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Abstract

This paper describes a method for efEciently 
solving the steady-state Euler and Navier- 
Stokes equations. Robustness is achieved 
through the use of an upwind TVD scheme 
for discretising the convective terms. The ap­
proximate solution is advanced in time implic­
itly and the linear system arising at each im­
plicit step is solved using a Conjugate Gradi­
ent type method. The main emphasis of this 
paper is on the use of Jacobian matrices as­
sociated with a simpler spatial discretisation. 
This leads to better conditioned linear sys­
tems. The resulting method has lower memory 
and CPU-time requirements when compared 
with the one using exact Jacobians.

Re Reynolds number
T static temperature
t time
u, V Cartesian velocity components
W vector of independent variables
X, y Cartesian coordinates

Greek Symbols

a angle of incidence
7 ratio of specific heats
At time step
AW vector of conservative updates
fjb molecular viscosity
U flow domain
Os boundary to the flow domain Cl
p density
Tij components of viscous stress tensor

Subscripts
1 Notation i,j cell-centre curvilinear coordinates

w surface condition
c aerofoil chord 00 freestream conditions
Cd drag coefficient
Cl lift coefficient Superscripts
Cf
cp

skin friction coefficient i convective quantity
V diflFusive quantitypressure coefficient

E total energy per unit mass n time indexF,G flux vectors
H flux matrix
H total enthalpy per unit mass 2 Introduction
h cell area
ij Cartesian unit vectors In the last few years, CFD methods have
M Mach number reached a certain degree of maturity and are
n unit outward normal to fls being used more routinely for engineering pur­
n wall normal direction poses, in conjunction with other traditional
P static pressure techniques such as wind tunnel testing. This
Pr Prandtl number is due to several aspects. Firstly, improve­
<lx} Qy components of heat flux vector ments in numerical techniques have led to re­
R vector of residuals duced calculation times. A popular approach



involves multi-stage explicit time-marching 
schemes, for their good high-frequency damp­
ing properties, along with multi-grid accelera­
tion techniques. This approach has been suc­
cessfully applied to inviscid and viscous flows 
and results have been widely reported in the 
literature for both structured and unstruc­
tured methods [1], [2], [3], [4], [5], [6]. How­
ever, for turbulent flows, there exist some dif­
ficulties which are associated with the use of 
highly stretched meshes and the presence of 
source terms in the turbulence-transport equa­
tions.

Another way is to use implicit schemes to 
solve the governing flow equations. The most 
widely used are the Alternate Direction Im­
plicit (ADI) [7] and Approximate Factorisa­
tion (AF) [8] techniques. Although these are 
fairly robust, they suffer from a limitation in 
the maximum allowable CFL number due to 
mismatches between explicit and implicit op­
erators and factorisation errors. Hence, some 
gain can be achieved by trying to solve the 
linear system arising at each time-step more 
accurately. Conjugate Gradient (CG) type 
methods can solve large sparse linear systems 
efficiently. However, for efficient operation, 
these techniques require that the eigenval­
ues of the linear system are clustered around 
unity, therefore making preconditioning essen­
tial. Several preconditioners have been tested, 
such as ADI preconditioning or Block Incom­
plete Lower Upper factorisation (BILU) [9], 
[10], and have been applied to a large variety 
of steady and unsteady flows [11].

Another reason for the gain in popularity 
of CFD methods is their increase in accuracy 
and robustness, requiring less detailed knowl­
edge from the user to set up the calculation 
and interpret the results. Centred schemes 
with added artificial dissipation are simple to 
implement and have been adapted to highly 
stretched meshes for turbulent flows through 
the use of ad-hoc scaling functions [4]. How­
ever, this approach might break down in the 
presence of strong shock waves. Modern up­
wind TVD schemes can overcome this defi­
ciency and have been investigated in detail by 
Yee [12] for a wide range of flows.

One difficulty associated with implicit meth­
ods is the derivation of the Jacobian matrices. 
This is particularly true when using upwind 
schemes due to non-linear effects. Although 
it is possible to derive the exact Jacobian ma­

trices, for example for Roe’s scheme [13], it 
might be more appropriate to use approxi­
mated terms to simplify the method. This has 
been investigated by Barth [13] and was ap- 
pfied to a structured solver by Venkatakrish- 
nan [10], for example. For unstructured meth­
ods, approximate Jacobians appear to be the 
rule due to the increased difficulty in deriv­
ing the exact terms [14], [6]. The problem lies 
in successfully balancing the savings in CPU­
time with a possible decrease in stability and 
reduction in convergence rate.

Following the work done at the University 
of Glasgow [11], [15], a parallel multi-block 
Navier-Stokes solver is being developed. The 
numerical method is presented in the following 
three sections. Then, our attention is focused 
on the use of approximate Jacobians for solv­
ing both inviscid and viscous flows and com­
putational results are presented for different 
type of flow conditions. Finally, some conclu­
sion are drawn.

3 Governing Equations
The two-dimensional Cartesian compressible 
Navier-Stokes equations, written in integral 
form to facilitate the finite-volume spatial dis­
cretisation described below, Eire given by:

dt [ wdn + (f
«/ Q J

H.nds = 0 (1)

where D is any two-dimensional flow domain, 
ns is the boundary to this domain and n is the 
outward normal vector to Us. The vector W 
contains the non-dimensionalised conservative 
variables:

W =

/ \ 
pu
pv 

\pE J
(2)

p is the density, (u, v) are the Cartesian veloc­
ity components and E is the total energy per 
unit mass. H is a matrix containing the flux 
vectors:

H = Fi + Gj (3)

where i and j are unit vectors in the two Carte­
sian directions (r, y). The flux vectors F and 
G are decomposed into convective (®) and vis­
cous diffusive (I') contributions. The convec-



tive parts are equal to:

I
Fl
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pv? +p
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puv
\ PuH J

pv \ 
puv

pv2 +p
V J

(4)

where p is the static pressure and H is the 
total enthalpy per unit mass. The diffusive 
flux vectors and Gv are given by:

(
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T + i(“2 + v2)

(7)
jM( P

Finally, the laminar viscosity p is evaluated 
using Sutherland’s law.

4 Boundary Conditions
4.1 Outer Boundary Conditions
At the outer boundary of the computational 
domain, non-reflecting farfleld boundary con­
ditions are determined by using the Riemann 
invariants for a one-dimensional flow normal 
to the outer boundary. Furthermore, a vor­
tex correction is introduced to take into ac­
count disturbance of the free stream flow by 
the aerofoil.

4.2 Solid-Wall Boundary Condi­
tions

4.2.1 Inviscid Calculations

For inviscid flows, a single boundary condition 
needs to be imposed at the wall surface, which 
is expressed by the slip condition:

\ UTxy + VTyy Qy j

The components of the stress tensor and of the 
heat flux vector are modelled in the following 
way:

du 2

i.un)w = 0 (8)

where subscript w indicates conditions at the 
wall and n is the wall normal direction. All 
the other variables, such as the tangential ve­
locity, density and pressure, are extrapolated 
from interior points using a first order scheme 
in space.

4.2.2 Viscous Calculations

The surface boundary conditions applied to 
the Navier-Stokes equations are the no-slip 
conditions:

Ujju — vw — 0 (9)

together with the boundary layer approxima­
tion:

In the above relations, 7 is the ratio of spe­
cific heats, equal to 1.4 for air, Pr is the 
laminar Prandtl number set to 0.72, T is the 
static temperature and Moo and Re are the 
freestream Mach number and Reynolds num­
ber, respectively. The various flow quantities 
are related to each other by the perfect gas 
relations:

dn)w 0 (10)

Finally, the wall temperature Tw is given and 
set equal to the freestream static temperature.

5 Spatial Discretisation
The Navier-Stokes equations are discretised 
using a cell-centred finite volume approach. 
The computational domain is divided into 
a finite number of non-overlapping control- 
volumes, and the governing equations are ap­
plied to each cell in turn. Also, the Navier- 
Stokes equations are re-written in a curvilin­
ear coordinate system which simplifies the for-



mulation of the discretised terms since body- 
conforming grids are adopted here.

The spatial discretisation of equation (1) 
leads to a set of ordinary differential equations 
in time:

riW itj 
dt -R

= T~ f udy
^aux Jq9

du 
dx
du _ —1 
dy haux ,Tq

/
■In.

udx (13)

where haux is the area of the auxiliary cell. 
The values at the four points a, b, c, d are ob­
tained using the neighbouring cell-centre val­
ues:

ub ui,j-l + ui,j + Uj+ij-i -f Uj+ij

Uc — (14)

Ud =
ui,j + Ui^jJri Uj+l.j + Uj-HJ+l

The choice of the auxiliary cell is guided by 
the need to avoid odd-even point decoupling 
and to minimise the amount of numerical vis­
cosity introduced in the discretised equations.

Finally, the discretisation of the viscous terms 
at the wall uses a one-sided auxiliary cell.

6
(11)

Implicit Time-Marching 

Scheme
where Rij represents the discrete approxima­
tion of the convective and viscous flux integrals 
and subscripts (z',j) are the coordinates of the 
control-volume in the generalised coordinate 
system.

The convective terms are discretised in the 
present work using Osher’s upwind scheme [16] 
for its robustness, accuracy and stability prop­
erties. In addition, a MUSCL interpolation is 
used to provide second-order accuracy and the 
van Albada limiter prevents spurious oscilla­
tions from occurring around shock waves.

The discretisation of the viscous terms re­
quires the value of the velocity components 
and their derivatives, as well as the derivatives 
of the static temperature, at the edges of each 
cell. Cell-edge values of the velocity compo­
nents are approximated by the average of the 
two adjacent cell-centre values, as shown be­
low: ^

ui+ i,j = 2 (u*d ui+i,j) (12)

Cell-edge values of the derivatives are obtained 
using Green’s formula applied to an auxiliary 
cell surrounding the considered edge (see Fig­
ure 1), for example:

In the present work, the integration in time 
of equation (11) to a steady-state solution 
is performed using an implicit time-marching 
scheme:

■Wn+1 — wn 
At = -Rn+1 (15)

where n is the current time level, n 1 is the 
new time level and subscripts (i,j) are ne­
glected for clarity. The above equation rep­
resents a system of non-linear algebraic equa­
tions and to simplify the solution procedure, 
the flux residual Rn+1 is linearised in time as 
follows:

Rn+i = R"-f + 0(At2)
Ol

„„ aR8WAi 
R +«w-S^At
R”+^aM' (16)

where AW = Wn+1 — Wra. Equation (15) 
now becomes the following linear system:

{i + H)Aw = -R” <17)
The complexity of a direct method to com­

pute a linear system is of the order of A/"3, 
which becomes prohibitive when the total 
number of equations Af becomes large. On the 
other hand, iterative techniques such as Con­
jugate Gradient (CG) methods are capable of 
solving large systems of equations more effi­
ciently in terms of time and memory [15]. CG 
methods find an approximation to the solu­
tion of a linear system by minimising a suitable 
residual error function in a finite-dimensional 
space of potential solution vectors. Several al­
gorithms, such as BiCG, CGSTAB, CGS and 
GMRES, have been tested in [9] and it was 
concluded that the choice of method is not as 
crucial as the preconditioning. The current 
results use a Generalised Conjugate Gradient 
method [17].

Several preconditioners have been investi­
gated in [9] and in the present method, the



preconditioning strategy is based on a Block 
Incomplete Lower-Upper factorisation since it 
appears to be the most promising. The spar­
sity pattern of the Lower and Upper matri­
ces is defined with respect to the sparsity of 
the unfactored matrix for simplicity. How­
ever, good performance is obtained regarding 
the convergence of the CG method, regardless 
of the sparsity pattern adopted [18].

Implicit schemes require particular treat­
ment during the early stages of the iterative 
procedure. The usual approach in starting the 
method is to take a small CFL number and 
to increase it later on. However, it was found 
that smoothing out the initial flow doing some 
explicit iterations, and then switching to the 
implicit algorithm was equally efflcient. In the 
present method, 200 forward Euler iterations 
are executed before switching to the implicit 
scheme.

7 Jacobians for Inviscid 

Calculations
As mentioned in Section (5), the inviscid 
fluxes are calculated using an upwind scheme. 
Hence, the numerical flux across an edge de­
pends on the values of the flow variables on 
either side of the edge. For example, for the 
interface between cell {i,j) and cell (i -I-1, j):

H.+i,j = H(w++.J,wr+.J (18)

where the left and right states are extrapolated 
using a MUSCL interpolation, leading to the 
following relations:

Wi+Ij, Wj+2j) 

Wi+iij,Wi+2,j) (19)

As a result, the flux residual for cell {i,j) is a 
function of nine points (see Figure 2):

= R(Wi_2,j, Wi_ij, Wjj,
Wi+1J,Wi+2,j,Wi.i_2, (20)

, W^jj+2)

The above formulation for Rjj- leads to a Jaco­
bian matrix 9R/9W which has nine non-zero 
entries per row. However, trying to reduce the

number of non-zero blocks would have several 
advantages. Firstly, the memory requirements 
are lowered. Secondly, the resolution of the 
linear system by the CG method is faster in 
terms of CPU-time since all the matrix-vector 
multiplications involved require less operation 
counts. Finally, the linear system is easier to 
solve since the approximate Jacobian matrix 
is more diagonally dominant.

An approximation to the exact Jacobian 
arises from neglecting the influence of the 
MUSCL interpolation:

wr+|j -
= g' (wi+lii) (21)

The flux residual now becomes a function of 
only five points (see Figure 3):

Rjj = R (AVj—ij,Wjj,Wi+ij,
Wjj-i, Wij+1) (22)

This approximation, which is applied only for 
the derivation of the Jacobian terms, reduces 
memory requirements and matrix-vector mul­
tiplication operation counts to 5/9 of the val­
ues using the exact Jacobians.

In this paper, all the calculations were made 
around the NACA 0012 aerofoil. The compu­
tational grids used have a ”C” topology and 
consist of 3 blocks. For inviscid flows, two 
meshes were generated. The first one contains 
97 points along the aerofoil, 16 in the wake and 
33 in the direction normal to the aerofoil. The 
wall distance of the first node is set to 0.003c 
at the leading-edge and to 0.01c at the trailing 
edge, where c is the aerofoil chord. The outer 
boundary is situated approximately 15 chords 
away from the aerofoil. The second grid, used 
for a grid dependency study, was generated by 
doubling the number of points in each direc­
tion and halving the wall distance of the first 
node.

The first test case considered is a subsonic 
flow at a Mach number of 0.3 and an angle of 
attack of 10°. A typical pressure distribution 
obtained with the present method is shown in 
Figure 4 and compares favourably with a po­
tential flow solution [19]. Also, there exists 
very few differences between the coarse and 
fine grid solutions, apart from the suction peak 
near the aerofoil leading-edge.

Figure 5 shows the convergence of the resid­
ual, measured by the L2 norm, versus the



number of work units. A work unit is defined 
as the CPU-time required to perform one ex­
plicit Euler iteration.

When using the exact Jacobian matrix, it 
was found that there is little to gain in increas­
ing the CFL number above a value of 60 (see 
Figure 5). As shown in Table 1, this is due 
to the fact that both the number of implicit 
steps and the average number of CG iterations 
needed to solve the linear system at each time 
step remain almost constant for CFL numbers 
greater than 60. In any case, it was not possi­
ble to start the implicit scheme for CFL values 
greater than 100 after only 200 explicit itera­
tions for the exact problem. A limit on the 
size of the starting CFL number arises from 
the fact that the implicit scheme requires to 
converge an initial guess which is getting closer 
to the final solution for increasingly large CFL 
numbers.

Several conclusions can be drawn from a 
comparison between the convergence histories 
of the two approaches. In particular, it is 
found that when solving the approximate as 
opposed to the exact problem:

• for the same CFL number, more time 
steps are required to reach the converged 
solution. This was expected since at each 
implicit step, the updates AW are not a 
solution of the exact linear system.

• the method seems more robust because 
higher starting CFL numbers can be used.

• less CG iterations need to be performed 
at each implicit step due to the fact that 
the linear system is easier to solve (see 
Table 1).

• if the CFL number is increased, the num­
ber of CG iterations remains roughly con­
stant.

Hence, the total number of work units required 
to reach a converged solution is reduced by a 
factor of four when using approximate Jaco- 
bians, as shown in Figure 5.

The next test case is a transonic flow at a 
Mach number of 0.8 and an incidence of 1.25°. 
Figure 6 compares a typical pressure distribu­
tion obtained with the present method with an 
inviscid solution [20]. The overall agreement is 
good, in particular in the shock wave positions 
and strengths on the upper and lower surfaces. 
The present results show an under-prediction

of the pressure recovery at the trailing edge. 
This is due to the limiter being ” switch-on” in 
that region and reducing locally the accuracy 
of the solution. However, this seems a feature 
of TVD schemes and can also be found in other 
published results [10]. Figure 6 also shows the 
pressure distribution for the fine grid. The 
coarse and fine grid results agree well except 
near the shocks on the upper and lower sur­
faces where, as expected, the pressure jumps 
are more sharply captured on the denser grid. 
The integrated loads are compared in Table 2 
and there is good agreement amongst all the 
computational results. Concerning the con­
vergence rate, the same conclusions as for the 
previous case hold here, although the improve­
ment in using approximate Jacobians is now 
slightly reduced to a factor of three, as seen in 
Figure 7. This is probably due to the presence 
of a supersonic flow region, as argued below.

The final inviscid test case is a supersonic 
flow at a Mach number of 1.8 and an an­
gle of attack of 7°. The predicted pressure 
contours are shown in Figure 8. The oscilla­
tions in the pressure contours are due to the 
fact that the computational grid is not aligned 
with the bow shock. Thus, the propagation of 
the shock is not treated correctly by Osher’s 
scheme, since it is a one-dimensional approx­
imate Riemann solver. However, such oscilla­
tions are also present in Yee’s results [12] on a 
finer grid. The only way to eliminate these 
oscillations is to adapt the grid to the flow 
field. Figure 9 compares the present results on 
the coarse and fine grids and good agreement 
is found between the two sets of data. The 
maximum starting CFL numbers for the ex­
act and approximate problems are 10 and 50, 
respectively. Table 3 shows that the approxi­
mate approach requires more implicit steps to 
converge for all CFL values. Also, the sharp 
decrease in the total number of work units ob­
served in the two previous test cases is not 
present here (see Figure 10). This is proba­
bly due to the fact that, for supersonic flows, 
the upwind scheme only selects the upstream 
points for the calculation of the flux. There­
fore, the number of non-zero blocks per row 
is reduced in the Jacobian matrix and the ex­
act linear system is much easier to solve in 
this case than for subsonic or transonic flows. 
This is confirmed in Table 3 where the number 
of CG iterations per implicit step is reduced 
from 10-16 for the previous cases to 4. In addi-
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Method
Implicit steps 
to convergence

Average number of CG 
iterations per implicit step

CFL number = 60
Exact Jacobians 391 17

Approximate Jacobians 450 4
CFL number = 100

Exact Jacobians 387 16
Approximate Jacobians 376 5

CFL number = 250
Exact Jacobians - -

Approximate Jacobians 308 5

Table 1: Convergence history details 
NACA 0012 aerofoil 
Moo = 0.3, a = 10°

Grid type Number of points Cl cD
Salas [20] 0 192 X 39 0.3474 0.0221

Jameson [20] 0 320 X 64 0.3632 0.0230
Present method c 257 X 65 0.3557 0.0228
Present method c 129 X 33 0.3542 0.0240

Table 2: Integrated load coefficients 
NACA 0012 aerofoil 

Moo = 0.8, a = 1.25°

Method
Implicit steps 
to convergence

Average number of CG 
iterations per implicit step

CFL number = 10
Exact Jacobians 393 4

Approximate Jacobians 523 2
CFL number = 25

Exact Jacobians - -
Approximate Jacobians 472 2

CFL number = 50
Exact Jacobians - -

Approximate Jacobians 455 3

Table 3: Convergence history details 
NACA 0012 aerofoil 
Moo = 1-8, a = 7°



tion, the exact linear system is so easy to solve 
that very little is gained in terms of CG iter­
ations by using approximate Jacobians. Nev­
ertheless, the overall cost for solving the exact 
problem still remains slightly higher than that 
for the approximate one because of the added 
number of CG iterations and the extra oper­
ations involved in any matrix-vector multipli­
cation.

8 Jacobians for Viscous 

Calculations
The discretisation of the viscous terms as de­
scribed in Section 5 leads to a viscous flux 
residual which is a function of the following 
nine points:

i.j} i- J.-j* 1 and
Wi+iii+i (see Figure 11). An exact derivation 
of the inviscid and viscous Jacobians together 
would involve four more terms in addition to 
the nine above: Wi-2j, Wi+2 j, j_2 and
wiJ+2.

However, in view of the computational re­
sults presented in the previous section, it 
seems more interesting from a storage and 
CPU-time point of view to derive an approx­
imate formulation for the viscous Jacobians 
based on equation (22). Indeed, such an ap­
proach would give savings of 8/13 for the mem­
ory requirements and any matrix-vector mul­
tiplication operation counts. A simple approx­
imation results from taking into account only 
the influence of the two points situated either 
side of the considered edge during the calcu­
lation of the viscous flux across a cell inter­
face. For example, in the case shown in Fig­
ure 1, the contributions of Wjj-i, Wjj+i, 
Wj+ij_i and Wj+ij+i are neglected and 
only the terms arising from 'Wij and Wj+ij- 
are kept. This amounts to making a thin layer 
approximation for the derivation of the viscous 
Jacobians in the direction normal to the edge.

As for the inviscid study, three different cal­
culations were made over a range of Mach 
numbers. For all cases, the coarse compu­
tational grids consists of 97 points along the 
aerofoil, 48 in the wake and 49 in the direction 
normal to the aerofoil. The fine meshes have 
129 points along the aerofoil, 64 in the wake 
and 65 in the direction normal to the aerofoil. 
For all the grids, the outer boundary is situ­

ated 15 chords away from the aerofoil. The 
wall distance of the first node for the coarse 
grids varies from 0.0005c at the leading-edge 
to 0.0007c at the trailing-edge for the first two 
calculations, while for the last case, it is set 
at the leading- and trailing-edge to 0.002c and 
0.005c, respectively. For the fine grids, the 
wall distance of the first node is half that on 
the coarse grids.

The first viscous case is a subsonic flow at a 
Mach number of 0.5, an incidence of 0° and a 
Reynolds number of 5000 based on the aerofoil 
chord. This is a difficult case to predict accu­
rately because of the presence of a small recir­
culation region near the aerofoil trailing-edge. 
An overview of the computed solutions can be 
seen in Figures 12 to 14. The present results 
are in good agreement with those of Mavripilis 
and Jameson [21], although the skin friction 
peak near the aerofoil leading-edge is under­
estimated on the coarse grid. The predicted 
coordinate of the separation point of 0.82 is 
in good agreement with other computational 
results [21]. The convergence history is shown 
in Figure 15 and indicates that the method 
converges reasonably well. In particular, the 
use of approximate viscous Jacobians does not 
destabilize the method and similar CFL values 
to inviscid subsonic cases can be used.

The second test case is a transonic flow at 
a Mach number of 0.8, an angle of attack of 
10° and a Reynolds number of 500 based on 
the aerofoil chord. The pressure and skin fric­
tion distributions as well as the Mach num­
ber contours are plotted in Figures 16 to 18. 
The present resnlts compare well with those 
of Muller et al [22] except near the aerofoil 
leading-edge where, again, the skin friction 
variations are not too well captured on the 
coarse grid. Although there exists a large re­
circulation region on the upper surface and 
downstream of the aerofoil, the convergence 
rate is good (see Figure 19), and a converged 
solution is reached in less than 1000 work 
units.

The final case is a supersonic flow at a Mach 
number of 2, an angle of attack of 10° and a 
Reynolds number of 106 based on the aerofoil 
chord. The pressure and skin friction distri­
butions and the density contours are plotted 
in Figures 20 to 22, while the convergence his­
tory is given in Figure 23. Again, it was found 
that the method converges rapidly even when 
using approximate Jacobians.
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9 Conclusions
A method capable of solving the Euler and 
Navier-stokes equations haa been described. 
These equations are marched in time using an 
implicit scheme and, at each implicit step, a 
linear system is solved iteratively using a Con­
jugate Gradient type algorithm. Our main at­
tention was focused on the derivation and use 
of approximate Jacobian terms. It has been 
found that this approach leads to substantial 
savings in terms of memory and CPU-time re­
quirements for a wide range of flow conditions.

Future work will extend the use of approx­
imate Jacobians to the solution of turbulent- 
transport equations.
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Figure 1: Typical auxiliary cell 
for viscous flux evaluation

Figure 2: Flux residual dependency for 
an exact derivation of the inviscid terms

Figure 3: Flux residual dependency for an 
approximate derivation of the inviscid terms
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Naca_0012_Aerofoil 
.... Potential_flow_solution_from_(19]
— Pr6sent_melhod_(grid_257x65)
— PresenLmethod_(grid_129x33)

Figure 4; Typical pressure distribution 
NACA 0012 aerofoil 
Moo = 0.3, a = 10°
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Figure 5: Convergence history 
NACA 0012 aerofoil 
Moo = 0.3, Q = 10°

Naca_0012_ Ae rof oil 
.... Jameson's_solulion_from_(20]
— Present_method_(grid_257x65)
— Present_method_(grid_129x33)

Figure 6: Typical pressure distribution 
NACA 0012 aerofoil 

Moo = 0.8, a = 1.25°
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Figure 7: Convergence history 
NACA 0012 aerofoil 

Moo = 0.8, a = 1.25°
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Figure 8: Typical pressure contours 
NACA 0012 aerofoil 
Moo = 1.8, a = 7°

Naca_0012_Aerofoil
— Present_method_(grid_257x65)
— PresenLmethod_(grid_193x49)

Figure 9: Typical pressure distribution 
NACA 0012 aerofoil 
Moo = 1-8, a = 7°
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Figure 10: Convergence history 
NACA 0012 aerofoil 
Moo = 1-8, a = 7°
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Figure 11: Flux residual dependency for 
an exact derivation of the viscous terms
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Naca_0012_Aerofoii 
.....Mavripilis’s_solution_from_[21]
— Present_melhod_fgrid_257x65)
— Present_method_(grid_193x49)

Figure 12: Pressure distribution 
NACA 0012 aerofoil 

Moo = 0.5, a = 0°, Re = 5000

Naca_0012_Aerofoil 
.... Mavripilis's_soluCon_fromJ21]
— Present_melbod_(grid_257x65)
— Pr&sent_method_(grid_193x49)

Figure 13: Skin friction distribution 
NACA 0012 aerofoil 

Moo = 0.5, a = 0°, Re = 5000

Figure 14: Mach number contours 
NACA 0012 aerofoil 

Moo = 0.5, a = 0°, Re = 5000
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Figure 15: Convergence history 
NACA 0012 aerofoil 

Moo = 0.5, a = 0°, Re = 5000
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Naca_0012_AerofoiI 
.....Muller_eLal's_solution_from_[22]
— Present_melhod_(grid_257x65)
— Pres6nt_method_(grid_193x49)

Figure 16: Pressure distribution 
NACA 0012 aerofoil 

Moo = 0.8, a = 10°, Re = 500

Naca_0012_Aerofoil 
.... Muller_eLal’s_solution_from_I22]
— PresenLmethod_fgrid_257x65)
— Present_method_(gricl_193x49)

Figure 17: Skin friction distribution 
NACA 0012 aerofoil 

Moo = 0.8, a = 10°, Re = 500
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Figure 18: Mach number contours 
NACA 0012 aerofoil 

Moo = 0.8, a = 10°, Re = 500

SCO 1000 1500 2000 2500 3000 3500 «xn 4500
Numbef of Work Units

Figure 19: Convergence history 
NACA 0012 aerofoil 

Moo = 0.8, a = 10°, Re = 500



Naca_0012_Aerofoil 
.... Muller_eLars_solution_from_[22]
— Present_method_(grid_257x65)
— Present_method_(grid_193x49)

Figure 20: Pressure distribution 
NACA 0012 aerofoil 

Moo = 2.0, a = 10°, Re = 106

Naca_0012_Aerofoil 
.... Muller_eLal's_solutionJrom_(22]
— Present_meUiod_(grid_257x65)
— Present_metbod_(grid_193x49)

Figure 21: Skin friction distribution 
NACA 0012 aerofoil 

Moo = 2.0, a = 10°, Re = 106

Figure 22: Density contours 
NACA 0012 aerofoil 

Moo = 2.0, a = 10°, Re = 106

.Jacobians.CFUISO1 —
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Figure 23: Convergence history 
NACA 0012 aerofoil 

Moo = 2.0, a = 10°, Re = 106
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