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Local maxima of the systole function

Maxime Fortier Bourque Kasra Rafi

December 18, 2019

Abstract

We construct a sequence of closed hyperbolic surfaces that are local maxima for
the systole function in their respective moduli spaces. Their systole is arbitrarily large
and the number of examples grows rapidly with the genus. More precisely, for every
n ≥ 3 there is some positive number Ln (growing roughly linearly in n) such that the
number of local maxima of the systole function in genus g with systole equal to Ln
grows super-exponentially in g along an arithmetic sequence of step size n. Many of
these surfaces have no orientation-preserving isometries other than the identity and
are the first examples of local maxima with this property.

1 Introduction

The systole of a hyperbolic surface is the length of any of its shortest closed geodesics.
For any g ≥ 2, this defines a continuous function sys : Tg → R+ on the Teichmüller
space of closed hyperbolic surfaces of genus g which is invariant under the action of the
mapping class group, hence descends to a continuous function on the moduli spaceMg.

By Mumford’s compactness criterion [42], the thick part {x ∈ Mg

∣∣ sys(x) ≥ ε} of
moduli space is compact for any ε > 0. Therefore, the systole function attains a global
maximum on each moduli space. The precise value of the maximum is unknown in ge-
neral; the best bounds known to date are

4

3
≤ lim sup

g→∞

max{sys(x)
∣∣x ∈Mg}

log g
≤ 2 (1.1)
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where the upper bound is a standard area argument, while the lower bound comes from a
construction of Buser and Sarnak [13, p.45].

For closed orientable surfaces, the only known global maximizer of the systole is the
Bolza curve in genus 2, as determined by Jenni [36]. More maximizers are known if we
allow punctures [50, 1] (principal congruence covers of the modular curve are maximi-
zers) or surfaces that have non-empty boundary or that are non-orientable [26]. To attack
the problem in general, Schmutz Schaller initiated a systematic study of the systole func-
tion and its local maxima in [49], where he found necessary and sufficient conditions for
a surface to be a local maximizer and constructed several examples. The criterion in ques-
tion is analogous to a theorem of Voronoi on the Hermite invariant of Euclidean lattices.
Bavard cast both of these results into a more general framework [4, 5]. Further progress on
the systole of hyperbolic surfaces and its singularities was made by Akrout, Casamayou-
Boucau, Gendulphe, and others [2, 14, 15, 27]. We refer the reader to [52] and [43] for
surveys on the systole of hyperbolic surfaces and related topics.

The goal of this paper is to show that the number of local maxima of the systole
function grows super-exponentially with the genus. The local maximizers we construct
have arbitrarily large systole and many of them have no orientation-preserving isome-
tries besides the identity. Prior to this work, there was only one infinite sequence of local
maximizers known among closed surfaces, with systole bounded above by 5.634 [49]. A
finite number of additional examples were discovered in [51, 29, 32, 15]. All the previ-
ously known examples of local or global maxima have large isometry groups: the quotient
of any of these surfaces by its group of isometries is a hyperbolic polygon with a small
number of sides. Schmutz Schaller anticipated the existence of local maximizers with no
symmetries [49, p.565] but he was not able to find any [51, p.437]. The reason why so few
examples of local maxima were known before is that proving that a surface is extremal
is quite delicate. Having a large isometry group simplifies the problem considerably. For
instance, if the quotient of a surface by its group of isometries is a triangle, then one of
the two conditions to be a local maximum (namely, eutaxy) comes for free [5, Corollary
1.3]. We do not manage to get rid of all the symmetries in our construction as each of our
surfaces admits an orientation-reversing involution, but we obtain many examples with
isometry group of size 2. Our main result can be summarized as follows (see Theorem 6.5
for a more precise version):

Theorem 1.1. For every n ≥ 3, there exists some Ln > 0 such that the number of
local maxima of the systole function inMg without any non-trivial orientation-preserving
isometry and systole equal to Ln grows super-exponentially along an arithmetic sequence
of genera g.

We also obtain some local maxima with more symmetries: the Bolza curve fits natu-
rally in the sequence (corresponding to L1) and we get one or two local maxima with non-
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trivial automorphism group at height L2 ≈ 5.909 in every genus g ≥ 13. The value Ln
(defined implicitly in Lemma 2.5 and explicitly in Remark 2.18) that the systole function
takes at the other local maxima tends to infinity roughly linearly with n (see Lemma 6.1).
For n ≥ 3, we do not get local maxima in every genus because 2(g−1) has to be divisible
by n, and has to be sufficiently large (see Theorem 6.5). Thus, we miss all the genera that
are equal to a prime number plus one, among others.

Motivation

Akrout [2] proved that sys is a topological Morse function on Tg, following partial results
by Schmutz Schaller [53]. This implies that in theory, one could compute topological
invariants ofMg by finding the Morse singularities of sys and their indices. For example,
the orbifold Euler characteristic ofMg is given by the formula

χ(Mg) =
∑
x∈C

(−1)ind(x)

|Aut(x)|

where C is a set of representatives of the critical points of sys in Tg under the action of the
mapping class group, ind(x) is the Morse index of sys at x, and Aut(x) is the group of
automorphisms of x [2, 53].

One could further try to compute—or say something about—the rational homology
groups ofMg using the systole function. In this direction, Bestvina expressed in [6] the
hope that the systole function should be “simplest possible” in the sense that the number
critical points of index j for the function − sys : Mg → (−∞, 0) should not depend on
g once the latter is large enough. This would give an alternate proof that the jth rational
homology group ofMg becomes independent of g once the latter is large enough [35].
Theorem 1.1 shows that Bestvina’s hope is spectacularly false for j = 0. And this is
probably just the tip of the iceberg—there are likely many more local maxima than the
particular ones constructed here.

Luckily, better approaches to study the topology of moduli space are known: the orbi-
fold Euler characteristic of Mg was computed by Harer and Zagier [33], its virtual co-
homological dimension by Harer [34], and its rational homology in the stable range by
Madsen and Weiss [40].

Another reason to study local maxima of the systole function is that the global maxi-
mum is among them. One could hope to increase the lower bound in (1.1) by stumbling
upon local maxima that are near the top of moduli space. Unfortunately, the height of
our local maxima grows at most like log log g rather than log g. Perhaps one could reduce
their genus by using a similar trick as in [44], although we have not explored this yet.

A general goal we have is to understand the shape of moduli space from the point of
view of the systole function. For example, Mirzakhani asked whether moduli space has
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“long fingers”. We may define the finger associated with a local maximum x to be the
component F of the superlevel set {y ∈ Mg

∣∣ sys(y) > L} containing x, where L is
the smallest positive number such that F does not contain any other critical points than
x. The length of the finger F is then sys(x) − L. In other words, how large can the total
variation of the systole function be between a local maximum and the nearest critical
point? We do not know the answer, but the examples from Theorem 1.1 provide a place
to start. Other works studying the shape of moduli space in relation to the systole include
[23, 21, 39, 16, 46, 24, 3, 19, 41].

Proof outline

As explained in [49] and [4], showing that a surface x is a local maximum of the systole
function consists in three steps:

1. finding the set S of systoles of x;

2. showing that x is perfect, i.e., that the differential of the vector of lengths of the
curves in S—a function on Teichmüller space—is injective at x;

3. proving that x is eutactic, i.e., that under every non-trivial infinitesimal deformation
of x, at least one of the curves in S shrinks, meaning that its length has strictly
negative derivative in that direction.

The idea of our construction is to glue surfaces out of basic blocks that we call rings
according to the combinatorics of a graph. If the graph has sufficiently large girth, then the
systoles are constrained in pairs of transverse rings (Theorem 2.16). The rings themselves
have a large number of symmetries which we use to identify the systoles (Proposition 2.3).
The idea of modelling surfaces on graphs is of course not new. It goes back to at least [11]
where Buser constructed surfaces with arbitrarily large systole by gluing pairs of pants
along cubic graphs. See also [10, 17, 18, 16, 46, 3, 44, 45, 25] for other applications of
this idea.

The main tool we need for step (2) is the famous cosine formula of Wolpert and Kerck-
hoff for the variation of length along twist deformations [54, 38]. We then use the Gersh-
gorin circle theorem to prove that the differential of lengths has full rank, after estimating
its entries with respect to a particular basis. The question of which finite sets F of curves
are such that their lengths define a global embedding of Teichmüller space into RF

+ is
closely related and classical [48, 30, 31][22, p.287].

The proof of step (3) is easier, but still novel. Whereas Schmutz Schaller relied heavily
on symmetries to prove this step in [49] and [51], we manage with only partial symme-
tries. That is, all we need is that our surfaces are covered by copies of a well-understood
chunk, which is itself a union of rings. The rings we use to assemble the surfaces need to
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be carefully chosen for this part to work; we went through a few iterations before finding
the right candidate.

We then show that any orientation-preserving isometry between the resulting surfaces
is induced by a graph isomorphism (Theorem 5.3). Since the number of graphs with large
girth and trivial automorphism group grows super-exponentially (see Section 6), we ob-
tain the desired lower bound for the number of local maxima of the systole function
without non-trivial orientation-preserving isometries. The fact that our surfaces all admit
an orientation-reversing involution is due to the symmetry of the rings and how we glue
them. In principle, similar techniques applied with different building blocks might yield
totally asymmetric local maxima, but we have not found a suitable building block yet.

Organization

The paper is organized as follows. Section 2 is devoted to the construction of the surfaces
and finding their systoles. Steps (2) and (3) of the above program are carried out in Sec-
tions 3 and 4 respectively. In Section 5, we show that any orientation-preserving isometry
between our surfaces is induced by a graph isomorphism. Finally, in Section 6 we put
together estimates on the number of asymmetric graphs of large girth, thereby completing
the proof of Theorem 1.1.

Acknowledgements. We thank Robert Young for suggesting the use of the Gershgorin cir-
cle theorem and Dmitri Gekhtman for pointing out Wolpert’s length-twist duality, which
together lead to the proof of step (2) (Theorem 3.9). We also thank Curt McMullen for
comments on an earlier draft as well as the anonymous referee for their useful suggestions.
MFB and KR were partially supported by Discovery Grants from the Natural Sciences and
Engineering Research Council of Canada (RGPIN 06768 and 06486 respectively).

2 The construction

In this section, we construct a highly symmetric surfaceR(n, t) of genus 1 with 2n bound-
ary components of length 4t each, for any n ≥ 1 and any t > 0. We then fix a specific
value of t for each n and build closed surfaces out of pieces isometric to R(n, tn).

2.1 Trigonometry

We first gather some trigonometric formulas here for use throughout the paper. See e.g.
[12, p.454] for reference.

Right triangles
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a

b

c
β

α

cosh c = cosh a cosh b (2.1)
cos β = cosh b sinα (2.2)

Right-angled pentagons

a

b

α

cβ

cosh c = sinh a sinh b (2.3)
cosh c = cothα coth β (2.4)

2.2 The cross

We start with a right-angled pentagon P = P (t) with two non-adjacent sides of length
t > 0. Let σ be the side between those of length t and let u be the length of each of the
other two sides. We have

coshσ(t) = coth2 t = sinh2 u(t) (2.5)

by Equations (2.3) and (2.4). Reflect P across the two sides of length u and the vertex
opposite to σ to obtain a right-angled octagon O = O(t) with side lengths alternating
between 2t and σ. Double O across the sides of length σ to form a four-holed sphere
C = C(t) that we call a cross. Each of the four boundary geodesics of C has length 4t.
We refer to them as the left, right, top and bottom boundaries of C following Figure 1.
Similarly, the cross has a front and a back.

t

u

u

t

σ

P

(a) The pentagon

2t

σ

2t

σ

2t

σ

2t

σ

O

(b) The octagon

left

bottom

C right

top

(c) The cross

Figure 1: The cross C is made with two octagons, each assembled from four pentagons
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We note in passing that C is an orbifold cover of a quadrilateral Q = Q(t) with three
right angles, one angle equal to π/4, one side of length t and one side of length σ/2

obtained by cutting P along the median between σ and the opposite vertex. The closed
surfaces we construct in the end are also orbifold covers of Q, although not regular covers
in general.

2.3 The ring

Let n ≥ 1 be an integer. We take a string of n crosses C1, C2, . . . , Cn where the right
boundary of Cj is glued to the left boundary of Cj+1 without twist for j = 1, . . . , (n− 1).
Finally, the left boundary of C1 is glued to the right boundary of Cn with a half twist (see
Figure 2). The resulting surface R = R(n, t) is called a ring. It is a surface of genus one
with 2n boundary components.

C1 C2 C3

Figure 2: The ring R is a string of n crosses with its ends glued by a half twist

There is an alternative description of the ring which is useful for drawing pictures so
that no part of the ring is hidden. Take a strip of 2n octagons O1, . . . O2n with the right
side of each glued to the left side of the next and the right side of O2n glued to the left
side of O1, forming a topological annulus A = A(n, t). Then the top left and top right
sides of Oj are glued to the bottom left and bottom right sides of On+j respectively for
j = 1, . . . , 2n in order to form R, where indices are taken modulo 2n (see Figure 3).

1 2 3 4 5 6 7 8

5 6 7 8 1 2 3 4

O1 O2 O3 O4 O5 O6

Figure 3: The ring R is also a strip of 2n octagons with its left and right sides glued and
the segments labelled σ identified in pairs in the pattern shown

In other words, the sides of the annulus A labelled σ are glued in pairs by a glide
reflection that reflects across the core geodesic e of A (the horizontal axis of symmetry
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in Figure 3) and translates halfway around e. The union of the octagons Oj and On+j is
equal to the cross Cj from the previous description.

2.4 Geodesics in the ring

Following Schmutz Schaller, we will often use the same symbol for the name of a curve
and its length. The closed geodesics separating adjacent crosses in the ring are called f -
curves. More precisely, for each j from 1 to n, we let fj be the left boundary of Cj . Each
f -curve has length 4t. The geodesic that runs along the horizontal axis of symmetry of all
the crosses is called e, which has length 4n · u or

e = 4n arcsinh(coth t). (2.6)

The next geodesics of interest are called a-curves and b-curves. For each j from 1 to
2n, let aj be the geodesic joining the bottom of the left side of Oj and the top of the
left side of On+j (these two points are identified in R) and is otherwise disjoint from the
seams and the octagonsOn+j, On+j+1, ..., On+j+(n−1), where indices are taken modulo 2n

(see Figure 4). Similarly, we let bj = ρfj(aj) where ρfj : R → R is the reflection across
the geodesic fj . By symmetry, all the a-curves and b-curves have the same length which
we denote by a.

a1 a2 a3 a4 a5 a6

b4 b5 b6 b1 b2 b3

e

Figure 4: The geodesic e (in green), the a-curves (in red), and the b-curves (in blue)

Observe that i(aj, e) = i(bj, e) = i(aj, bj) = 1 for every j and that the curves aj , bj
and e bound two triangles with the same interior angles. These two triangles are therefore
congruent, so that their side lengths are aj/2, bj/2 and e/2. In particular, they are isoceles
since `(aj) = `(bj). The altitude of each triangle has length t and bisects the base, which
yields the formula

cosh(a/2) = cosh(t) cosh(e/4) (2.7)

by Equation (2.1) for right triangles. One such pair of triangles is illustrated in Figure 15.

Remark 2.1. Surfaces of genus 1 with m boundary components are studied extensively
in [48] where it is shown that the lengths of the boundary geodesics and the a-, b- and
e-curves in such a surface define an injective function on Teichmüller space. Actually,
the length of any boundary geodesic can be recovered from the remaining ones. This de-
tailed analysis is pursued in [49, Section 4] where these rings serve as building blocks for
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constructing maximal surfaces. We combine rings differently, resulting in a more flexible
construction.

2.5 Symmetries of the ring

There is an orientation-reversing isometric involution ρseams : R → R that has the union
of the σ-segments (the seams of the crosses) as its set of fixed points. The map ρseams

exchanges the front and back octagons in each cross Cj ⊂ R. It acts as a glide reflection
along e by half its length.

Another obvious isometry is the reflection ρe : R → R across the geodesic e. This
isometry permutes the top and bottom of each cross.

For each j ∈ {1, . . . , n}, there is a reflection ρfj across the geodesic fj .
Another useful isometry η : R → R simply shifts each Oj to Oj+1, where indices are

taken modulo 2n. That is, η is a hyperbolic translation along e to the right by distance
e/2n = 2u.

Lastly, for each j ∈ {1, . . . , n} the composition νj := η ◦ ρfj is the reflection of R
across the vertical axis of symmetry of Cj .

2.6 Systoles in the ring

Recall that the systole of a hyperbolic surface is the length of any of its shortest closed
geodesics, also called systoles. Contrary to some authors, we allow boundary geodesics
to be systoles.

The following well-known criterion is very useful for finding systoles (this is just
mentioned in passing in [49] and [51]). Note that the analogous statement and proof is
false for surfaces with punctures. See [20, Theorem 1.3] for the correct replacement.

Lemma 2.2. If two closed geodesics α and β on a compact hyperbolic surface with
geodesic boundary intersect at least twice transversely, then there exists a closed geodesic
γ of length strictly less than (`(α) + `(β))/2. In particular, two distinct systoles can in-
tersect at most once.

Proof. Let p and q be two intersection points of α and β. Construct a curve δ by taking
the shorter subarc of α between p and q and similary for β. Since geodesic bigons are
non-contractible, δ is homotopic to a closed geodesic γ that is strictly shorter.

We will apply the contrapositive of the last sentence in Lemma 2.2 repeatedly: if two
systoles intersect at least twice, then they coincide. We use this fact in combination with
the various symmetries of the ring to determine its systoles. We proceed by elimination,
arguing that any geodesic—save for a few exceptions—intersects some of its translates at
least twice transversally, hence cannot be a systole in view of the above.
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Proposition 2.3. Let n ≥ 1 and t > 0. Assume that a(t) < 4t and a(t) < e(t). Then the
systoles in R(n, t) are exactly the a-curves and the b-curves.

Proof. Let γ be a systole of R. We claim that γ intersects the seams, e, and each f -curve
at most once. Otherwise, γ and its image γ∗ by one of the reflections ρseams, ρe, or ρfj
intersect at least twice. In that case γ = γ∗ by Lemma 2.2. We rule out the possibility that
γ coincides with ρseams(γ), ρe(γ), or ρfj(γ) one by one below, thereby proving the claim.

Suppose that ρseams(γ) = γ and that γ is disjoint from e. Then either γ is a boundary
component of R in which case `(γ) = 4t > a and γ is not a systole, or else γ intersects
its shift η(γ) twice transversely, contradicting Lemma 2.2. We conclude that γ intersects
e, and it does so at least twice by ρseams-symmetry. Therefore ρe(γ) and γ intersect at least
twice as well so that they coincide. Then either γ = e or γ ⊥ e. In the first case `(γ) > a

by hypothesis so that γ is not a systole. In the second case γ has to be equal to some
f -curve, so that `(γ) = 4t > a. We conclude that γ intersects the seams at most once.
Actually, γ intersects the seams exactly once. Indeed, the complement of the seams is a
topological annulus whose only simple closed geodesic is e, which is not a systole. Thus
γ cannot be disjoint from the seams.

Now suppose that γ intersects e at least twice so that ρe(γ) = γ. Since ρe does not
fix any point on the seams, the number of intersection points between γ and the seams is
even, which contradicts the previous paragraph. Therefore, γ intersects e at most once. In
fact, γ cannot be disjoint from e either. This is because the seams disconnect R \ e, yet γ
intersects them only once. This shows that γ intersects e exactly once.

Lastly, suppose that γ intersects some fj at least twice so that ρfj(γ) = γ. Since γ
cannot be equal to fj , it is orthogonal to it. Moreover, γ must intersect the seams and e at
one of the places where fj does, for otherwise there would be a second intersection point
by ρfj -symmetry. The only closed curve that is orthogonal to fj at one of these four points
is e, which is too long. Hence γ intersects each f -curve at most once.

Now that the claim is proved, it is not hard to show that γ is either an a-curve or a b-
curve. If we cut R along the seams, we get an annulus A. The curve γ gets cut into an arc
ω inA joining a pair of points that get identified by the gluing pattern. The arc ω must join
a point on the bottom boundary of A to a point on the top boundary since it intersects e.
Moreover, ω cannot wrap around A more than once, for otherwise it would intersect some
f -curve twice. Thus ω wraps exactly halfway around A (remember, the seams are glued
via a glide reflection along e by distance e/2). It follows that γ is homotopic to—hence
equal to—one of the a-curves or b-curves.

2.7 Transverse rings

Since the crosses used to build the ring R have diagonal symmetry, we can make two
rings overlap along a shared cross. We call this configuration a pair of transverse rings.
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We can think of one ring as being horizontal and the other vertical, as in Figure 5. The
e-curves in the two rings intersect twice, bisecting each other perpendicularly. There are
four different ways to apply the surgery procedure from the proof of Lemma 2.2 to this
pair of curves, yielding four geodesics shorter than e that we call c-curves. One of them
is depicted in Figure 5.

cehorizontal

evertical

Figure 5: One of the four c-curves in a pair of transverse rings, obtained by surgery on the
e-curves

The four c-curves have equal length since they are related by symmetries. Furthermore,
there is a right-angled pentagon with two adjacent sides of length e/4 and the opposite
side of length c/2 (see Figure 5). Equation (2.3) gives the formula

cosh(c/2) = sinh2(e/4) (2.8)

for the length of any c-curve.
When n = 1 the pair of transverse rings is reduced to a single cross and there are

actually only two c-curves because some surgeries on the e-curves coincide. In this case,
each c-curve is equal to the union of two opposite seams and Equation (2.8) is really the
same as Equation (2.5). We will analyze this case more carefully in the next subsection.

The next step is to fix the parameter t in such a way that the curves a, b and c all have
the same length. A first useful observation is that c is a decreasing function of t.

Lemma 2.4. For every n ≥ 1, the functions e(t) and c(t) are decreasing in t.

Proof. Recall that e(t) = 4n arcsinh(coth(t)). Since coth is decreasing and arcsinh is
increasing, e is decreasing. Therefore c(t) = 2 arccosh(sinh2(e(t)/4)) is decreasing as
well, being the composition of a decreasing function with an increasing one.
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We use this to prove the existence and uniqueness of a parameter tn such that the
curves a, b and c in the pair of transverse rings all have the same length.

Lemma 2.5. For every n ≥ 1, there exists a unique tn > 0 such that a(tn) = c(tn).

Proof. We have
cosh(a(t)/2)

cosh(e(t)/4)
= cosh(t)

and
cosh(c(t)/2)

cosh(e(t)/4)
=

sinh2(e(t)/4)

cosh(e(t)/4)
= tanh(e(t)/4) sinh(e(t)/4)

by Equations (2.7) and (2.8). Therefore, the equation a(t) = c(t) is equivalent to

cosh(t) = tanh(e(t)/4) sinh(e(t)/4). (2.9)

The left-hand side of (2.9) is an increasing function of t which diverges as t → ∞.
The right-hand side is decreasing in t since it is the product of two positive decreasing
functions. Moreover, it diverges as t → 0 since e(t) does. The existence and uniqueness
of tn follows.

From now on, we will only work with the rings R(n, tn) with tn as in Lemma 2.5.
In order to determine the systoles in that ring, we need to check that the hypotheses of
Proposition 2.3 are satisfied, but this is only true when n ≥ 2. The case n = 1 is treated
separately in the next subsection.

Lemma 2.6. We have a(tn) < 4tn and a(tn) < e(tn) for every n ≥ 2.

Proof. The inequality a(tn) = c(tn) < e(tn) follows from the fact that c is obtained by
surgery on two e-curves, or can be deduced from Equation (2.8).

To show that a(tn) < 4tn we consider the time sn > 0 such that a(sn) = 4sn and
prove that c(sn) > 4sn. This implies that sn < tn since c is decreasing whereas a(t)

diverges as t→∞. The inequality a(tn) < 4tn then follows from the fact that

cosh(a(t)/2)

cosh(2t)
=

cosh(t)

cosh(2t)
· cosh(e(t)/4)

is decreasing, being the product of two positive decreasing functions. Figure 6 illustrates
this phenomenon for n = 3.

Hence let sn > 0 be the unique parameter such that a(sn) = 4sn. Then

cosh(sn) cosh(e(sn)/4) = cosh(a(sn)/2) = cosh(2sn) = 2 cosh2(sn)− 1
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1 1.5 2 2.5 3 3.5 4

t

4

6

8

10

12

14

16

a(t)

c(t)

t= t3

4t

t= s3

Figure 6: A plot of the functions a(t), c(t) and 4t for n = 3

and

cosh(c(sn)/2) = sinh2(e(sn)/4) = cosh2(e(sn)/4)− 1

=

(
2 cosh2(sn)− 1

cosh(sn)

)2

− 1.

Let x = cosh2(sn) so that cosh(2sn) = 2x− 1 and

cosh(c(sn)/2) =
(2x− 1)2

x
− 1.

The inequality we want to prove is cosh(c(sn)/2) > cosh(2sn), which is equivalent to
(2x− 1)2 > 2x2 or x > 1 + 1√

2
after simplification. Therefore, it suffices to show that

sn > arccosh

(√
1 +

1√
2

)
≈ 0.764.

But at t = 1 we get

cosh(a(1)/2)

cosh(2 · 1)
=

cosh(1)

cosh(2 · 1)
· cosh(e(1)/4)

=
cosh(1)

cosh(2)
· cosh(n arcsinh(coth(1)))

≥ cosh(1)

cosh(2)
· cosh(2 · 1.086) > cosh(1) > 1

which implies that sn > 1 and finishes the proof.
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We conclude that the systoles in the ring R(n, tn) are the a-curves and the b-curves.

Corollary 2.7. For every n ≥ 2, the systoles inR(n, tn) are the a-curves and the b-curves.

Proof. This follows from Lemma 2.6 and Proposition 2.3.

We observed earlier that c is a decreasing function of t. The function a is not monotone
but we can show it is increasing at tn. These two facts will play a key role in Section 4.

Lemma 2.8. We have a′(tn) > 0 for every n ≥ 2.

Proof. From cosh(a(t)/2) = cosh(t) cosh(e(t)/4) we compute

sinh(a(t)/2) a′(t)/2 = sinh(t) cosh(e(t)/4) + cosh(t) sinh(e(t)/4) e′(t)/4

> sinh(e(t)/4) [sinh(t) + cosh(t) e′(t)/4] .

Thus it suffices to show that −e′(tn)/4 < tanh(tn). Since e(t)/4 = n arcsinh(coth t) we
get

−e′(t)/4 =
n

sinh2(t)
√

coth2(t) + 1
<

n

sinh2(t)
√

2

so that the required inequality becomes n <
√

2 tanh(tn) sinh2(tn).
We know that tn > 1 from the proof of Lemma 2.6. Furthermore, one can show that

√
2 tanh(x) sinh2(x) > 0.963 · cosh(x)

for every x ≥ 1. Indeed, sinh3(x)/ cosh2(x) is increasing and the inequality can be veri-
fied numerically at x = 1. Recall that cosh(tn) = tanh(e(tn)/4) sinh(e(tn)/4) by defini-
tion of tn. We thus obtain

√
2 tanh(tn) sinh2(tn) > 0.963 · cosh(tn)

= 0.963 · tanh(e(tn)/4) sinh(e(tn)/4)

> 0.963 · tanh(nλ) sinh(nλ) ≥ n

for every n ≥ 2, where λ = arcsinh(1). The last inequality holds because the function
tanh(λx) sinh(λx)/x is increasing in x and larger than 1/0.963 at x = 2. This implies
the desired result.

In addition to knowing the systoles in the ring, we also need an estimate on the lengths
of arcs that enter and exit the ring from a given cross. Since the arcs going vertically
across any cross Cj ⊂ R are fairly short, we need to exclude them.

Lemma 2.9. Let n ≥ 2. Any non-trivial arc in R(n, tn) from one boundary component
to itself is longer than a(tn)/2. Any geodesic arc that joins the top and bottom of a cross
Cj ⊂ R(n, tn) but is not contained in Cj is longer than a(tn)/2.
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Proof. Let γ be a shortest non-trivial arc from one boundary B of R(n, tn) to itself. In
particular, γ is geodesic and orthogonal to the boundary.

If γ intersects some fj twice, then we can reflect a subarc ω ⊂ γ from fj to itself across
fj to obtain a non-trivial closed curve of length 2`(ω) in R(n, tn). By Corollary 2.7 we
get that 2`(γ) > 2`(ω) ≥ a(tn).

If γ intersects the seams, then we can perform a surgery on γ and ρseams(γ) to obtain
a strictly shorter essential arc from B to itself, unless γ = ρseams(γ). One way to see this
is to double the ring R(n, tn) across its boundary and apply Lemma 2.2 to the doubled
arcs. Thus distinct non-trivial arcs of minimal length from B to itself are disjoint. But if
γ = ρseams(γ), then γ intersects some f -curve at least twice, hence is longer than a(tn)/2

by the previous paragraph. The only exception is if γ is contained in a single cross Cj . But
in that case, if we double Cj across B we obtain a pair of crosses and a closed geodesic of
length 2`(γ) in it. This pair embeds isometrically inR(n, tn), showing that 2`(γ) > a(tn).
The inequality is strict because no systole in R(n, tn) is symmetric about any f -curve.

We can therefore assume that γ is disjoint from the seams and intersects each f -curve
at most once. Up to the symmetries of R(n, tn), this leaves two possibilities for γ depend-
ing whether it intersects e or not.

Recall that the complement of the seams in R(n, tn) is an annulus A. As such, there is
a well-defined orthogonal projection A→ e. If γ does not intersect e, then it intersects all
the f -curves, and its orthogonal projection onto e is longer than

(2n− 1)

2n
e(tn) >

1

2
e(tn) >

1

2
a(tn).

See Figure 7. Since the orthogonal projection does not increase distances, we get that
`(γ) > a(tn)/2.

e

γ

Figure 7: If γ does not intersect e, then its projection onto e covers most of e

If γ intersects e, then γ and ρe(γ) intersect. One of the two possible surgeries on
γ ∪ ρe(γ) yields a pair of arcs α and β, each joining the top and bottom boundaries of
some crossCj inR(n, tn), neither of which can be homotoped intoCj (see Figure 8). This
gives `(γ) > `(α) = `(β), so it suffices to show that `(α) > a(tn)/2. We have reduced
the first part of the statement of the lemma to the second part.

Let τ be an arc of minimal length in R(n, tn) that joins the top and bottom boundaries
of some cross Cj and cannot be homotoped into Cj . By the same argument as above, we
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e

γ

ρe(γ)

α

β

Figure 8: If γ intersects e there is a surgery on γ ∪ ρe(γ) producing a pair of arcs α and β
joining two opposite boundaries of a cross

may assume that τ intersects each f -curve at most once and is disjoint from the seams. If τ
intersects e, then it wraps most of the way around the annulusA so that its orthogonal pro-
jection onto e is longer than e(tn)/2 > a(tn)/2 similarly as above. Otherwise, τ is equal
to the arc α from the preious paragraph or one of its images by the group 〈ρseams, ρe, νj〉
where νj is the reflection swapping the left and right sides of Cj . In any case, there is a
right-angled pentagon with two adjacent sides of lengths e/4 and e/4n, and the opposite
side of length τ/2 (see Figure 9). Equations (2.3) and (2.6) give

cosh(τ/2) = sinh(e/4) sinh(e/4n) = sinh(e/4) coth(t) > sinh(e/4).

Squaring yields

cosh(τ) + 1

2
= cosh2(τ/2) > sinh2(e/4) = cosh(c/2)

hence
cosh(τ) > 2 cosh(c/2)− 1 > cosh(c/2).

This shows that `(τ) > c(tn)/2 = a(tn)/2, which concludes the proof.

e

τ/2e/4n

e/4

Figure 9: The right-angled pentagon allowing us to compute the length of the shortest arc
in Lemma 2.9

2.8 The Bolza curve

When n = 1, the pair of transverse rings is a closed surface of genus 2 obtained by gluing
the opposite sides of the cross C(t1) with half twists. We now show that this surface—
denoted Σ(1)—is the Bolza curve, which is the surface of genus 2 with the largest systole
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and the largest automorphism group [36]. In fact, it is the only local maximum of the
systole in genus 2 [49].

Proposition 2.10. Σ(1) is the Bolza curve.

Proof. Let s be the side length of a regular hyperbolic triangle with interior angles π/4.
Eight such triangles fit together at a point to form a regular right-angled octagon O. Glue
two such octagons together to form a cross isometric to C(s/2), then glue opposite ends
of C(s/2) with half twists. The a- and b-curves in the resulting closed surface are main
diagonals of O, hence have length 2s. Similarly, each c-curve is equal to the union of two
opposite sides of the octagon, hence has length 2s. This shows that a(s/2) = 2s = c(s/2)

so that t1 = s/2. In particular, the f -curves in Σ(1) have the same length as the curves of
type a, b and c.

Now cut the front octagon of Σ(1) into 8 equilateral triangles and attach them to the
corresponding sides of the back octagon. The result is a regular octagon with interior
angles π/4. The sides of the latter are identified in opposite pairs to form Σ(1) (see Fig-
ure 10). This is a standard representation of the Bolza curve [37, Section 3].

8 2 2 8

6 4 4 6

7 3

1

5

7 3

5

1

A
H

G

F
E

D

C

B

E

D

C

B

A

H

G

F

=+

Figure 10: Σ(1) is the Bolza surface

Remark 2.11. The above proof shows that a(t1) = c(t1) = 4t1. After some elementary
algebraic manipulations3, one arrives at the exact formula t1 = arccosh(1 +

√
2)/2.

It is interesting to note that in genus 3, there are at least three local maxima, and the
most symmetric surface, the Klein quartic, is not the global maximum [49].

2.9 The tree of rings

For n ≥ 1, let T (n) be the n-regular tree. We build a hyperbolic surface Σ(n) called the
tree of rings by replacing each vertex v ∈ T (n) with a copy Rv of the ring R(n, tn) such

3We have cosh(2t1) = cosh(c(t1)/2) = sinh2(e(t1)/4) = coth2(t1) by definition, which implies that
(2 cosh2(t1)−1)(cosh2(t1)−1) = cosh2(t1). This is a quadratic equation in cosh2(t1) whose only solution
larger than 1 is given by cosh2(t1) = 1 + 1/

√
2. Thus cosh(2t1) = 2 cosh2(t1)− 1 = 1 +

√
2.
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that two rings Rv and Rw are transverse if and only if the vertices v and w are adjacent
in T (n). In other words, each edge of T (n) is replaced by a cross C(tn) and the crosses
are glued in such a way that those corresponding to the n edges adjacent to any vertex in
T (n) form a ring isometric to R(n, tn).

The resulting surface Σ(1) is closed of genus two, Σ(2) has two ends accumulated
by genus and Σ(n) has a Cantor set of ends accumulated by genus when n ≥ 3 (see
Figure 11).

T (n)

n

Σ(n)

1 2 3

Figure 11: The tree of rings for n = 1, 2, 3

We now determine the systoles in Σ(n), starting with Σ(1) as a warm-up.

Proposition 2.12. The systoles in Σ(1) are the a- and b-curves in the horizontal and
vertical rings, the two c-curves and the two f -curves. The total number of systoles is 12

and their length is 2 arccosh
(
1 +
√

2
)
≈ 3.057.

Proof. The e-curves are longer than the c-curves by construction, hence longer than the
a- and b-curves. The proof of Proposition 2.3 applies almost verbatim to show that the
shortest curves disjoint from the horizontal (resp. vertical) f -curve are the a- and b-curves
in the horizontal (resp. vertical) ring together with the vertical (resp. horizontal) f -curve.
The only difference is that the f -curves were ruled out in Proposition 2.3 for being too
long by hypothesis.
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Let γ ⊂ Σ(1) be a systole that intersects both f -curves. Consider the two diagonal axes
of symmetry of the cross C(t1). These curves divide Σ(1) into a union of two congruent
annuli with piecewise geodesic boundary, each containing one of the f -curves as its core
geodesic. By hypothesis γ traverses each annulus at least once. It is easy to see that the
shortest arc across either annulus has length c/2. Therefore `(γ) ≥ c with equality if and
only if γ is a concatenation of two seams, i.e., a c-curve.

Since the a-, b-, c- and f -curves all have the same length equal to 2 arccosh
(
1 +
√

2
)

(see Remark 2.11), they are the systoles.

Proposition 2.13. For every n ≥ 2, the systoles in the tree of rings Σ(n) are the a- and
b-curves contained in rings, together with the c-curves contained in pairs of transverse
rings.

Proof. Let γ be a systole of Σ(n). We define the shadow of γ in T (n) as follows. First we
cut γ along the f -curves into subarcs γ1, . . . , γk labelled in cyclic order along γ. For each
subarc γj that joins two boundaries of a cross C which are not opposite of each other (i.e.,
each subarc that “turns” from one ring to another), its shadow s(γj) is the edge in T (n)

corresponding to the pair of transverse rings that intersect along C. The shadow s(γj) of
each subarc γj that does not turn is defined to be the vertex v ∈ T (n) corresponding to
the ring Rv containing γj in its interior. The shadow s(γ) is defined as the concatenation
of the shadows s(γ1), . . . , s(γk). This forms a loop in T (n).

The shadow s(γ) is not well-defined if γ is disjoint from the f -curves or is equal to
one of them. But in that case γ is contained in a ring so that it is either an a-curve or a
b-curve by Corollary 2.7.

Being a loop in a tree, s(γ) has at least two places where it backtracks, that is, an
edge which it traverses twice in a row in opposite directions. By definition of the shadow,
a backtrack corresponds to an arc entering and leaving a ring through the same cross,
turning at the beginning and at the end. By Lemma 2.9, such an arc is longer than a(tn)/2.
In particular, if s(γ) has two backtracks happening along two distinct edges, then γ has
two disjoint subarcs longer that a(tn)/2 each, so that it is not a systole.

This leaves the possibility that s(γ) is just a loop formed by traversing one edge {v, w}
of T (n) twice in opposite directions. In that case, γ is contained in a pair of transverse
rings Rv ∪Rw and turns exactly twice in the cross C = Rv ∩Rw.

We can write γ as the concatenation of two arcs γv and γw where γv = γ ∩ Rv and
γw = γ \ γv. This means that γv contains both turns of γ. In particular, γv is not contained
in C so that `(γv) > a(tn)/2 by Lemma 2.9.

Suppose that the two endpoints of γv belong to the same boundary component of
C. Then γw—which is contained in Rw—can be reflected across that f -curve to form a
non-trivial closed curve in Rw. That curve is longer than a(tn) by Corollary 2.7, hence
`(γw) > a(tn)/2. This gives `(γ) = `(γv) + `(γw) > a(tn).
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By exchanging the roles of Rv and Rw, the previous argument shows that the two
turning subarcs of γ have endpoints in all four boundary components of C. This implies
that γ intersects one of the two diagonal axes of symmetry of C—call it d—twice. But the
reflection of C in the curve d extends to a global isometry ρd of Σ(n). By Lemma 2.2, we
have ρd(γ) = γ. If γ also intersects the seams, then it intersects them twice by symmetry
across d. In that case, γ is invariant under ρseams as well. But then the two turning subarcs
of γ in C are mirror images across the seams, hence have endpoints in only two boundary
components of C. That contradicts the first sentence of this paragraph.

We know that ρd(γ) = γ and that γ is disjoint from the seams. Consider the subarc
α ⊂ γ contained in Rv with two endpoints on d and let β = ρd(α) so that γ = α ∪ β.
If α intersects any f -curve twice, then `(α) > a(tn)/2 by an argument above so that
`(γ) = `(α) + `(β) = 2`(α) > a(tn). Thus α intersects each f -curve at most once. This
determines the homotopy class of α up to moving the endpoints along d since the comple-
ment of the seams in Ru is an annulus. That is, α wraps once around Ru intersecting each
f -curve once along the way, while staying disjoint from the seams. We conclude that γ is
homotopic to a c-curve, hence equal to one of them.

2.10 Signed graphs

Let n ≥ 3. In order to get a closed surface, we glue copies of the cross C(tn) along a finite
n-regular graph Γ instead of the tree T (n). In order to determine the gluings precisely, we
need a bit more structure on Γ, namely,

• a cyclic ordering of the edges adjacent to any vertex;

• a sign ε(e1, e2) ∈ {+,−} attributed to any two consecutive edges e1, e2 around a
vertex, subject to the condition that the product of the signs around any vertex is
negative.

We call a graph equipped with this additional structure a signed graph. Note that a choice
of cyclic ordering around each vertex is known as an (oriented) ribbon structure. However,
we will now define when two signed graphs are isomorphic, and such isomorphisms need
not preserve the ribbon structure.

Given a vertex x in a signed graph Γ, we define the vertex flip around x to be the
operation that reverses the cyclic ordering around x and changes the signs between each
edge e containing x and its two immediate neighbors in the cycling ordering around the
vertex e\x (see Figure 12). Clearly, any two vertex flips commute. We say that two signed
graphs are isomorphic if one can be obtained from the other by a set of vertex flips.
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Figure 12: A vertex flip on a signed graph

2.11 Gluing crosses according to a signed graph

Let n ≥ 3 and let Γ be a connected, n-regular, signed graph. We construct a surface X(Γ)

modelled on Γ as follows. To each edge e in Γ corresponds a cross Ce isometric to C(tn).
The edge e = {u, v} has two neighboring edges (which coincide when n = 2) around
each of u and v. We glue

• the predecessor of e around u to the left of Ce;

• the successor of e around u to the right of Ce;

• the predecessor of e around v to the bottom of Ce;

• the successor of e around v to the top of Ce.

Each of these gluings is done as to make the seams match. This still leaves two possibil-
ities for each gluing: either with a half twist or not. This is determined using the signs
between consecutive edges: the “+” signs mean no twist and the “−” signs call for half
twists.

Note that for a string of crosses, the half twists do not affect the isometry type. How-
ever, when we close up the string to form a loop, they do. For example, with an even
number of half twists the seams separate, but with an odd number of half twists they do
not. In fact, one can show that a chain of n crosses isometric to C(tn) glued end to end is
isometric to the ring R(n, tn) if and only if the number of half twists is odd. This is why
we require the product of the signs around each vertex in Γ to be negative.

We also remark that rotating each cross by angle π around one of its diagonals ex-
changes left and bottom as well as right and top. Thus changing the order between u and
v above merely switches the horizontal and vertical axes but not the gluings themselves.
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Each ring can be seen as either horizontal or vertical interchangeably; this notion need
not be globally defined.

The surface X(Γ) is defined as

X(Γ) =

(⊔
e∈E

Ce

)
/ ∼

where E is the set of edges of Γ and the equivalence ∼ identifies boundary points of
different crosses as described above.

The sign structure of Γ induces a cyclic ordering of the crosses in each ring. For any
ring R in X(Γ), there are exactly n other rings transverse to it. When two of these trans-
verse rings pass through adjacent crosses of R, let us say that they are parallel. Whether
the cyclic orderings in parallel rings passing through adjacent crosses Ce1 and Ce2 agree
or not is indicated by the sign ε(e1, e2). If we reverse the cyclic ordering of the crosses
in R, then the comparison between parallel rings transverse to R is unaffected. However,
for every ring parallel to R, there is a change of sign: if orders agreed before, they do not
anymore and vice versa. In other words, if Γ1 and Γ2 are isomorphic signed graphs, then
there is an orientation-preserving isometry between X(Γ1) and X(Γ2).

As an example, if Γ is the n-regular tree T (n) equipped with an arbitrary sign structure,
then X(Γ) is isomorphic to the tree of rings Σ(n). This is because any two sign structures
on T (n) are isomorphic, a fact left as an exercise4 to the reader.

2.12 The ribbon graph induced by a signed graph

There is a useful combinatorial object Γ̂ that comes between the signed graph Γ and the
surface X(Γ) which makes the correspondence more transparent. This object is a (non-
orientable) 4-regular ribbon graph, and is obtained from Γ as follows:

• to each edge e = {u, v} of Γ corresponds a vertex ê in Γ̂;

• each vertex in Γ̂ is 4-valent, and its adjacent edges are given a cyclic order;

• the vertices in Γ̂ that correspond to the predecessor and successor of e around u in
Γ share edges with ê, and these edges are to be opposite in the cyclic order;

• similarly for the vertices corresponding to the two immediate neighbors of e in the
cyclic order around v;

• the ribbon edge between two vertices in Γ̂ is given a half twist if the sign between
the corresponding edges of Γ is negative, and no twist otherwise.

4Hint: First show that any sign pattern (with negative product) around a vertex v can be changed into
any other (with negative product) by doing some vertex flips around the neighbors of v. Furthermore, this
can be done even if one neighbor of v is required to be left intact.
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In this way, the n edges adjacent to any vertex in Γ become a cycle of length n in Γ̂

which is homeomorphic to a Möbius band, because there is an odd number of half twists.
Adjacent vertices in Γ correspond to Möbius bands that intersect transversely in Γ̂.

To go from Γ̂ to X(Γ), simply inflate each 4-valent vertex to a cross C(tn). Associate
the edges around the vertex to the four boundary components of C(tn) so that the cyclic
order goes: left, bottom, right, top. Then glue crosses with or without half twist according
to whether the edges of Γ̂ have a half twist or not.

From the surface X(Γ), we can go back to Γ̂ by collapsing the front and back of each
cross (i.e., taking the quotient of X(Γ) by the reflection across the seams) then taking the
graph dual to the decomposition of the resulting surface into octagons. Note that in this
way, the seams of X(Γ) correspond to the boundary components of Γ̂.

2.13 The n = 2 case

A 2-regular signed graph Γ does not appear to carry enough information to prescribe how
to glue crosses together. For instance, there is only one cyclic ordering on two elements,
whereas there are two distinct directions of travel along a ring made with two crosses.

For n = 2, we start directly with a graph G playing the role of Γ̂ instead. That is, let
G be a finite, connected, 4-regular, ribbon graph such that any path in G which does not
turn (i.e., goes to the opposite edge in the cyclic order at each vertex) is closed of length
2, and has a neighborhood homeomorphic to a Möbius band. Given such a graph G, we
obtain a surface X(G) by replacing each vertex of G with a cross C(t2) and gluing them
in the prescribed way as in the previous subsection. The resulting surface X(G) is such
that each of its crosses belongs to two rings isometric to R(2, t2).

We claim that there are two isomorphism classes of such graphs G with V vertices if
V ≥ 2 is a multiple of 3, and only one isomorphism class otherwise.

Pick any Möbius band B of length two in G and cut G along the two edges of B. The
resulting object H has two vertices that have two opposite half-edges not connected to
anything. Pick either of these vertices, start on one side of it, and start walking along an
uncut edge. At the next encountered vertex, turn left, and so on, until you reach a dead
end. In this way, the path traced is a boundary component of H which passes through
each vertex only once.

We can draw the ribbon graph H in the plane as a tubular neighborhood of a regular
V -gon with its sides extended a little bit, one side cut open, and the ends of each uncut
side glued via a half twist (see Figure 13). The left-turning path traced above corresponds
to the inner boundary component of this cut V -gon.

The graph G is obtained from H by pairing up the two free half-edges of the first
vertex with the two free half-edges of the last vertex, and giving one pair a half twist.
There are two ways to pair them, and two choices for which pair gets a half twist, for a
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V = 6

V = 7

Figure 13: A representation of the ribbon graph H with 6 and 7 vertices. The ends of each
long segment are glued with a half twist. This leaves four half-edges that need to be paired
up.

total of four choices (see Figure 14). However, some of these choices yield isomorphic
objects. To see this, color the four boundary components of H gray, red, green and blue.
In the planar representation, H has 2V + 2 ends and 2V + 2 gaps between these ends,
one of which is on the inside. Each outer gap is connected (via half twists at the ends of
extended sides) to the third next gap. This is why the residue of V modulo 3 is relevant.

V = 6

V = 7

Figure 14: The four admissible pairings with 6 and 7 vertices. The crosses indicate a half
twist whereas the dots indicate a lack thereof. Sides with the same color belong to the
same boundary component.

To fix ideas, color the inner gap gray and the first outer gap, as well as those that it is
connected to, in red. Similarly, color the other two boundary components green and blue.
The last outer gap gets colored red if and only if 2V (hence V ) is a multiple of 3. Assume
this is the case. Then at each of the first and last vertices there is one free half-edge with
one side gray and one side red, and one free half-edge with one side green and one side
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blue.
As indicated earlier, there are four ways to close up H:

• If we glue gray to gray and red to red, then green gets glued to green and blue
to blue. The resulting ribbon graph G has four boundary components of length V
each.

• If we glue gray to red, then green gets glued to blue. The resulting ribbon graph G
has two boundary components of length 2V each.

• If we glue gray to blue, then red gets glued to green. The resulting ribbon graph G
has two boundary components of length 2V each.

• If we glue gray to green, then red gets glued to blue. The resulting ribbon graph G
has two boundary components of length 2V each.

The four possibilities are depicted on the first row of Figure 14 for V = 6. One can check
that the last three ribbon graphs are all isomorphic via cut-and-paste, so we indeed get
two distinct isomorphism classes.

Suppose that V is not a multiple of 3. Then if two colors are on two sides of the same
free half-edge of the first vertex in H , they are on different free half-edges of the last
vertex and vice versa. In this case, it is not possible to glue each color to itself, nor is it
possible to connect the colors in two pairs. Whichever of the four admissible gluings we
pick, one color closes up while the three other colors connect together (see the second
row of Figure 14 for V = 7). That is to say, any ribbon graph G as above with V 6= 0

mod 3 vertices has one boundary component of length V and one boundary component
of length 3V . This implies that we can represent G as a tubular neighborhood of a regular
V -gon in the plane with sides extended and all half twists on the outside (as in the first
column of Figure 14). In other words, there is only one isomorphism class.

Remark 2.14. In the sequel, we will not distinguish between the case n = 2 and n ≥ 3.
That is, we will abuse notation and speak of the surfaceX(Γ) for a 2-regular signed graph
Γ. In those instances, one should take X(Γ) to be any of the surfaces X(G) for graphs G
as above with the same number of vertices as Γ.

2.14 Systoles

We will show that the systoles of the surface X(Γ) defined above are the a-, b- and c-
curves, provided that Γ has sufficiently large girth. The girth of a graph is defined as the
length of its shortest non-trivial loop. The problem with graphs with small girth is that the
seams of the crosses in X(Γ) can close up to form short geodesics. The following lemma
shows that the seams are indeed the main thing to worry about.
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Lemma 2.15. Let t > 0. The shortest non-trivial arcs in the cross C(t) (defined in Sec-
tion 2.2) with endpoints in the boundary are the seams.

Proof. The only potential candidates for shortest arcs are the seams or the other axes
of symmetry of C(t). Indeed, any arc that intersects one of the loci of reflection can be
shortened by surgery with its reflection unless it coincides with the latter. Moreover, these
loci cut the cross into topological disks. Since each seam is homotopic to a surgery on one
horizontal and one vertical axis, the seams are the shortest arcs.

Recall that the length of the seams in C(t) is σ(t) = arccosh(coth2 t). We will also
refer to the number tn defined by Lemma 2.5 as well as a(tn), where

a(t) = 2 arccosh(cosh(t) cosh(n arcsinh(coth t)))

according to Equations (2.7) and (2.6). We will estimate these quantities in Section 6.1.
We can now prove the main result of this section.

Theorem 2.16. Let n ≥ 2 and let Γ be a connected, n-regular, signed graph of girth larger
than a(tn)/σ(tn). Then the systoles in the surface X(Γ) are the a-, b- and c-curves, which
have length a(tn). If Γ is finite, then the genus g of X(Γ) is equal to E + 1 where E is the
number of edges in Γ and there are (12g − 12) systoles in X(Γ).

Remark 2.17. The girth of a tree is infinite by convention, hence Theorem 2.16 generalizes
Proposition 2.13.

Proof. Let γ be a systole of X(Γ). We define the shadow s(γ) in the graph Γ in the same
way as in the proof of Proposition 2.13. If s(γ) is non-contractible in Γ, then it traverses
more than a(tn)/σ(tn) edges by hypothesis. This means that γ traverses as many crosses,
hence is longer than

(a(tn)/σ(tn)) · σ(tn) = a(tn)

by Lemma 2.15, contradiction. It follows that s(γ) is a contractible loop, so that it lifts to
the universal cover of Γ, the n-regular tree T (n). The tree of rings Σ(n) similarly covers
X(Γ) and γ lifts to Σ(n). By Proposition 2.13, any lift γ̃ is one of the curves of type a, b
or c in a ring or a pair of transverse rings of Σ(n). Since the covering map Σ(n)→ X(Γ)

is injective on each ring and each pair of transverse rings, γ itself is an a-, b- or c-curve.
Let g be the genus of X(Γ). There are 4n curves of type a or b per ring, n crosses

per ring, and 2 rings per cross, hence 8 such curves per cross. Since each cross has Euler
characteristic−2, there are (g−1) crosses inX(Γ), hence (8g−8) curves of type a or b in
total. Since each cross is central to exactly one pair of transverse rings and there are four
c-curves per pair, the number of c-curves is equal to (4g − 4). Thus, the total number of
systoles is (12g−12). By construction, the number of crosses is equal to the number E of
edges in Γ so that g = E + 1. Note that the number V of vertices in Γ satisfies nV = 2E

since Γ is regular of degree n, so an alternative formulation is g = 1 + nV/2.
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Remark 2.18. The number Ln in Theorem 1.1 from the introduction is defined as a(tn).

As we will see in subsection 6.1, the quantity a(tn)/σ(tn) grows exponentially with
n. Therefore the girth of Γ—and hence the genus of X(Γ)—has to be very large for the
above result to hold. The first order of business, however, is to show that the surfaces
obtained are local maxima of the systole function. This is proved in the next two sections.

3 The lengths of the systoles determine the surface locally

In this section, we show that the systoles in X(Γ) can detect any infinitesimal movement,
that is, the derivative of their length is injective on the tangent space to Teichmüller space.

3.1 Twist deformations

Given a simple closed geodesic β in a hyperbolic surfaceX , we denote by τβ the infinites-
imal Fenchel-Nielsen twist deformation along β. More precisely,

τβ =
d

dt

∣∣∣∣
t=0

Xt

where Xt is the surface obtained by cutting X along β, twisting distance t to the left, then
regluing. Given any closed geodesic α ⊂ X , the cosine formula says that

∂`α
∂τβ

=
∑
p∈α∩β

cos∠p(α, β) (3.1)

where ∠p(α, β) is the counter-clockwise angle from α to β at the point p [54, 38].
For every n ≥ 1, the systoles in the ring R(n, tn) include the curves a1, . . . , a2n and

b1, . . . , b2n by Proposition 2.3 and Proposition 2.12. We want to compute the effect of
twisting around any of these curves on the length of any of them. To this end, let M be
the 4n × 4n matrix whose (i, j)-th entry is the derivative of the length of the i-th curve
in the set S = {a1, . . . , a2n, b1, . . . , b2n} with respect to the twist deformation along the
(2n + j)-th curve (modulo 4n) in S. Recall that the a-curves are pairwise disjoint, as are
the b-curves, and that each ai intersects each bj exactly once (see Figure 4). The cosine
formula (3.1) thus gives

Mi,j =


cos∠(ai, bj) if i, j ∈ {1, . . . , 2n}
cos∠(bi, aj) if i, j ∈ {2n+ 1, . . . , 4n}
0 otherwise.

In other words, M is block diagonal of the form

M =

(
A 0
0 −Aᵀ

)
.
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In particular, M is invertible if and only if A is. In the following two subsections we will
show that A (and hence M ) is indeed invertible.

Proposition 3.1. For any n ≥ 1, the matrix M of derivatives of lengths of a- and b-
curves in the ring R(n, tn) with respect to the twist deformations around these curves has
full rank.

An immediate consequence is that the twists deformations around the a- and b-curves
form a basis of the tangent space to the Teichmüller space of the ring.

Corollary 3.2. The twist deformations around the a- and b-curves in the ring R(n, tn)

form a basis of the tangent space to the Teichmüller space ofR(n, tn) with fixed boundary
lengths for any n ≥ 1.

Proof. The ring R is a surface of genus 1 with 2n boundary components. As such, it
admits a pants decomposition with 2n interior curves. The Fenchel–Nielsen coordinates
for these interior curves parametrize the Teichmüller space with fixed boundary lengths.
Hence the latter has dimension 4n, as does its tangent space at the point R. By Proposi-
tion 3.1, the twist deformations about the a- and b-curves in R are linearly independent.
Since there are 4n such curves, these tangent vectors form a basis of the tangent space.

In order to prove that the matrix A of cosines of angles has full rank, we need to
estimate these angles. It turns out that each column in A has one entry close to 1 and
the other entries fairly close to −1. The intuition for this is that since the a- and b-curves
are each a union of two hypothenuses of right triangles with very long sides, they fellow
travel the f -curves and the e-curve in the notation from Section 2.4. From this pattern, we
will deduce that 0 is not an eigenvalue of A.

3.2 Angle estimate

Let θ = θ(n) be the angle from e to any of the curves aj in the ring R(n, tn). Then
the angle from any bj to e is also equal to θ. Also let φj be the counter-clockwise angle
from aj to b1. Recall that there are 2n curves aj that are images of one another by the shift
η : R(n, tn)→ R(n, tn) which translates by distance e/2n along the curve e. In particular,
the curves aj intersect e at regularly spaced intervals of length e/2n each. Therefore b1, e
and aj together bound an isoceles triangle whose base has length |n+1− j| ·e/2n, whose
angles at the base are equal to θ and whose third angle is equal to φj (see Figure 15). This
holds for every j ∈ {1, . . . , 2n} except for j = n + 1, where we get a triple intersection
between b1, e and aj+1.

By dropping the altitude in each isoceles triangle and applying Equation (2.2) we
obtain

cos
φj
2

= sin θ cosh
(

(n+ 1− j) e
4n

)
.
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Figure 15: The isoceles triangles bounded by the curves b1, e and aj in the ring R(n, tn)
for n = 3

The double angle formula for cosine yields

cosφj = 2 sin2 θ cosh2
(

(n+ 1− j) e
4n

)
− 1. (3.2)

Observe that the formula holds for j = n+ 1 as well since φn+1 + 2θ = π so that

cosφn+1 = cos(π − 2θ) = − cos(2θ) = 2 sin2 θ − 1.

We will show that the first angle φ1 is very small whereas the following angles φj are
close to π. We first need an elementary inequality involving sums of hyperbolic cosines.

Lemma 3.3. For any n ≥ 1 and any x > arccosh(
√

2) we have

2
n−1∑
k=0

cosh2(kx) < cosh2(nx).

Proof. We proceed by induction on n. For n = 1, the inequality reduces to 2 < cosh2(x)

which is true by hypothesis. Now suppose that

2
n−1∑
k=0

cosh2(kx) < cosh2(nx)

for some n ≥ 1. Then

2
n∑
k=0

cosh2(kx) < 3 cosh2(nx) (3.3)

which we want to show is less than cosh2((n+ 1)x).
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The addition formula for hyperbolic cosine gives

cosh((n+ 1)x) = cosh(nx) cosh(x) + sinh(nx) sinh(x)

>
√

2 cosh(nx) + sinh(nx)

=
{√

2 + tanh(nx)
}

cosh(nx)

>
{√

2 + tanh(arcsinh(1))
}

cosh(nx)

=

(√
2 +

1√
2

)
cosh(nx)

>
√

3 cosh(nx)

where we used the fact that nx ≥ x > arccosh
(√

2
)

= arcsinh(1). Putting this back in
Equation (3.3) gives

2
n∑
k=0

cosh2(kx) < 3 cosh2(nx) < cosh2((n+ 1)x).

By induction, the inequality holds for any n ≥ 1.

We can now show that the first angle φ1 is much closer to 0 than any of the other
angles, which are all close to π. The precise statement is expressed in terms of the cosines
of the angles.

Lemma 3.4. For any n ≥ 1, the angles φj from aj to b1 satisfy
2n∑
j=2

(cosφj + 1) < (cosφ1 + 1).

Proof. By Equation (3.2) this inequality is equivalent to
2n∑
j=2

cosh2
(

(n+ 1− j) e
4n

)
< cosh2(e/4). (3.4)

Each summand on the left appears twice except for j = n+ 1 so that
2n∑
j=2

cosh2
(

(n+ 1− j) e
4n

)
< 2

n−1∑
k=0

cosh2
(
k
e

4n

)
.

Recall that e = 4n arcsinh(coth(tn)) > 4n arcsinh(1) and hence
e

4n
> arcsinh(1) = arccosh

(√
2
)
.

We can therefore apply Lemma 3.3 with x = e/4n to obtain the desired inequality
2n∑
j=2

cosh2
(

(n+ 1− j) e
4n

)
< 2

n−1∑
k=0

cosh2
(
k
e

4n

)
< cosh2(e/4).
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Corollary 3.5. For any n ≥ 1, the angles φj from aj to b1 satisfy

2n∑
j=1

cosφj 6= 0.

Proof. First assume that n ≥ 2. The above statement is equivalent to

2n∑
j=1

(cosφj + 1) 6= 2n.

By the previous lemma we have
∑2n

j=1(cosφj + 1) < 2(cosφ1 + 1) < 4 ≤ 2n.
If n = 1, then a1 meets b1 at right angle since both of them intersect the f -curve with

angle π/4. Furthermore, φ2 = 3π/4 (see Figure 10). Therefore

cosφ1 + cosφ2 = −
√

2/2 6= 0.

3.3 The Gershgorin circle theorem

If the diagonal entries of a matrix dominate the rest, then the matrix is invertible. More
generally, one can deduce information about the location of the eigenvalues from the size
of the entries [28].

Theorem 3.6 (Gershgorin). Let U be an n × n matrix with entries ui,j . Then the eigen-
values of U are contained in the union of the closed disks with centers uj,j and radii∑

i 6=j |ui,j|. In particular, if |uj,j| >
∑

i 6=j |ui,j| for every j, then U is invertible.

The last sentence of the theorem is quite transparent: if x ∈ Rn is non-zero and xj is
its largest entry in absolute value, then x times the j-th column of U is non-zero by the
triangle inequality.

We apply this criterion to the matrix A+ J where A is the matrix of cosines of angles
from the a-curves to the b-curves in the ring R(n, tn) and J is the 2n× 2n matrix whose
entries are all equal to one.

Lemma 3.7. The matrix A+ J is invertible for any n ≥ 1.

Proof. Note that the entries of A + J are positive so we do not need to take absolute
values. Lemma 3.4 shows that the first entry of the first column of A+J is larger than the
sum of the other entries in that column. By symmetry of the ring, the entries of A satisfy
Ai+1,j+1 = Ai,j where the indices are taken modulo 2n, and similarly for A + J . The
Gershgorin circle theorem thus implies that A+ J is invertible.
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It is easy to deduce that A itself is invertible.

Lemma 3.8. The matrix A of cosines of angles from the a-curves to the b-curves in the
ring R(n, tn) is invertible for any n ≥ 1.

Proof. Let V be the orthogonal complement of the vector u = (1, . . . , 1)ᵀ in R2n. Since
the restriction of J to V is equal to zero,A andA+J act the same way on V . Moreover,A
and A+J both send the span of u onto itself since they have constant non-zero row sums.
The row sums are all the same because the rows are cyclic permutations of one another.
The row sums of A + J are non-zero because its entries are positive and the row sums
of A are non-zero by Corollary 3.5. Since A+ J is surjective by the previous lemma, we
obtain

R2n = (A+ J)(R2n) = (A+ J)(V + spanu) = A(V + spanu) = A(R2n).

We conclude that A itself is surjective, hence invertible.

This implies that the full matrixM of cosines of angles between all systoles in the ring
R(n, tn) is invertible.

Proof of Proposition 3.1. We have det(M) = det(A)2 6= 0 by the previous lemma.

3.4 From rings to closed surfaces

Let X = X(Γ) be a closed surface obtained by gluing crosses C(tn) along a connected,
finite, n-regular, signed graph Γ of sufficiently large girth as in Theorem 2.16, so that its
systoles are the a-, b- and c-curves (and f -curves if n = 1). We now prove that the lengths
of these curves determine the surface at the infinitesimal level (perfection).

Theorem 3.9 (Perfection). Let n ≥ 1 and let X = X(Γ) where Γ is a finite, connected,
n-regular, signed graph of girth larger than a(tn)/σ(tn). The map T (X) → RS

+ sending
Y to the vector of lengths (`γ(Y ))γ∈S where S is the set of systoles in X has injective
derivative at the point X .

Proof. We need to show that the differentials {d`γ}γ∈S span the cotangent space T ∗XT (X)

over R. Wolpert’s twist-length duality [55, Theorem 2.10] states that

d`γ =
√
−1

(
∂

∂τγ

)∗
for any simple closed geodesic γ, where the dual is taken with respect to the Weil–
Petersson metric. Therefore, the length differentials {d`γ}γ∈S span the cotangent space
T ∗XT (X) if and only if the twist deformations {∂/∂τγ}γ∈S span the tangent space TXT (X).
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By Proposition 2.12 (for n = 1) and Theorem 2.16 (for n ≥ 2), the set S of systoles
includes the a- and b-curves. We will show that the twist deformations about the a- and
b-curves generate the tangent space. To see this, observe that there exists a pants decom-
position P of X consisting entirely of curves that are each in the interior of some ring
R ⊂ X . For instance, one can take P to be the set of all f -curves in X (the curves that
cutX into crosses) together with one curve in each cross that separates it into two pairs of
pants—call these d-curves. Each d-curve is in the interior of both rings that it intersects,
while each f -curve is in the interior of a unique ring.

The lengths and twists around the curves in the pants decompositionP define Fenchel–
Nielsen coordinates T (X)→ (R+×R)P once a convention is chosen for what zero twist
means. For any curve α ∈ P , let R ⊂ X be a ring that contains α in its interior. By
Corollary 3.2, the twist deformations about the a- and b-curves in R generate the tangent
space to the Teichmüller space of R with fixed boundary lengths. In particular, the two
tangent vectors corresponding to changing the length or twist parameter of α at unit speed
while keeping all the other Fenchel–Nielsen coordinates fixed are in the span of the twist
deformations around the a- and b-curves inX . Since the Fenchel–Nielsen length and twist
parameters define a smooth coordinate system for T (X), we are done.

Remark 3.10. The proof actually shows that the derivative of the vector of lengths of all
the a-curves and b-curves is injective at X(Γ). The c-curves are not needed for this; they
only play a role in the next section.

Remark 3.11. In [48], Schmutz Schaller describes a collection of (6g − 5) curves such
that their lengths define a topological embedding of Teichmüller space into R6g−5

+ . See
also [30, 31]. If g is the genus of X(Γ), then there are (8g − 8) curves of type a or b in
X(Γ). We do not know if their lengths define a global embedding of Teichmüller space,
but Theorem 3.9 in conjunction with the inverse function theorem implies that they define
an embedding in a neighborhood of X(Γ).

4 The systole decreases under all deformations

Let X = X(Γ) where Γ is a signed graph satisfying the hypotheses of Theorem 3.9. Now
that we know that the systoles in X can detect any infinitesimal movement, it remains to
show that at least one of them shrinks under any infinitesimal deformation (eutaxy). Even
though we have proved that the twist deformations around the a-curves and b-curves in X
generate the tangent space TXT (X), it will be convenient to use a different basis to show
this.

To define this other basis, we first explain how it acts on individual crosses. Let C
be a cross with four boundary lengths equal to 4tn as in Section 2.2. For each boundary
component β ⊂ C and s > 0, we define the deformed cross Cβ

s to be the four-holed
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sphere with β-boundary of length 4(tn + s), the three other boundaries of length tn, and
with the same symmetries fixing β that C has, that is, a Z2 × Z2 group generated by
a front-to-back reflection and a left-and-right or top-to-bottom reflection depending on
whether β is medial or lateral respectively.

For example, if β is the left boundary component of C, then Cβ
s is obtained by taking

a right-angled hexagon with left side tn + s, top side of length 2tn and right side of length
tn, then reflecting this hexagon across its bottom side to obtain a right-angled octagon,
then doubling this octagon across the four sides with unspecified lengths (see Figure 16).

t n
+
s

tn

2tn

2(
t n

+
s)

2tn

2tn

2tn

4(
t n

+
s)

4tn

C left
s

4tn

4tn

Figure 16: The length deformation of the cross about its left boundary

Now if β ⊂ X is any f -curve and s > 0, then we define Xβ
s to be the same as X but

with the two crosses C and D adjacent to β replaced with Cβ
s and Dβ

s . These are glued
together and with the other crosses in the most obvious way, without twisting. Finally, we
let

λβ =
d

ds

∣∣∣∣
s=0

Xβ
s

and call this the symmetric length deformation about β.
The motivation behind this construction is that the only canonical way to change the

length of a curve on a surface is to flow along its gradient with respect to the Weil–
Petersson metric. However, this gradient deformation is non-local in nature and its effect
on the lengths of other curves (especially disjoint ones) is complicated to compute, al-
though an explicit formula analogous to the cosine formula (3.1) exists [47, Equation
(7)].

The advantage of our symmetric length deformations is that the sum

Λ =
∑

β∈{f -curves}

λβ

corresponds to expanding all the boundaries of all the crosses in X at the same rate with-
out twisting and while preserving the symmetries of all the crosses. In other words, the
effect of Λ is the same as increasing the parameter t at unit speed in the definition of the
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ring R(n, tn). In particular, for any a- or b-curve α and for any c-curve γ in X we have

∂`α
∂Λ

= a′(tn) > 0 and
∂`γ
∂Λ

= c′(tn) < 0 (4.1)

according to Lemma 2.8 and Lemma 2.4 respectively.
To complete our basis for the tangent space TXT (X) we also include the twist defor-

mations around the f -curves as well as two more twist deformations τd and τh per cross.
In the cross C, we pick the curve d to be one of the two diagonal axes of symmetry and h
to be the curve depicted in Figure 17.

hd

Figure 17: The curve d (in red) and the curve h (in blue) in the cross C

Observe that d and h intersect twice. Moreover, the oriented angles from d to h at
the two intersection points are equal to each other since the rotation of angle π about the
centers of the front and back of the cross leaves each curve invariant, preserves orientation,
and exchanges the two intersection points. Finally, the angle of intersection ψ = ∠(d, h)

is different from π/2 since the intersections occur at the midpoints of two opposite seams,
and the seams are orthogonal to d at those points.

Let L,R, T,B be the left, right, top and bottom boundaries of the cross respectively.
The matrix of partial derivatives of the lengths of {L,R, T,B, d, h} with respect to the
deformations {λL, λR, λT , λB, τh, τd} of the cross C has the form

λL λR λT λB τh τd


d`L 1 0 0 0 0 0
d`R 0 1 0 0 0 0
d`T 0 0 1 0 0 0
d`B 0 0 0 1 0 0
d`d δ δ δ δ 2 cosψ 0
d`h ε ε ε ε 0 −2 cosψ

for some δ, ε ∈ R. It is lower triangular with non-zero diagonal entries, hence invertible.
In particular, the deformations {λL, λR, λT , λB, τh, τd} form a basis of the tangent space
to the Teichmüller space of C with variable boundary lengths.

Lemma 4.1. The symmetric length deformations {λβ}β∈{f -curves} together with the twist
deformations {τβ}β∈{f -curves} and {τd(C), τh(C)}C∈{crosses} form a basis of TXT (X).
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Proof. It suffices to prove that these deformations span the tangent space since they are
equal in number to its dimension. By the paragraph preceding the statement of this lemma,
these deformations generate all the deformations of any cross in X . In particular, they
generate the Fenchel–Nielsen length and twist deformations with respect to the pants
decomposition of X by f -curves and d-curves.

We can now prove that the systole function decreases under all non-trivial deforma-
tions of X , hence that X is a local maximum of sys.

Theorem 4.2 (Eutaxy). Let n ≥ 1 and let X = X(Γ) where Γ is a finite, connected,
n-regular, signed graph of girth larger than a(tn)/σ(tn). Then for every non-zero tangent
vector v ∈ TXT (X), there is at least one systole α of X such that d`α(v) < 0. That is, X
is a local maximum of the systole function.

Proof. First assume that n ≥ 2. Let S be the set of systoles of X and suppose that
v ∈ TXT (X) is such that d`α(v) ≥ 0 for every α ∈ S. We will show that v = 0.

By the previous lemma, we can write

v =
∑
β∈F

κβ · λβ +
∑
γ∈D

µγ · τγ

for some κβ, µγ ∈ R where F is the set of f -curves and D is the set of all f -, d- and
h-curves in X .

For every α ∈ S we have

0 ≤ d`α(v) =
∑
β∈F

κβ · d`α(λβ) +
∑
γ∈D

µγ · d`α(τγ).

Summing over any subset Q ⊂ S we obtain

0 ≤
∑
α∈Q

d`α(v) =
∑
β∈F

κβ
∑
α∈Q

d`α(λβ) +
∑
γ∈D

µγ
∑
α∈Q

d`α(τγ).

Let A be the set a- and b-curves in X and let C be the set of c-curves in X . The first
observation is that if Q is equal to either A or C, then

∑
α∈Q d`α(τγ) = 0 for every

γ ∈ D. Indeed, for every systole α ∈ Q intersecting γ, there is some systole α∗ ∈ Q

intersecting γ with the supplementary angle. To see this, observe that in the tree of rings
Σ(n) there is an orientation-reversing isometry which sends (any lift of) γ to itself and
permutes the (lifts of) a- and b-curves, as well as the (lifts of) c-curves separately. For
instance, if γ is an f - or d-curve then the reflection of Σ(n) across the seams works, and
if γ is an h-curve then the left-to-right reflection of the cross containing γ extends to an
isometry of Σ(n). These reflections exchange a- and b-curves and preserve the set of c-
curves. Hence the statement about angles coming in supplementary pairs holds in the tree



Local maxima of the systole function 37

of rings Σ(n). Since Σ(n) covers X and every systole in X is the image of a systole in
Σ(n), the statement holds in X as well. The cosine formula (3.1) thus implies that the
total length variation of the curves in Q is nil in the direction of τγ . Thus∑

α∈A

d`α(v) =
∑
β∈F

κβ
∑
α∈A

d`α(λβ) and
∑
α∈C

d`α(v) =
∑
β∈F

κβ
∑
α∈C

d`α(λβ). (4.2)

The second observation is that the term∑
α∈Q

d`α(λβ)

is independent of β ∈ F when Q is equal to either A or C. Indeed, the deformation
λβ only affects the lengths of systoles in pairs of transverse rings containing one of the
two crosses adjacent to β. The geometry of the subsurface Y ⊂ X containing all these
pairs of transverse rings does not depend on β. This is because Y is the union of the
crosses corresponding to the edges of a subgraph H ⊂ Γ, namely, the 2-neighborhood
of a pair of consecutive edges in the cyclic order around a vertex (corresponding to the
crosses meeting along β). Since Γ is assumed to have girth larger than a(tn)/σ(tn), and
that number is bigger than 6 (see Table 1), H is a tree isometric to the 2-neighborhood
of any pair of consecutive edges in Γ (or in the n-regular tree). The resulting subsurface
Y and the total effect of the deformation λβ on the length of its a- and b-curves or its
c-curves is therefore independent of β.

The third and last observation is that

∑
β∈F

(∑
α∈A

d`α(λβ)

)
=
∑
α∈A

(∑
β∈F

d`α(λβ)

)
=
∑
α∈A

d`α(Λ) =
∑
α∈A

a′(tn) > 0

by Equation (4.1), where Λ =
∑

β∈F λβ . We deduce that
∑

α∈A d`α(λβ) > 0 for any
β ∈ F by the second observation. Similarly,

∑
β∈F

(∑
α∈C

d`α(λβ)

)
=
∑
α∈C

(∑
β∈F

d`α(λβ)

)
=
∑
α∈C

d`α(Λ) =
∑
α∈C

c′(tn) < 0

so that
∑

α∈C d`α(λβ) < 0 for any β ∈ F .
For any fixed γ ∈ F we have both

0 ≤
∑
α∈A

d`α(v) =

(∑
β∈F

κβ

)(∑
α∈A

d`α(λγ)

)

and

0 ≤
∑
α∈C

d`α(v) =

(∑
β∈F

κβ

)(∑
α∈C

d`α(λγ)

)
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from Equation (4.2) and the second observation. By the third observation, the sum in the
rightmost parentheses is first positive then negative. We conclude that

∑
β∈F κβ = 0 so

that ∑
α∈A

d`α(v) = 0 =
∑
α∈C

d`α(v).

Since each summand was assumed to be non-negative, they are all zero. By Theorem 3.9,
this implies that v = 0.

If n = 1, the same argument works with A replaced by F . The point is that the f -
curves are systoles in this case and their length increases under the deformation Λ.

It is easy to see that the first part of the theorem implies that X is a local maximum of
the systole function. For any unit vector v ∈ TXT (X), the above implies that there is a
curve α ∈ S and an εv > 0 such that

sys(expX(tv)) ≤ `α(expX(tv)) < `α(X) = sys(X)

for every t ∈ (0, εv), where expX(tv) is the point at distance t from X along the Weil–
Petersson geodesic in the direction of v. Since the length functions (`α)α∈S are conti-
nuously differentiable, εv can be chosen locally uniformly with respect to v. As the unit
sphere in TXT (X) is compact, there is an ε > 0 which works for all v. Hence there is a
neighborhood U ofX in T (X) such that sys(Y ) ≤ sys(X) for every Y ∈ U with equality
only if Y = X . The same holds in moduli space.

5 Isometries are induced by graph isomorphisms

In this section, we show that distinct signed graphs Γ give rise to distinct oriented hyper-
bolic surfacesX(Γ). As a byproduct, we get that if the underlying graph has no non-trivial
automorphism, then the resulting surface has a trivial group of orientation-preserving
isometries.

We first need to distinguish between the different kinds of systoles in X(Γ).

Lemma 5.1. Let n ≥ 2 and let Γ be an n-regular signed graph such that the systoles in
X(Γ) are the a-, b- and c-curves. Then the a- and b-curves in X(Γ) intersect a different
number of systoles than the c-curves.

Proof. Let us count the number of systoles that intersect a given c-curve γ. In the pair of
transverse rings R1 ∪ R2 containing γ, there is a central cross at the intersection of the
two rings and 2(n − 1) non-central crosses. For each of the latter kind, γ intersects only
one side (front or back) of the cross, separating two opposite sides of that octagon. Thus
for each non-central cross C, in the ring through C distinct from R1 and R2, exactly half
of the a- and b-curves intersect γ. This is because each a- and b-curve intersects only one
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side of each cross, connecting two opposite sides of that octagon. These curves contribute
2(n− 1) · 2n intersections.

As for the systoles in R1 or R2, again half of them intersect γ. To see this, observe
that any a- or b-curve is homotopic to a union of two geodesic segments: one that travels
halfway along an e-curve and one that travel halfway along an f -curve. The e-curves
are disjoint from γ while each f -curve in Rj intersects γ once. Thus each f -curve in Rj

contributes one a-curve and one b-curve intersecting γ. This yields a total of 2n+2n = 4n

curves of type a or b in R1 ∪R2 that intersect γ.
How many c-curves intersect γ? We can first homotope any c-curve (including γ) to

a union of two segments of e-curves. Each non-central cross in R1 ∪ R2 is associated
with four c-curves, half of which intersect γ. Indeed, when they are represented along the
e-curves, any such c-curve ζ shares a segment I with γ. At the extremities of I , the two
curves γ and ζ can turn toward either the same of different sides of I . In the first case we
can homotope them to intersect only once while in the second we can homotope them to
be disjoint. Thus there are 2 · 2(n − 1) curves of type c that intersect γ coming from the
2(n− 1) non-central crosses in R1 ∪R2.

Lastly, for each cross C contained in a ring that intersects R1 ∪ R2 such that C is not
itself contained in R1 ∪R2, we get two c-curves intersecting γ. There are 2(n− 1)2 such
crosses, accounting for 4(n− 1)2 intersections.

Any other systole is disjoint from γ, being disjoint from R1 ∪R2. The total number of
systoles intersecting γ is thus

4n(n− 1) + 4n+ 4(n− 1) + 4(n− 1)2 = 8n2 − 4n.

We now count the number of systoles that intersect a given a- or b-curve α. In the ring
R where α lives, there are 2n systoles that intersect α apart from itself.

Since α intersects each cross of R in only one side (front or back) and separates two
opposite sides of that octagon, it intersects exactly half of the a- and b-curves in each ring
transverse to R. There are n such rings, each contributing 2n intersections with α.

These are all the a- and b-curves that α intersects. Now for the c-curves. By the above,
α intersects half of the c-curves that intersect R. There are n crosses per ring transverse
to R, n such rings, each contributing two c-curves that intersects α, for a total of 2n2.

The number of systoles intersecting α is equal to

2n+ 2n2 + 2n2 = 4n2 + 2n

which is distinct from 8n2 − 4n for any n ≥ 2 (the two real solutions are 0 and 3/2).

The next step is to pick out pairs of a- and b-curves that are symmetric about the seams,
meaning that they are permuted by the reflection ρseams. In the notation of subsection 2.3,
these are pairs aj and bj for some j ∈ {1, . . . , 2n}. See Figure 4.
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Lemma 5.2. Let n ≥ 2 and let Γ be an n-regular signed graph. Then a pair of intersecting
a- and b-curves inX(Γ) maximizes the number of intersections with other a- and b-curves
if and only if it is symmetric about the seams.

Proof. Consider a pair α ∪ β of a- and b-curves such that β = ρseams(α). What is special
about this pair is that for each cross it intersects, it intersects both of its sides (front and
back). Let R be the ring containing α ∪ β. All the 4n systoles in R intersect α ∪ β.
Furthermore, all the 4n systoles in each of the n rings transverse to R intersect the pair
α ∪ β. The total number of intersections is 4n2 + 4n.

Now suppose that α and β are a- and b-curves contained in a common ring R but are
not symmetric about the seams. Then there is some cross C ⊂ R such that α∪β intersects
only one side of C. Hence in the ring transverse toR through C, only 2n systoles intersect
α ∪ β, for a total of at most 4n2 + 2n curves of type a or b.

Finally, suppose that α and β are not contained in a common ring. Let R1 ∪ R2 be
the pair of transverse rings containing them. In each ring transverse to Rj , there are 2n

systoles that intersect α ∪ β apart from α and β. Thus the number of a- and b-curves
intersecting α ∪ β is 2n · n · 2 + 2 = 4n2 + 2, which is less than 4n2 + 4n.

We now have the required tools to prove that the map Γ 7→ X(Γ) is injective. We refer
the reader back to subsection 2.10 for the definition of signed graphs and their isomor-
phisms, and to subsection 2.11 for the description of the map Γ 7→ X(Γ).

Theorem 5.3. Let n ≥ 3 and let Γ1 and Γ2 be n-regular signed graphs of girth larger
than a(tn)/σ(tn). Any orientation-preserving isometry X(Γ1) → X(Γ2) is induced by a
unique isomorphism of signed graphs Γ1 → Γ2.

Proof. Let ψ : X(Γ1) → X(Γ2) be an orientation-preserving isometry. Then ψ sends
systoles of X(Γ1) to systoles of X(Γ2). By Lemma 5.1, it sends the set of a- and b-curves
on X(Γ1) to the set of a- and b-curves on X(Γ2). Furthermore, each pair of a- and b-
curves in X(Γ1) that are symmetric about the seams in sent to a such a pair in X(Γ2) by
Lemma 5.2.

The two angle bisectors of a symmetric pair of a- and b-curves at the intersection are
along an f -curve and the seams. We may assume that the girth of Γ1 and Γ2 is larger
than 2 (see subsection 6.1) so that the f -curves are distinguished from the seams. We
conclude that ψ sends f -curves to f -curves and seams to seams. In particular, it respects
the decomposition of X(Γ1) and X(Γ2) into crosses.

Let E(Γj) be the set of edges of Γj . Since there is a bijection between the crosses
in X(Γj) and the edges in Γj , the isometry ψ induces a bijection φ : E(Γ1) → E(Γ2).
Since ψ maps adjacent crosses to adjacent crosses, the induced map φ either preserves
or reverses the cyclic order around each vertex. After applying a set of vertex flips to
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Γ2 (which does not affect X(Γ2)), we may assume that φ preserves cyclic orders. If two
parallel rings in X(Γ1) have matching (resp. opposite) orderings, it is clear that ψ sends
them to parallel rings with matching (resp. opposite) orderings. That is, the sign between
any two consecutive edges p and q in Γ1 is the same as the sign between φ(p) and φ(q) in
Γ2. In other words, Γ1 = Γ2 up to isomorphism.

Remark 5.4. This statement is false for n = 1 for the simple reason that there is no dis-
tinction between the f -curves and the seams (the c-curves). The analogous statement for
n = 2 is true (and the proof essentially identical) provided that we replace the signed
graphs by the 4-regular ribbon graphs satisfying the conditions of subsection 2.13. By the
argument in that subsection, there are two isomorphism classes of such graphs whenever
the number V of vertices is a multiple of 3, and one isomorphism class otherwise. There-
fore, we get two distinct corresponding points inMg if g = V + 1 is congruent to 1 mod
3, and only one otherwise.

Corollary 5.5. Let n ≥ 3 and let Γ be an n-regular signed graph of girth larger than
a(tn)/σ(tn). If Γ has a trivial automorphism group, then X(Γ) has a trivial group of
orientation-preserving isometries.

On the other hand, each surface X(Γ) has at least one orientation-reversing isometry,
namely the reflection across the seams.

6 Counting the number of examples in each genus

6.1 Length estimates

In this subsection, we quantify how large the girth of the signed graph Γ needs to be
in terms of n for the hypothesis of Theorem 2.16 to be satisfied, that is, we estimate
a(tn)/σ(tn). In particular, we estimate the length Ln = a(tn) of the systoles of the result-
ing surface X(Γ).

Lemma 6.1. We have

tn = n log
(

1 +
√

2
)

+ o(1) and Ln = a(tn) = 4n log
(

1 +
√

2
)
− 2 log 2 + o(1)

as n→∞.

Proof. Recall that the equality a(t) = c(t) is equivalent to

tanh(e(t)/4) sinh(e(t)/4) = cosh(t) (6.1)

by the proof of Lemma 2.5, and that e(t)/4 = n arcsinh(coth(t)).
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Let ε > 0 and let λ = log
(
1 +
√

2
)

= arcsinh(1). We will show that if n is large
enough then the difference between the left-hand side (LHS) and the right-hand side
(RHS) of Equation (6.1) switches sign when t is between nλ− ε and nλ+ ε.

First observe that e(t)/4 > n arcsinh(1) = nλ for every t > 0 and every n. Moreover,
if t ≥ nλ− ε, then e(t)/4 ≤ e(nλ− ε)/4 = nλ+ o(1) as n→∞. Now

tanh(x) sinh(x) = exp(x)/2 + o(1) and cosh(x) = exp(x)/2 + o(1)

as x → ∞. Thus at nλ − ε the LHS of (6.1) is at least exp(nλ)/2 + o(1) whereas the
RHS is equal to exp(nλ− ε)/2 + o(1). So the RHS is smaller that the LHS at nλ− ε if n
is large enough. Similarly, the RHS is larger than the LHS at nλ+ ε if n is large enough.
This shows that tn is in the interval (nλ− ε, nλ+ ε) if n is large enough. Since ε > 0 was
arbitrary, tn = nλ+ o(1).

Recall that a(tn) = c(tn) and cosh(c/2) = sinh2(e/4). Since

arccosh(sinh2(x)) = 2x− log 2 + o(1)

as x→∞ and e(tn)/4 = nλ+ o(1) we obtain

a(tn) = c(tn) = 2 arccosh(sinh2(e(tn)/4)) = 4nλ− 2 log 2 + o(1)

as n→∞.

The next thing we need is an asymptotic lower bound for σ(tn).

Lemma 6.2. We have σ(tn) ≥
(
1 +
√

2
)−n

if n is large enough.

Proof. According to Equation (2.5) we have

cosh(σ(t)) = coth2(t) = 1 +
1

sinh2(t)

so that

sinh2(σ(t)/2) =
cosh(σ(t))− 1

2
=

1

2 sinh2(t)
≥ 2 exp(−2t).

Now x ≥ sinh(x/2) for every x ∈ [0, 4.354]. Morever tn ≥ 1 for every n ≥ 2 (see
the proof of Lemma 2.6), which implies that σ(tn) ≤ arccosh(coth2(1)) ≈ 1.141. We
conclude that

σ(tn) ≥ sinh(σ(tn)/2) ≥
√

2 exp(−tn) =
√

2
(

1 +
√

2
)−n+o(1)

≥
(

1 +
√

2
)−n

if n is large enough, where we used Lemma 6.1 for the equality sign.

Remark 6.3. Actually, σ(tn) is closer to 2
√

2
(
1 +
√

2
)−n

, but the above is all we need.
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The previous two lemmata combined together yield the following estimate for the ratio
of a(tn) over σ(tn). If the signed graph Γ has girth larger than this, then the systoles of
X(Γ) are the a-, b- and c-curves according to Theorem 2.16.

Corollary 6.4. There is a constant K > 0 such that a(tn)/σ(tn) ≤ Kn
(
1 +
√

2
)n

for
every n ≥ 2.

For small n, we can compute tn, a(tn) and σ(tn) numerically to get a more explicit
bound on the girth (see Table 1).

n tn a(tn) σ(tn) a(tn)/σ(tn)
2 1.745752 5.909039 0.503760 11.729861
3 2.645975 9.256205 0.201312 45.979325
4 3.526946 12.731803 0.083188 153.048057

Table 1: Approximate values of tn and a(tn)/σ(tn) for small n

For n = 2, the girth of Γ needs to be at least 12, hence the genus of X(Γ) at least 13.
The minimal number V of vertices needed for a 3-regular graph Γ to have girth 46 is not
known, but it is at least 2

∑22
j=0 2j = 16, 777, 214 by the Moore bound. The corresponding

surfaces X(Γ) have genus at least 1+3V/2 = 25, 165, 822. The genus required for n = 4

is at least 1 + 4
∑76

j=0 3j = 2 · 377 − 1, which is astronomical.

6.2 Counting signed graphs

In this subsection, we give a lower bound for the number of isomorphism classes of con-
nected, n-regular, signed graphs with (g − 1) edges, girth larger than a(tn)/σ(tn), and
trivial automorphism group for g sufficiently large. This concludes the proof of Theo-
rem 1.1 from the introduction, which we restate more precisely as follows.

Theorem 6.5. For n, g ≥ 3, let N(n, g) be the number of local maxima x of the systole
function inMg with sys(x) = Ln = a(tn) whose group of orientation-preserving isome-
tries is trivial. Then there exists a constant β > 0 such that for every n ≥ 3, there is an
αn > 0 such that if g is large enough and 2(g − 1)/n is an integer, then

N(n, g) ≥ αn
(
β g
)(1− 2

n)g

where αn satisfies

log log log
1

αn
∼ n log(1 +

√
2)

as n→∞.



44 Maxime Fortier Bourque, Kasra Rafi

The asymptotic notation f(x) ∼ g(x) used in the above statement means that

lim
x→∞

f(x)

g(x)
= 1.

If the functions involved depend on several variables, we will indicate which one is sent
to infinity by writing f ∼x g.

We start by giving a lower bound for the number S(n,E,w) of isomorphism classes
of unlabelled, connected, n-regular, signed graphs with E edges and girth at least w. To
simplify matters, we consider the labelled version of such graphs first.

Recall that a signed graph is a graph together with a cyclic ordering of the edges
attached to every vertex and a choice of sign between consecutive edges such that the
product of the signs around any vertex is negative. Also recall that the cyclic order around
any vertex can be reversed (and two signs around each neighbor changed appropriately)
without changing the isomorphism class of a signed graph. Thus a signed graph Γ with
labelled vertices has a total of 2V isomorphic representations with the same vertex labels,
where V is the number of vertices in Γ.

Assume that a cyclic order has been chosen for the edges around each vertex (there
are (n − 1)! cyclic orders on n elements). Then there are n signs to pick around each
vertex, but since their product is required to be negative, any sign can be deduced from
the remaining ones. Hence the number of admissible sign patterns around a vertex is 2n−1.
The total number of sign patterns on the whole graph is therefore 2(n−1)V .

Now to count the number of isomorphism classes of unlabelled signed graphs, we
have to take into account the fact that some graphs admit non-trivial automorphisms,
which could result in overcounting. To remedy this, we restrict ourselves to underlying
graphs that are asymmetric, that is, have trivial automorphism group. Let A(n,E,w) be
the number of unlabelled, connected, asymmetric, n-regular graphs with E edges, and of
girth at least w. Then the above reasoning shows that

S(n,E,w) ≥ 2(n−2)V ((n− 1)!)VA(n,E,w). (6.2)

Note that all the signed graphs with an asymmetric underlying graph are themselves asym-
metric.

To estimate A(n,E,w) we combine a few results from graph theory. Let U(E, n, w)

be the number of unlabelled n-regular graphs with E edges and girth at least w. In the
literature, it is often assumed that the graphs are simple, namely, thatw ≥ 3 (no monogons
or bigons). To emphasize this and to maintain a consistent notation, we use U(E, n, 3) for
the number of unlabelled n-regular simple graphs with E edges.

In [7] Bollobás showed the following:
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Theorem 6.6 (Bollobás). For every n ≥ 3, we have

U(n,E, 3) ∼E exp

(
−

2∑
i=1

(n− 1)i

2i

)
· (2E)!

2E E!V ! (n!)V

as E → ∞ in such a way that 2E is divisible by n and where V = 2E/n is the number
of vertices in the graphs.

For the rest of the paper, the symbol f ∼E g means the ratio of f and g goes to one
as E →∞ in such a way that 2E is divisible by n. Wormald [56] strengthened the above
result to show:

Theorem 6.7 (Wormald). For every n ≥ 3 and every w ≥ 3 we have

U(n,E,w) ∼E exp

(
−

w−1∑
i=3

(n− 1)i

2i

)
U(n,E, 3).

Together, these two results imply that

U(n,E,w) ∼E exp

(
−

w−1∑
i=1

(n− 1)i

2i

)
· (2E)!

2E E!V ! (n!)V
. (6.3)

Bollobás also showed that regular simple graphs are generically connected [9, p.195]
and asymmetric [8, Theorem 6].

Theorem 6.8 (Bollobás). For every n ≥ 3 we have

A(n,E, 3) ∼E U(n,E, 3).

As a consequence, we have that a generic n-regular graph of girth at least w ≥ 3 is
also connected and asymmetric. Indeed,

U(n,E,w)− A(n,E,w)

U(n,E,w)
∼E exp

(
w−1∑
i=3

(n− 1)i

2i

)
U(n,E,w)− A(n,E,w)

U(n,E, 3)

≤ exp

(
w−1∑
i=3

(n− 1)i

2i

)
U(n,E, 3)− A(n,E, 3)

U(n,E, 3)
∼E 0

where the first ∼ is Theorem 6.7, the inequality holds because graphs of girth at least w
form a subset of the set of graphs of girth at least 3, and the last ∼ is Theorem 6.8. This
shows that

A(n,E,w) ∼E U(n,E,w)

for every n ≥ 3 and w ≥ 3.
Combining this with Equation (6.2) and Equation (6.3), we get (after simplification)

S(n,E,w) &E exp

(
−

w−1∑
i=1

(n− 1)i

2i

)
· (2E)! 2E

E!V ! (4n)V
. (6.4)
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Proof of Theorem 6.5. By Theorem 4.2 and Corollary 6.4, for every finite connected n-
regular signed graph Γ of girth larger than Kn(1 +

√
2)n, the surface X(Γ) is a local

maximum of the systole function at height Ln = a(tn) inMg where g = E + 1. Also, by
Theorem 5.3, non-isomorphic signed graphs correspond to distinct points in moduli space,
and if the signed graph Γ is asymmetric then X(Γ) has a trivial group of orientation-
preserving isometries. In other words, the number of asymmetric local maxima of the
systole function at height Ln inMg is at least S(n, g − 1, bKn(1 +

√
2)nc+ 1) .

Thus, we only need to simplify Equation (6.4) and write it in terms of n and g. Set

αn = exp

(
−

w−1∑
i=1

(n− 1)i

2i

)

where w = bKn(1 +
√

2)nc+ 1. Note that αn depends only on n and not on g. We have

(n− 1)w−1

2w
≤ log

1

αn
≤ wnw.

Taking the logarithm two more times, we get

log log log
1

αn
∼n logw ∼n n log(1 +

√
2). (6.5)

We use the Stirling’s formula to simplify the remaining terms. The latter implies that there
are positive constants β1, . . . , β4 such that

(2E)! &g (β1 g)2g, E! .g (β2 g)g, V ! .g (β3 g/n)2g/n and (4n)V .g (β4 n)2g/n.

Hence, after collecting the constants, we can estimate the remaining terms in Equa-
tion (6.4) as

(2E)! 2E

E!V ! (4n)V
&g β

g g2g

gg (g/n)2g/n n2g/n
&g (β g)(1−

2
n)g ,

for some constant β > 0 independent of n and g. This finishes the proof.
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