

base spatial scale for SUDS. 830 

6.3 Managing dataset licensing and associated sensitivities 831 

One of the principle non-technical challenges in delivering the SUDS architecture is 832 

rationalising the terms and conditions of usage and the varying sensitivities of datasets 833 

originating from many sources. The goal of the UBDC, when negotiating data sharing 834 

agreements, as part of its data service responsibility, is to be able to support broad accessibility 835 

and utility of data, with the fewest possible constraints. Predictably, this rarely happens without 836 

compromises, which in turn leads to restrictions or responsibilities bespoke to each agreement. 837 

These are often limits on the permitted types of users and usage (e.g., academic researchers 838 

only), requirements for physically accessing data (e.g., via secure centralised data stores) or in 839 

terms of what can be published following research activities. They extend to aspects of data 840 

protection law, the scale and scope of liabilities and aspects of academic freedom. Pricing 841 

models for provision of data to third parties are also variable.  842 

Although this paper does not specifically cover legal interoperability issues, our ambitions for 843 

SUDS to combine disparate sources and support analysis based on parameters from multiple 844 

datasets establishes it as a challenging consideration. Considerable related work has focused 845 

on interoperability of open research data licenses (see for example RDA-CODATA, 2016) or 846 

issues associated with deploying open data within business and government contexts 847 

(Morando, 2013). The compatibility of free and open source licenses within a software context 848 

are also well explored (Rosen, 2004). Given the increasing emphasis being placed on the value 849 
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of shared data, acknowledging the limits of what can be made wholly open, there remains 850 

uncertainty as to what can be done when combining multiple, more restricted sources. Within 851 

SUDS we approach this issue in a bottom-up manner by adopting a cautious approach to 852 

information sharing, establishing a licensing process as a gateway to data access and enforcing 853 

limits on accessibility to the platform as well as individually presented datasets. Increasing use 854 

of synthetic data may offer a means of bypassing particularly restrictive terms and conditions 855 

(although the feasibility of this approach may depend on a number of factors, not least the terms 856 

and conditions of a given license). Convincing data owners of the value of contributing to a 857 

shared pool of data with a view to them realising benefits from accessing the whole remains a 858 

significant objective. 859 

In addition to the constraints associated with licensing terms and conditions, the use of 860 

individual, person-level records present further challenges. Several datasets in use within 861 

SUDS, such as the HESA and ScotXed education data present specific personal data and 862 

privacy issues, as covered by legislation such as the GDPR. Access to these data is tightly 863 

regulated and corresponding data-sharing agreements impose demands regarding the 864 

environments within which they can be accessed, and the permitted outputs that may emerge. 865 

At present, the use of information based on these types of sources requires significant manual 866 

intervention to produce aggregate outputs within a secure data access environment. Outputs are 867 

subject to statistical disclosure control prior to their incorporation within SUDS. The 868 

development of solutions to facilitate the safe integration of personal data sources remains a 869 

key objective.  The risk of statistical disclosure and compromising of privacy is an additional 870 

important motivation for the generation of synthetic populations. 871 

These are salient issues that must be thoroughly considered while developing a system, like 872 

SUDS, that is intended to be publicly available at high levels of spatial and temporal resolution.  873 
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6.3 System Reproducibility 874 

With regards to choice of software, there is currently a wide range of commercial and open-875 

source software that could be deployed to perform some of the tasks in SUDS. Despite the 876 

many benefits of availability of a wide range of technologies, this on its own presents a 877 

challenge, especially regarding how to determine appropriate sets of software to be deployed. 878 

Software applications, even those developed to perform similar tasks, have different 879 

performance capabilities in certain respects. This calls for careful consideration and the 880 

challenges they present must be cautiously navigated when developing an infrastructure like 881 

SUDS. Wherever convenient, SUDS’ first choice is the deployment of open-source tools and 882 

software. Robustness, speed and ease of usability of the software were also considered. 883 

Combining different software into a system also presents a challenge.  We have overcome some 884 

of these data and software integration problems in SUDS by using spatial and non-spatial ETL 885 

tools to drive the workflow. 886 

7. Conclusions and Future Work 887 

In this paper, we have described the Spatial Urban Data System (SUDS), a part of the UK 888 

ESRC-funded Urban Big Data Centre (UBDC). SUDS is a small-area geospatial big data 889 

system that delivers complex data analytics at the scale of a country, allowing regional 890 

comparisons and sub-area analysis, on a variety of social and economic attributes of urban 891 

living. At the core of the system is a programme of urban indicators generated by using novel 892 

forms of data and an urban modelling and simulation programme. Using public transport, 893 

labour market accessibility and housing advertisement data, we were able to show areas that 894 

are deprived of certain urban services in the UK. One of the key objectives of the system is to 895 

disseminate the technology to local governments, small businesses and other users such as 896 

NGOs in less-developed nations. For this reason, the technology used is open-source and 897 
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replicable elsewhere. The system grows organically with new policies, stakeholders and data 898 

opportunities. A robust user base is recruited using a recruitment and communications plan.  899 

The SUDS differs from existing spatially enabled smart city analytics infrastructures in that it 900 

focuses largely on the generation and use of spatially enabled socioeconomic metrics collected 901 

countrywide at regular intervals to facilitate the understanding of intra-city dynamics and to 902 

provide “urban health checks.”  Researchers have noted the greater efforts being made to 903 

measure and monitor environmental aspects than those made to represent social, economic and 904 

governance aspects (Shen et al, 2011; Lynch, et al 2011). This informs SUDS’ focus on social 905 

and economic, health and well-being conditions to enable a more comprehensive assessment 906 

of urban living, in line with sustainable development goals. SUDS provides a quantitative 907 

multidimensional foundation for comprehensive urban quality of life assessment. 908 

It can be deployed for smart city performance monitoring and assessment at an intra-city level 909 

in a timely manner. Other application areas include high-resolution urban area indicator 910 

generation that could drive city comparison and ranking; urban area predictive analytics for 911 

forecasting future outcomes and impacts of policies and changes; multi-criteria evaluation of 912 

impacts of urban area accelerators, disrupters and policies; and real-time monitoring of urban 913 

area dynamics. Furthermore, through the cloud computing component, data streams from urban 914 

IoT sensor networks could be processed and integrated with other datasets, such as historical 915 

data from various facets of the urban environment to derive new insights. Key unique selling 916 

points of SUDS include: 917 

• integration and processing of spatially-activated big data from varying sources, with 918 

complex geospatial processing, and modern cloud computing systems, to derive deeper 919 

insights into sub-city interactions, 920 
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• generation and use of frequently updated small-area socioeconomic synthetic metrics 921 

on a countrywide basis,  922 

• facilitation of the understanding of intra-city dynamics through the integration of data 923 

from various aspects of the urban area,  924 

• development of series of strategies to process and utilised various socioeconomic 925 

variables, to understand and manage urban area dynamics, 926 

• compatibility with modern cloud computing systems such as Snowflake Computing 927 

system, Azure SQL Data Warehouse, Amazon Redshift, Oracle Data Warehouse with 928 

advanced capabilities for handling big data. 929 

Ongoing work includes the development of additional metrics from other aspects of the urban 930 

area, including health and wellbeing, environmental, and user-generated contents such as those 931 

from social media (Twitter, Facebook, Reddit, etc.) or transactional data. Data on athletic 932 

activities of city residents that could be used to gauge city lifestyle have been acquired from 933 

Strava under a licence. The Strava data contain spatially referenced information on various 934 

activities including cycling, running, and walking that could be integrated into SUDS. The 935 

Strava dataset comprises millions of anonymised and aggregated data of rides and runs 936 

uploaded regularly by Strava users via their mobile phones or GPS devices. Relevant metrics 937 

are currently being generated from the data. In addition, automation of the system through the 938 

use of APIs and ETL tools to obtain real-time travel data from sources such as Darwin and 939 

NextBus are being tested and optimised. Various components of SUDS are also being 940 

optimised for more efficient integration, processing and analysis of data, and for the 941 

visualisation of outputs. Advanced open-source geospatial big databases such as GeoMesa and 942 

GeoWave are currently being explored for possible incorporation with SUDS. 943 
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Finally, a training and capacity-building programme is underway to ensure that a wide base of 944 

potential users have the skills in GIS, software programming and related areas and are also 945 

familiar with the data to use the system as a part of their programmes.  946 

Future work planned for SUDS will help develop it into a leading spatial big data platform with 947 

fully functional big data analytics capabilities, with a machine-learning component that will 948 

drive urban area predictive modelling and analytics, and real-time analytic tools to enable 949 

integration with the urban IoT. 950 
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