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A general selection theorem is presented constructing a measurable mapping from
a state space to a parameter space under the assumption that the state space can be
decomposed as a collection of countable equivalence classes under a smooth equiva-
lence relation. It is then shown how this selection theorem can be used as a general
purpose tool for proving the existence of measurable equilibria in broad classes of sev-
eral branches of games when an appropriate smoothness condition holds, including
Bayesian games with atomic knowledge spaces, stochastic games with countable or-
bits, and graphical games of countable degree—examples of a subclass of games with
uncountable state spaces that we term purely atomic games. Applications to repeated
games with symmetric incomplete information and acceptable bets are also presented.

KEYWORDS: Bayesian games, stochastic games, graphical games, measurable selec-
tion.

1. INTRODUCTION

COUNTER-EXAMPLES serve to refute conjectures, challenge assumptions, and sharpen
concepts. Their negativity often spurs new questions. Having ruled out some result due to
the existence of a counter-example, one can subsequently ask: what conditions or assump-
tions would suffice for positive results instead? It may also happen that initially disparate
counter-examples taken together point to a unifying underlying phenomenon.

Here we make use of similarities amongst a series of recent counter-examples to obtain
equilibrium existence results in several types of games with uncountable state spaces. We
also introduce a new sub-class of games with uncountable state spaces, which we term
purely atomic games,1 that forms the natural framework for our results, with much poten-
tial for further research.

Striking counter-examples to the existence of measurable equilibria, in different
branches of game theory, have been discovered in recent years. In stochastic games,
Levy (2013b) presented an example of a stochastic game that has no measurable sta-
tionary equilibria, even if the game consists of deterministic transitions. This requires
an uncountable state space; previous results, going back to the 1960s and 1970s, had es-
tablished the existence of stationary equilibria in games with finite and countable state
spaces, and it was long conjectured that this would extend to the uncountable case until
Levy’s counter-example settled the matter. (Levy and McLennan (2015) presented an ad-
ditional counter-example to this conjecture, albeit in a class in which transitions are not
purely atomic; hence the subject matter of that paper falls outside of the type of structures
discussed in this paper.)
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In Bayesian games, Simon (2003) presented an example of a three-player Bayesian
game over an uncountable state space that admits no measurable Bayesian equilibrium.
This was further enhanced by an example in Hellman (2014b) of a two-player Bayesian
game that admits no measurable2 Bayesian ε-equilibrium for sufficiently small ε. More
recently, Simon and Tomkowicz (2018) have constructed an example of a three-player
Bayesian game that admits no measurable ex ante ε-equilibrium. This also required un-
countable state spaces: the existence of both ex ante and Bayesian equilibria in games with
finite state spaces is a classic result of Harsanyi (1967), which was extended to countable
games by Simon (2003).

Lehrer and Samet (2011) presented an example of a knowledge space, based on an
example in Simon (2000), over which there is a measurable common prior yet over each
individual common knowledge component no common prior exists. Hellman and Levy
(2017) contains a similar knowledge space in which, in each common knowledge com-
ponent, players can find an acceptable bet (or trade) to which they agree, but, over the
entire space, the players must agree to disagree as there exists no measurable mutually
agreeable bet.

We have here a series of counter-examples in different sub-fields of game theory arising
from cross-inspirations in several directions.3 This naturally raises the following questions:
Can we find conditions that turn these negative results into positive results on equilibrium
existence? Furthermore, given the history of the discoveries of these counter-examples, is
it possible to find common elements to all of them, and if so, can the understanding of the
common elements be of use in fashioning a unified proof method for positive results?

We show in this paper that the answer to these questions is yes. First of all, note that
all the above counter-examples are modeled on games with uncountable state spaces (in-
deed, this was necessary, as in each case, the results in the finite and countable cases had
previously been settled). Moreover, with the notable exception of Simon and Tomkowicz
(2018), they also all share the characteristic of being given to decomposition into disjoint
countable equivalence classes; in the Bayesian games, for example, the decomposition is
given by countable common knowledge components, while in the stochastic games, the
orbit of each state, under the action of the stochastic game transition function, is count-
able.

This leads us to define a new sub-class of games with uncountable state spaces. Infor-
mally, a purely atomic game is a game whose underlying state space can be divided into
countable equivalence classes, such that those equivalence classes are ‘natural’ structures
for their respective game types. Formalizing this idea requires specifying what is meant by
‘underlying state space’ and ‘natural equivalence structures’ for particular types of games,
which we accomplish here for Bayesian, stochastic, and graphical games.

For Bayesian games, the natural equivalence relation concept is the common knowl-
edge relation on the underlying knowledge space. A purely atomic Bayesian game is then
one in which every common knowledge component is countable. The natural equivalence
structure in stochastic games is a countable orbit: if, from each state q, there are at most
countably many subsequent states under the transition functions and at most countably
many previous states that could lead to q, then one can define an equivalence relation

2There is a relatively short step from the non-existence of a measurable equilibrium to an example of a game
without any equilibria at all, measurable or not. Details on this appear in Section 4 of Hellman (2014b).

3Tracing out some of the cross-inspirations: Simon and Tomkowicz (2018) acknowledged ideas from Hell-
man (2014b), which was inspired by studying Levy (2013a), which in turn was inspired by Simon (2003). Hell-
man and Levy (2017) followed the lead of an example in Lehrer and Samet (2011), which in turn was inspired
by Simon (2000).
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of states under transition with countable equivalence classes. Calling these equivalence
classes orbits, a purely atomic stochastic game is one whose orbits are all countable.
(Repeated games of symmetric incomplete information can naturally be modeled in this
framework, following Neyman and Sorin (2003, Chapter 21).) In graphical games, the
nodes of a graph are the players of the game, and the payoff of a player depends only on
his actions and those of his neighbors in the graph.4 The natural equivalence structures
for this game are the connected components of the graph.

We note here that games with a continuum of states that also satisfy the purely atomic
property described above can arise in a variety of models. In Example 4.5 of Section 4.2,
we show how misspecification of exchange rates can lead to uncertainty amongst agents
regarding the true value of a product, resulting in a purely atomic structure. Section 5.3
presents an example of agents who place repeated double-or-nothing bets (Example 5.4),
again yielding a purely atomic example. These examples show that there are naturally
arising situations that satisfy a regularity property we term smoothness, which will be ab-
solutely key for our results.

Smoothness was a key element in the measurable Bayesian equilibrium existence theo-
rem of Hellman and Levy (2017). The proof of the theorem there consisted of slicing the
state space into non-disjoint, countable common knowledge equivalence classes, each of
which admits a Bayesian equilibrium in the game restricted to that equivalence class, and
then ‘gluing’ together one selected equilibrium from each class to form a single measur-
able equilibrium over the entire space. The process requires a mechanism for selecting an
equilibrium from each class in just the right way to enable the final glued product to be
measurable.

In this paper, that idea is generalized to a ‘one size fits all’ general purpose theorem
that can apply to all smooth purely atomic games. The main element is the measurable
selection theorem (Theorem 3.1), which makes use of infinitary logic to provide a gen-
eral schema for the task of selecting equilibrium for each equivalence class of a smooth
countable equivalence relation and gluing them into a measurable global equilibrium.

Once the general proof schema is at hand, adaptation to particular types of games is
straightforward. For virtually any type of game, if equilibria exist in the countable case,
then, by application of the measurable selection proof schema, measurable equilibria ex-
ist in the uncountable case for smooth purely atomic games. Other applications of the
technique we present include equilibrium existence in certain repeated games with sym-
metric incomplete information, the construction of acceptable bets in Bayesian games, as
well as some approximation techniques which we in fact apply to get more general results
on graphical games.

The class of smooth purely atomic games is hence an intrinsically natural category
for the study of equilibria existence in game theory. We exhibit this for the existence
of Bayesian equilibria in Theorem 4.7, presenting an example of a structure arising with a
simple story behind it. We also exhibit this for existence of stationary equilibria in stochas-
tic games in Theorem 5.2. In particular, this result is applied to certain stochastic games
arising naturally when one models repeated games with public uncertain information to
obtain the existence of equilibria which is stationary in the common beliefs. (As shown in
Hellman and Levy (2019), stochastic games arising from this latter model do not, in gen-
eral, display the required smoothness, but we present a particular sub-class of repeated
games that does.) That smooth purely atomic games have an intrinsic natural quality is
also exhibited with respect to graphical games in Theorem 8.2. (See Figure 1.) Doubtless,

4In this case, the ‘underlying state space’ is the space of players.
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Field Main Results

Bayesian Games Measurable Bayesian equilibria exist in
smooth purely atomic games (Theorem 4.7).

Stochastic Games Measurable stationary equilibria exist in
smooth purely atomic games (Theorem 5.2).

Graphical Games Measurable Nash equilibria exist in smooth
purely atomic games (Theorem 8.2).

Common Priors and Betting Measurable acceptable bets exist in smooth
purely atomic games if an acceptable bet ex-
ists on each common knowledge component
(Theorem 9.1).

FIGURE 1.—Summary of the main results of the paper.

this can be extended to many more types of games; one need only identify the type of
game and rely on equilibrium existence in the countable case to obtain the desired result.

2. PRELIMINARIES

Claims stated in mathematical formulae, with game-theoretic claims such as equilib-
rium existence being no exception, can, at their core, be formulated using mathematical
logic. Mathematical logic is most often conducted within the framework of first-order
logic; see, for example, Enderton (2001). We recall here a very brief and intuitive expla-
nation of the essentials of the finitary and infinitary logics which will be used in the main
body of the paper. A much more detailed survey of the topic appears in the Appendix.

2.1. First-Order Logic

Mathematical logic is the familiar logic built on a finite base language L consisting of
logical connective symbols (e.g., conjunction, disjunction, and negation); a finite or count-
able collection of variables; the quantifier symbols ∀, ∃; constant symbols; predicate symbols;
and function symbols. From the symbols, one may then form terms by repeated composi-
tion of function symbols on variables and constant symbols. Atomic formulae are of the
form R(t1� � � � � tn) for some predicate symbol R (possibly equality) and terms t1� � � � � tn,
and finally, well-formed formulae are expressions built from atomic formulae and repeated
used of connective and quantifier symbols.

An important distinction is made between free and bound variables. Intuitively, a free
variable in a formula represents a variable that, in principle, may be substituted by another
term or formula in its place. A bound variable is one that ‘has been quantified’, that is, if v
is a free variable of a formula α, then v is bound in the formulae ∀vα and ∃vα. A formula
with no free variables is called a sentence. (A formal definition of free and bound variables
appears in the Appendix.)

2.2. Infinitary Logic

In subsequent sections, we will make use of a slight extension of the standard first-order
logic, the language of infinitary languages, which we present very briefly here (for more



MEASURABLE SELECTION FOR PURELY ATOMIC GAMES 597

on this subject, see the elaboration in the Appendix to this paper or a standard textbook
such as Keisler (1971)).

The language of first-order logic can only handle expressions involving a finite number
of variables; it is silent with regard to infinite collections of variables. However, dealing
with expressions relating to an infinite collection of variables is of direct importance for
this paper. To take one example, we will wish to have a formal way of expressing concepts
such as ‘player i plays a mixed action’, or to state the same thing in greater detail, that
‘player i places weight x on action ai in state t’, where the number of possible states is
countably infinite. Similarly, we may wish to state that the payoff under a mixed action
profile in a dynamic programming problem is a particular value, where the number of
states that could possibly be visited in the course of process is countably infinite. We will
also need a formal way to express convergence, limits, summation, and summability of
infinite series, all of which clearly cannot be expressed in standard first-order logic, as
formulae in the latter can only accept finitely many variables. Expressing these concepts,
especially in a quantifier-free manner as needed for our theorems, is enabled by the use
of the language denoted Lω1�ω.

Simply put, in this language, in addition to the first-order formulae, we allow formulae
of the form

∧∞
n=1 αn and

∨∞
n=1 αn, whenever (αn)∞n=1 is a countable collection of formulae.

(If Fn is the collection of free variables in αn for each n, then
⋃

n Fn is the collection of
free variables in the formula

∧∞
n=1 αn and in the formula

∨∞
n=1 αn.) The intuitive meanings

of these countable conjunctions and disjunctions should be clear; as stated above, a more
detailed explanation is provided in the Appendix.

For example, in the Lω1�ω language5 L= (+� ·�>�0�1), we can state the expression “the
sequence (xn)∞n=1 converges to L” over the real numbers via the formula

α
(
(xn)

∞
n=1�L

)= ∀ε
(
ε > 0 →

∨
N∈N

∧
n>N

(xn −L)2 < ε2

)
�

where a2 is shorthand for a ·a. If we wish to make an equivalent quantifier-free statement
(over R), we may write

α
(
(xn)

∞
n=1�L

)=
∧
K∈N

∨
N∈N

∧
n>N

K2 · (xn −L)2 < 1�

2.3. Countable Borel Equivalence Relations

A Polish space is a separable and completely metrizable space. Measurability without
further qualification in this paper, in the context of a Polish space X , will be understood
to mean measurability with respect to the Borel σ-algebra of X .

A relation E on a Polish space Ω is said to be Borel if the set {(x� y) ∈ Ω×Ω | xE y}
is a Borel subset of Ω×Ω. An equivalence relation is said to be countable if each equiv-
alence class, referred to as a class or an atom, is countable. We will abbreviate countable
Borel equivalence relation as CBER. Similarly, an equivalence relation is finite if each of
its equivalence classes is finite. A Borel relation that is a function is a Borel function.6
A CBER is said to be aperiodic if each class is infinite.

5Typically, one writes a logical language by specifying only the symbols, as in L = (+� ·�>�0�1); the logical
connectives are omitted because they are always present, and the set of variables typically do not need to be
specified separately.

6Continuous functions are Borel but not every Borel function is continuous.
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A very central definition from descriptive set theory that is used extensively in this paper
is the following:

DEFINITION 2.1: A Borel equivalence relation E on a Polish space Ω is smooth if there
is a Polish space Z and a Borel function ψ :Ω→Z such that, for all x� y ∈Ω,

xE y ⇐⇒ ψ(x)=ψ(y) (2.1)

(i.e., the classes of E are precisely the level sets of ψ).

If E is the common knowledge relation, a function ψ witnessing the smoothness of the
relation can be thought of as an auxiliary tool that enables us to ascertain when x and y
are in the same common knowledge component: that occurs if and only if ψ(x)=ψ(y).

EXAMPLE 2.2: On Ω= R
N , the relation given x∼E y iff x− y ∈ Z

N is smooth, as, if we
define ψ :RN → [0�1)N by

ψ(x1� � � � � xN)= (
x1 − 
x1�� � � � � xN − 
xN�)�

where 
a� = max{k ∈ Z | k ≥ a} denotes the integer part of a, then ψ(x) = ψ(y) if and
only if x∼E y .

EXAMPLE 2.3: On the unit circle S1 = {z ∈ C | |z| = 1}, observe an irrational rotation
T : S1 → S1 given by T(z) = z · e2πiα for fixed irrational α ∈ R. It is well known that if
ψ : S1 →Z is Borel for some Borel space Z, such that ψ=ψ ◦ T , then ψ is constant.

A transversal of E is a set T ⊆X which intersects each E equivalence class at exactly
one point. It is easy to see that if a Borel E has a Borel transversal, then it is smooth:
intuitively, the map ψ(x)= ‘the only element of T that is E -equivalent to x’ witnesses the
smoothness of E . For CBER’s, the converse is true as well (see Proposition 2.5).

EXAMPLE 2.4: In Example 2.2, the set [0�1)N is clearly a Borel transversal.

From this, one can show that if every equivalence class of E is finite, then E is smooth.7
However, for CBER’s, which are the focus of much of the material of this paper, matters
are not as simple.

When E is an equivalence relation, for each x ∈ Ω denote the equivalence class con-
taining x by [x]E . A set B ⊆ Ω is said to be saturated with respect to E if it is the union
of E -equivalence classes, that is, if there is a set A⊆Ω such that B = [A]E :=⋃

x∈A[x]E .
The collection of all the Borel E -saturated sets of a Borel equivalence relation E forms a
σ-algebra, denoted σ(E).

Given a Polish state space Ω and a CBER E , we let Ω/E denote the quotient space
whose elements are the equivalence classes by E , and the induced σ-algebra consists of

7Consider the set

T = {x ∈X | ∀y ∈X�xE y =⇒ x≤ y}�
that is, the set of the ≤-elements of the E equivalence classes, for any Borel linear order on the domain of E ;
such exists by a theorem of Kuratowski (see Section 15.B of Kechris (1995)). This T is seen to be Borel and a
transversal of E , hence finiteness of the E-classes is sufficient for smoothness (see, e.g., Example 6.1 of Kechris
and Miller (2004)).
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precisely the images of the E -saturated Borel sets in Ω under the quotient map ι :Ω→
Ω/E ; this is the finest σ-algebra on Ω/E such that ι is measurable.

We will make repeated use of the following proposition, which follows from Proposi-
tions 6.3 and 6.4 of Kechris and Miller (2004) and the discussion preceding them.

PROPOSITION 2.5: The following conditions are equivalent for a CBER E on a Polish
space Ω:

(a) E is smooth.
(b) There is a Borel transversal for E .
(c) There is a Borel set intersecting each class of E in a finite non-empty set.
(d) The quotient space Ω/E is standard Borel.8

The following is a slight variation of the Lusin–Novikov theorem; for example, Kechris
(1995, Theorem 18.10); see also Dougherty, Jackson, and Kechris (1994, Theorem 5.1).

PROPOSITION 2.6: Let E be a smooth CBER on a Polish spaceΩ, and let S be a countably
infinite set. Then there is a Borel mapping � :Ω→ S such that, for each E -class C of Ω, the
restriction �|C : C → S is injective, and if C is infinite, then �(C)= S. If S = {s1� s2� s3� � � �}
is an enumeration of S, then � can be chosen such that �(C)= {s1� s2� � � � � sn} when C is of
cardinality n.

In words, Proposition 2.6 states that for a smooth CBER over Ω and a given countably
infinite set S, it is possible to define a mapping � : Ω→ S in a Borel manner such that
simultaneously each and every equivalence class C ⊆Ω of the CBER E under is mapped
injectively to S by �. This will play a key role in several results.

Recall that a subset of a Polish space X is analytic (a.k.a., Souslin) if it is the image of
a Borel function f :Z→X from another Polish space Z. A function g :X →Z between
Polish spaces is analytically measurable if, for each Borel B⊆Z, g−1(B) is in the σ-algebra
generated by the analytic sets. In that case, if μ is a Borel probability measure on X , then
there is a Borel set X̂ ⊆X of full measure such that the restriction g|X̂ : X̂ →Z is Borel
(this follows from, e.g., Kechris (1995, Theorem 21.10)).

3. A SELECTION THEOREM

The proofs of several theorems in this paper will follow the following general paradigm:
they will relate to some game over an uncountable state space such that this state space
can be considered to be composed of disjoint countable sets, each of which is ‘naturally’
identified as the equivalence class of a Borel equivalence relation, and furthermore, each
such countable Borel equivalence class can be identified with at least one measurable
equilibrium (as appropriately defined for the type of game at hand).

The goal will then be to show that (assuming that the Borel equivalence relation is
smooth) a measurable equilibrium over the entire uncountable state space exists by the
construction of a formula that ‘witnesses’ the existence of an equilibrium over the count-
able Borel equivalence classes. The selection theorem of this section is the key element
to achieving that.

8That is, there is a Borel-measurable bijection between it and a Polish space.
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3.1. Main Selection Theorem

We work with the following:
• A fixed Polish spaceΩ with a CBER E , and a Polish spaceX .Ω will be the state space,

and X will be a parameter space. Our examples will almost all9 suppose that X = R, but
the theory in full generality allows any Polish X .

• A finite or countably infinite set S such that the equivalence classes of E are each of
cardinality S.

• A tuple FD = (N1� � � � �NK) withNj ∈ N (where possiblyK = ∞), and a corresponding
sequence of Borel functions ζ1� � � � � ζK with ζj :ΩNj →X for each j.

• Denote FD =∑
j Nj (which may be infinite).

• Let FU ∈ N∪ {0�∞}.
For a given E -equivalence class C ⊆ Ω and a given bijection φ : C → S, define a

function ζ[φ] : ∏j S
Nj → XK as the function whose jth component is ζj(φ−1(s1)� � � � �

φ−1(sNj )).
In other words, for each 1 ≤ j ≤ K, take the corresponding element Nj of FD =

(N1� � � � �NK), and map each sequence (s1� � � � � sNj ) ∈ SNj to X via ζj(φ
−1(s1)� � � � �

φ−1(sNj )). Formally,

ζ[φ] := (
ζj
(
φ−1(s1)� � � � �φ

−1(sNj )
) | 1 ≤ j ≤K�s1� � � � � sNj ∈ S)� (3.1)

The theorem here involves structuresXS×FD , which we will call the determined variables,
andXS×FU , which are the undetermined variables; this terminology will be further clarified
in Section 3.2. One may think of the determined variables as corresponding to the data
given in the underlying situation while the undetermined variables correspond to what we
wish to construct.

To keep a running example in mind, the reader may consider Bayesian games (to be dis-
cussed in full detail in Section 4.3). In a Bayesian game, the determined variables are the
collection of the beliefs of each player regarding the probabilities of the states along with
the collection of the payoffs granted to each player contingent on the state and the profile
of selected actions; these are the given data of the underlying situation. The undetermined
variables are the strategies that the players may choose. The equivalence classes are the
common knowledge components of the game. The crux of the matter is to show that if
the equivalence relation is smooth and for each equivalence class (within the game data)
we can associate certain strategies, then there is a Borel-measurable way to construct our
desired equilibrium strategy over the entire game data.

THEOREM 3.1: Let E be smooth and let a set Z satisfying

Z ⊆XS×(FD∪FU) (3.2)

be Borel. Furthermore, for each equivalence class C ∈ E and φ :C → S, define

Z[ζ�φ] := {
xFU | (ζ[φ]�xFU ) ∈Z}� (3.3)

(Intuitively, Z[ζ�φ] is the collection of S × FU -tuples of undetermined variables which com-
plete the FD-tuple ζ[φ] of determined variables to an element of Z.)

9In the proof of Theorem 7.1, we will allow X to be a general compact metric space.
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FIGURE 2.—The mapping �.

(a) Suppose that for each equivalence class C of E , there is a bijectionφ : C → S such that
Z[ζ�φ] �= ∅. Then there exist analytically measurable mappings � :Ω→ S and Ψ :Ω/E →
XFU such that for each equivalence class C of E :

• The restriction �|C : C → S is bijective.
• Ψ(C) ∈Z[ζ��|C], that is, (ζ[�|C]�Ψ(C)) ∈Z.

(b) If, for each equivalence class C of E , it is the case that for any bijection φ : C → S,
Z[ζ�φ] is non-empty and σ-compact, then � and Ψ can be chosen to be Borel-measurable.

See Figure 2 for an example of such a mapping �.
We sketch the proof here (the full proof is in the Appendix). Typical measurable selec-

tion theorems select measurable functions f :Θ→Λ from a collection of measurable (in
an appropriate sense) correspondences F :Θ→ Λ. The difficulty in applying such theo-
rems directly to our setup is that for each component C of E , the collection of desired
objects are mappings FU ×C →X . Going back to the example we are keeping in mind, if
the desired objects are Bayesian equilibria over the common knowledge component, then
these are mappings from C×FU → R, where FU is the collection of all pure actions, which
specify in each state C, for each player and each of his pure actions, how much weight to
place on that action. Since the space FU ×C varies from component to component, there
is no fixed domain of correspondence on which to conduct a straightforward application
of a typically styled selection theorem.

By translating from each C to S via such a mapping � (in part (b), this can be done in
any arbitrary way that Proposition 2.6 allows), we instead have that for each component C,
the set of desired objects are mappings on S × FU to X , that is, elements of XS×FU . Now,
working with this constant domain, we can appeal to measurable selection theorems. Part
(a) is somewhat more intricate, as the mapping � needs to be chosen as well. For this, we
first choose any mapping �̂ as provided by Proposition 2.6, and then observe that for any
other such map � and each fixed component C, �|C is a permutation of �̂|C . We then
simultaneously have to choose, in addition to the desired object (e.g., equilibrium), an
appropriate permutation to give an appropriate mapping �.

REMARK 3.2: In the second part of the above theorem, even if we (only) assume
Z[ζ�φ] is non-empty for each class C of E for any bijection φ : C → S, but not neces-
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sarily σ-compact, then there may not be any Borel-measurable selectors.10 Similarly, if
Z[ζ�φ] is non-empty and compact for some φ but is either empty or non-σ-compact for
others, we may not be able to deduce Borel measurability.

REMARK 3.3: As in Example 3.8 later, Theorem 3.1 can be applied when FU = 0. (In
this case, the mapping Ψ is degenerate, and only the map � is relevant.) Formally, in that
case, if ζ[φ] ∈Z, then Z[ζ�φ] = 0X �= ∅, while if ζ[φ] /∈Z, then Z[ζ�φ] = ∅.

It is useful to pair the selection theorem with the following, Proposition 3.4, whose
proof appears here in a footnote.11

PROPOSITION 3.4: Given a Polish space Ω and a CBER E on Ω, there exists a par-
tition Ω1�Ω2� � � � �Ω∞ of Ω, consisting of Borel E -saturated sets, such that for each k =
1�2� � � � �∞, each equivalence class of E in Ωk is of cardinality k.

Since the sets Ω1�Ω2� � � � �Ω∞ are Borel subsets of a Polish space, they are standard
Borel, that is, they themselves are Polish (in some topology inducing their Borel struc-
tures); see, for example, Kechris (1995, Corollary 13.4). Note that Theorem 3.1 relies only
on the Borel structure of Ω being standard Borel, not on the specific topology. Hence, it
is possible to apply Theorem 3.1, either part (a) or (b), on each partition element si-
multaneously, even though the classes may be of different cardinalities; by an abuse of
notation, we refer to the gluing of all such mappings as (��Ψ) (and given an enumer-
ation of S = {s1� s2� � � �}, we may assume, as in Proposition 2.6, that when a class C has
cardinality n, then �(C)= {s1� � � � � sn}).

EXAMPLE 3.5: Fix an integer N . Suppose we have an aperiodic12 CBER E on a Borel
space Ω, and a Borel function ζ :Ω→ R. We wish to construct a Borel set B ⊆ Ω such
that for each equivalence class C of E , B ∩C is of size N and ζ takes different values on
each element of B∩C. (Assume ζ takes at leastN different values in each class.) In other
words, within each equivalence class of E we seek to identify a subset of size exactly N in
such a way that each element within that subset is assigned a different number in R via ζ,
and to do all this in a Borel manner. There are various ways to go about this, and one way
is via the use of Theorem 3.1.

First, we need to define S, X , K, FD = (N1� � � �NK), and FU as in the discussion prior
to Theorem 3.1. Intuitively, the determined element is the function ζ, and what is unde-
termined is the set of size N that is to be associated with each equivalence class. Let S be

10This is true even when E = id, and even when Z is induced by a formula α as in Section 3.2 which is
quantifier-free. Take, for example, Ω=R and L = (+� ·�>�0�1). Every open set can be written as a countable
union of intervals with rational end-points, hence every closed set can be defined in Lω1�ω. However, it is known
that not every correspondence with a closed graph (and non-empty values) between Polish spaces need possess
a Borel-measurable selection; see, for example, Kechris (1995, Example 14.3).

11Proof of Proposition 3.4: The Feldman–Moore theorem (Feldman and Moore (1975)) states that every
CBER is induced by a countable group of Borel actions, G, which we enumerate G = {g1� g2� � � �}. Define
ψ :Ω→N∪ {∞} by

ψ(ω)=
∞∑
n=1

∏
k<n

ζ
(
gk(ω)�gn(ω)

)
�

where ζ :Ω→ {0�1} is 1 if and only if the coordinates are different. (The empty product is 1.) ψ(ω) is then
clearly the cardinality of the E-class of ω.

12Recall that a CBER is aperiodic if each one of its equivalence classes is infinite.
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an arbitrary set of the cardinality of the equivalence classes, that is, countably infinite; let
X = R,K = 1 (hence the tuple FD = (N1� � � �NK) collapses to the singletonN1 = FD = 1),
and then ζ1 : ΩN1 →X is simply the given ‘input data’ function ζ : Ω→ R. Let FU = 1.
For any equivalence class C of E and mapping φ : C → S that is a bijection, ζ[φ] maps S
to R by ζ[φ](s)= ζ(φ−1(s)).

We can identify each subset of S with an element of {0�1}S ⊆R
S . Take Z to be

Z = {
(x� y) | x ∈ R

S� y ∈ {0�1}S such that the set corresponding to y is

of size N , and if s1 �= s2 ∈ S but y(s1)= y(s2)= 1, then x(s1) �= x(s2)
}
� (3.4)

Z can be shown to be Borel.13 We have thus formalized our initial intuition: ζ[φ] ∈ R
S

represents the determined variables, and {0�1}S the undetermined variables.
For an equivalence class C of E and a bijection φ : C → S, Z[ζ�φ] is given by (3.3), and

consists of those elements y ∈ {0�1}S such that (ζ[φ]� y) ∈Z. To apply Theorem 3.1, note
that we have supposed that Z[ζ�φ] is non-empty for each class C of E and each bijection
φ : C → S, as we have assumed that ζ takes on at least N different values in each class.
Then by the result of the theorem, there exist � : Ω→ S and Ψ : Ω/E → R such that,
for each equivalence class C of E , �|C : C → S is bijective, and (ζ[�|C]�Ψ(C)) ∈Z. This
formally states what we want:� bijectively identifies C with S, and then (ζ[�|C]�Ψ(C)) ∈
Z can be translated to saying we have identified a subset of C of size N satisfying the
condition that distinct elements of that subset are mapped to distinct real numbers via ζ.

Finally, using the notation ι :Ω→Ω/E for the quotient mapping, define B⊆Ω by

B := {
ω ∈Ω |Ψ (ι(ω))(�(ω))= 1

}
�

B ∈Ω is the set we sought from the start, and by construction it is Borel.

3.2. Correspondences Induced by Formulae

In this section, we add to the approach of Theorem 3.1 an explicit relation to logical
formulae. More specifically, we seek to use that theorem to obtain Borel relations that
can be defined by satisfaction of a formula, which is the content of Proposition 3.6.

We continue with the same notation as in Section 3.2, namely, a fixed Polish space Ω
with CBER E , a Polish space of parameters X (usually R), a fixed countable set S, Borel
functions ζj : ΩNj → X for j = 1� � � � �K, and FD = (N1� � � � �NK). We also assume here
that we have the following:

• A language L. We note that L may include variables which, for convenience, are
indexed by S, or S × S, etc, that is, collections of variables (xs)s∈S , (ys�t)s�t∈S , etc; we may
denote these (x(s))s∈S , (y(s� t))s�t∈S to avoid excessive subscripts.

• For every n, for each n-place predicate symbolR ∈R, letRX ⊆Xn be a Borel relation,
and for each n-place function symbol (including possibly constant symbols) f ∈ F , let
fX :Xn →X be a Borel function. (In this way, by construction, the universe X , together
with the assignments RX for each relation R and fX for each function f in the language,
forms a model of L.) Relations such as =, ≤, < and functions such as +, −, · will always
be defined as relations ⊆X ×X and functions X ×X →X in the natural way.

13We will return to this in Section 3.3, using the machinery of Section 3.2.
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• In addition to FD, a tuple of FU = (M1� � � � �ML), Mj ∈ N for each j = 1� � � � �L (we
may have14 L= 0�∞), denoting the dimensions for the undetermined variables, as elab-
orated below; denote FU =∑

j Mj .
• Let α be a formula in Lω1�ω. Assume that α’s free variables can be partitioned into

two sets:
– (xj(s1� � � � � sNj )) for each j = 1� � � � �K and each s1� � � � � sNj ∈ S, where recall FD =

(N1� � � � �NK) are such that ζ :ΩNj →X . These are the determined S-variables.
– (xj(t1� � � � � tMj )) for each j = 1� � � � �L and each t1� � � � � tMj ∈ S, where recall FU =

(M1� � � � �ML). These are the undetermined S-variables.
In this case, we wish to apply Theorem 3.1 to the set:

Z = {
x ∈XS×(FD×FU) | α(x) holds

}
� (3.5)

Returning again to the specific example of Bayesian games, as mentioned before, the
determined variables are the structure of the game itself and the undetermined variables
are strategy profiles chosen by the players. To express the semantics that we wish to as-
cribe to the relations between these variables, we may use a logical formula α whose free
variables are payoffs, beliefs, and strategies, w.r.t. the state space S, that is, we wish to
express that beliefs are constant on a player’s belief components, that probability weights
are between zero and one, etc. Furthermore, we wish to identify not just any strategy pro-
files but those that form equilibria. To specify all this, we use infinitary logical formulae to
formulate what we require the undetermined variables to satisfy.

The following proposition follows by induction on the construction of α:

PROPOSITION 3.6: Let the set Z of Equation (3.2) be defined by logical satisfaction as
Z = {x ∈XS×(FD×FU) | α(x) holds} for a formula α ∈Lω1�ω. Then Z is Borel if α is quantifier-
free.15

3.3. More Examples

We expand on a previous example, and present an additional one.

EXAMPLE 3.7: Returning to Example 3.5, recall that the setZ to which we applied The-
orem 3.1 was defined in Equation (3.4), without any reference to a logical formula. Let,
then, S̃N stand for the collection of N-tuples of distinct elements of S (this is countable),
in the language L= (0�1� ·), and consider the following formula α:

α
((
x(s)

)
t∈S�

(
y(s)

)
s∈S
)=

∧
s∈S

(
y(s)= 0 ∨ y(s)= 1

)
∧

(s1�����sN )∈S̃N

(
N∧
j=1

y(sj)= 1
∧

s �=s1�����sN
y(s)= 0

)

∧
(s�t)∈S̃2

(
x(s)= x(t)→ y(s) · y(t)= 0

)
� (3.6)

14For an example with L= 0, see Example 3.8 of Section 3.3.
15A formula is quantifier-free if it can be constructed without use of the universal quantifier ∀ or the existen-

tial quantifier ∃.
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where the first part states that y ∈ {0�1}S , the second states that y(s)= 1 for precisely N
values of S, and the third states that if x(s)= x(t), then either y(t)= 0 or y(s)= 0. In this
case, in the notation of Section 3.2, FU = (1), FU = 1.

Then Z can be written as

Z = {
(x� y) | x ∈R

S×S� y ∈ R
S, and α(x� y) holds

}
and we may directly apply Proposition 3.6. (Note that α(x� y) holding implies y ∈ {0�1}S .)

EXAMPLE 3.8: Let E be a smooth aperiodic CBER on a Polish spaceΩ, and let ζ :Ω→
R be Borel. Take S = Z. We wish to obtain an analytically measurable� :Ω→ Z, bijective
when restricted to each equivalence class, such that:

• If C is an equivalence class such that the sequence (ζ(ω)))ω∈C has no maximum,
no minimum, and no infinitely repeated elements, then k < n implies ζ(�|−1

C (k)) <
ζ(�|−1

C (n)).• Otherwise, �|C is an arbitrary bijection.
To accomplish this, define, in the language L= (>�=),

β
(
(xz)z∈Z

)=
∧
k∈Z

[(∨
l∈Z
(xl > xk)

)
∨
(∨
m∈Z
(xk > xm)

)]
�

that is, there is no maximal or minimal element in (xz)z∈Z, and,

γ
(
(xz)z∈Z

)=
∨
k∈Z

¬
[∧
n∈N

∨
|m|>n

(xm = xk)
]
�

that is, for each sequence element, there are only finitely many others equal to it. Finally,
define

α
(
(xz)z∈Z

)= (
β
(
(xz)z∈Z

)∧ γ((xz)z∈Z))→
∧

k�m∈Z�k>m
(xk > xm)� (3.7)

Here, α has no undetermined variables, that is, FU = 0, and FD = (1) in the notation of
Section 3.2. Putting it all together, we satisfy what is described in Remark 3.3. Note that
for each equivalence class C and bijection φ : C → Z, if ζ[φ] := (ζ(φ−1(k))k∈Z satisfies
β∧γ, then ζ[φ̃] = satisfies β∧γ for any other bijection φ̃ : C → Z; the same is not true of
α as a whole. It is clear, however, that if ζ[φ] satisfies β∧ γ for some φ, then there exists
a φ′ such that ζ[φ′] satisfies α as well; if x does not satisfy β ∧ γ, then for all bijections
φ̃ : C → Z, ζ[φ̃] satisfies α.

Either way, for each equivalence class C, some bijection φ : C → Z ensures that ζ[φ]
satisfies α. Hence, applying the first part of Theorem 3.1, using Equation (3.5), we con-
clude that � :Ω→ Z is a bijection, such that φ|C is a bijection for each equivalence class
C ∈Ω/E , and in addition, if x := ζ[�|C] satisfies β∧γ, that is, has no maximum/minimum
and no infinitely repeated number, then it is also the case that · · ·> x2 > x1 > x0 > x−1 >
· · · . This achieves what we set out to attain.

4. BAYESIAN GAMES WITH PURELY ATOMIC KNOWLEDGE SPACES

4.1. Knowledge Spaces

Let I be a non-empty, finite set of players and Ω a Polish space of states. With each
player i ∈ I we associate a Borel equivalence relation overΩ denoted E i, called i’s knowl-
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edge relation.16 Adopting the convention that E stands for the profile of knowledge re-
lations (E i)i∈I , a knowledge space is then a triple (Ω� I�E ). Given a knowledge space
(Ω� I�E ), the equivalence relation induced by E , which will be denoted by E and known
as the common knowledge relation, is the transitive closure of the union

⋃
i∈I E i, that is,

the smallest equivalence relation containing each element in E .17

4.2. Purely Atomic Knowledge and Type Spaces

DEFINITION 4.1: A knowledge space such that, for all i ∈ I, each equivalence class of
E i is finite or countably infinite will be called a purely atomic knowledge space.

Purely atomic knowledge spaces were studied, as mentioned, in multiple works, for
example, Simon (2000, 2003), Hellman (2014b), Hellman and Levy (2017), Lehrer and
Samet (2011).

Fix a knowledge space (Ω� I�E ). For each i ∈ I, a type function ti is a mapping ti :Ω→
�(Ω) that is σ(E i)-measurable18 and satisfies tiω(A)= 1 whenever ω ∈A ∈ σ(E i).

Adopting the convention that t stands for the tuple (ti)i∈I , a triple (Ω� I� t) is called
a type space. A type space implicitly defines the knowledge relations E i underlying the
type functions: ωE iω′ (i.e., (ω�ω′) ∈ E i) if and only if tiω = tiω′ . Intuitively, tiω(B) is the
probability player i associates to the set B in state ω.

DEFINITION 4.2: A type space such that, for all i ∈ I and all ω ∈Ω, the type tiω is purely
atomic will be called a purely atomic type space.

Clearly, any type space on a purely atomic knowledge space is also purely atomic. We
will henceforth always assume that knowledge spaces (and, hence, type spaces) are purely
atomic.

DEFINITION 4.3: A type space such that tiω[ω] > 0 for all i ∈ I and all ω ∈Ω is called
positive.

If types are purely atomic and positive, then the knowledge space is purely atomic. If
positivity is not assumed, then types may be purely atomic but not the knowledge space.

The next concept, that of smoothness, is central to the results of this paper.

DEFINITION 4.4: A purely atomic type space is smooth if the state space Ω along with
the common knowledge equivalence relation E is smooth.

16Intuitively, the unions of classes of E i represent the events that player i can identify; hence, σ(E i) is the
set of Borel events that player i can identify. Most game-theory models work with partitionally generated
type spaces. In such models, where Ω is finite or countable, each player i has a partition Πi of Ω. This ap-
proach suffers from a difficulty in the case of a continuum of states, since the partition has to ‘agree’ with the
measurable structure. In addition, in the continuum case, one cannot work with arbitrary unions of partitions
elements; only Borel unions are admissible. Our approach differs from the more classical approach given in
Nielsen (1984) and Brandenburger and Dekel (1987) in favor of defining knowledge via relations (instead of
σ-algebras), which is better suited for the class of purely atomic types that will concern us. Our approach also
differs from the ‘types’ approach of Milgrom and Weber (1985). See the discussion in Hellman and Levy (2017)
for a comparison.

17In terms that may be more familiar, E is the common knowledge equivalence relation. The class of the
common knowledge relation E containing ω is called the common knowledge component containing ω, and is
denoted C (ω).

18Meaning that for Borel A⊆Ω, ω→ ti(A |ω) is σ(E i)-measurable.
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Section A presents both a sufficient condition for the smoothness of a type space; the
next section presents an example indicating possible economic interpretations of smooth-
ness.19

EXAMPLE 4.5: We present here an example of a smooth type space that indicates that
the result of Theorem A.1, and indeed the concept of smoothness itself, have economic
interpretations.

Robert is in the United States. William is in the United Kingdom. Mario in Italy, a
common friend, wishes to transfer to either Robert or William his subscription to Econo-
metrica, for which he paid eC. Assume e1 = $eα = £eβ. Mario converts eC into the
other currencies and sends these figures to Robert and William. However, Mario tends
to be somewhat scattered, and with probability ε may have confused the numbers, that
is, with 1 − ε probability Robert receives the figure $C · eα and William receives the fig-
ure £C · eβ, which is correct, but with ε probability Robert receives the figure $Ceβ and
William receives the figure £Ceα. Both Robert and William are aware of this possibility of
confusion on the part of Mario.

We may model the knowledge space asΩ′ = R++ ×R++ ×R++, specifying Mario’s price,
and the figures received by Robert and William, respectively. However, note that if the fig-
ures Robert ω1 and William ω2 are revealed, one could deduce whether Mario mixed up
or not, simply by checking whether ω1

ω2
= eα−β or = eβ−α, hence deducing Mario’s price. We

will therefore model the knowledge space using Ω = R++ × R++ for specifying Robert’s
and William’s figures.

The classes of ER, representing Robert’s knowledge, are ({(r� eα−β ·r)� (r� eβ−α ·r)})r∈R++ ,
and the classes of EW , representing William’s knowledge, are ({(eα−β · r� r)� (eβ−α ·
r� r)})r∈R++ . The beliefs are given by

tR(r�eα−β·r)[ω] = tR(r�eβ−α·r)[ω] =

⎧⎪⎨
⎪⎩

1 − ε if ω= (
r� r · eβ−α)�

ε if ω= (
r� r · eα−β)�

0� otherwise�

and similarly for tW .
One then easily sees that an equivalence class C of the relation E induced by EW , ER is

of the form

C = {
r · e2nγ · (1� eγ) | n ∈ Z

}∪ {
r · e2nγ · (1� e−γ) | n ∈ Z

}
for some r ∈R++, where γ = α−β. This relation is seen to be smooth, by applying Theo-
rem A.1: each of the two sets of which C is expressed as the union clearly consists only of
points isolated within itself.

4.3. Bayesian Games and Bayesian Equilibria

A Bayesian game �= (Ω� I� t�A� r) consists of the following components:
• (Ω� I� t) forms a type space (with knowledge relations E i understood implicitly as

generated by the types t).
• A= (Ai)i∈I is a tuple consisting of a finite action set for each player i ∈ I.

19Examples of non-smooth type spaces can be found in Hellman (2014b), Simon (2003), and Lehrer and
Samet (2011); we do not present such examples here, as our focus is on smooth type spaces.
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• r :Ω×∏
i∈I A

i → R
I is a bounded measurable payoff function, with ri then being the

resulting payoff to player i. The payoff function r extends multi-linearly to mixed actions
in the usual manner.

DEFINITION 4.6: A Bayesian game is purely atomic if the underlying type space is purely
atomic. A Bayesian game is smooth if the underlying type space is smooth.

A strategy of a player i ∈ I is a mapping si : Ω → �(Ai) which is constant on each
player’s knowledge component. In other words, if ω�ω′ ∈ Ω are in the same partition
element of E i, then si(ω)= si(ω′).

A Bayesian equilibrium is a profile of strategies s = (si)i∈I such that for each i ∈ I, every
ω ∈Ω, and each alternative strategy x ∈ �(Ai) of player i,∑

{ω′ |(ω′�ω)∈Ei}
ri
(
ω′� s

(
ω′))πiω[ω′]≥

∑
{ω′ |(ω′�ω)∈Ei}

ri
(
ω′�x� s−i

(
ω′))πiω[ω′]� (4.1)

When a Bayesian equilibrium s satisfies the condition that each si is Borel-measurable, s
is said to be a measurable20 Bayesian equilibrium. (Hence, si is σ(E i)-measurable.)

4.4. Existence of Measurable Bayesian Equilibrium

We show how the following, appearing in21
 Hellman and Levy (2017), follows from the

above selection theorem, Theorem 3.1.

THEOREM 4.7: If the common knowledge equivalence relation E of the type space under-
lying a purely atomic Bayesian game is smooth, then the game admits a measurable Bayesian
equilibrium.

PROOF: Fix a Bayesian game (Ω� (ti)i∈I� (ri)i∈I). Fix a finite or countable set S, such
that all common knowledge equivalence relations are of cardinality S; the case in which
not all classes are of the same cardinality follows by Proposition 3.4. We use the language
L = (+� ·�>�=�0�1), where +, · are 2-place function symbols, >, = are 2-place relation
symbols, and 0, 1 are constants. The first (and main) step is to define, in the language
Lω1�ω, a (quantifier-free) formula whose free variables are the beliefs, payoffs, and strate-
gies of Bayesian games with state space S, which expresses the fact that the given strate-
gies are an equilibrium of the game with given payoffs and beliefs. To simplify notation,
it will be understood that s, t, u, v are indices in S (to be thought of as the cardinality of
common knowledge equivalence classes), while i, j represent players in I, ai is the action
of a player i in Ai, and a= (a1� � � � � an) is a profile of actions in

∏
i A

i.
• For j ∈ I and u�v ∈ S, the variable τj�u�v represents player j’s belief about state v in

state u.
• For j ∈ I, t ∈ S, and a ∈∏i A

i, the variable gj�t�a represents player j’s payoff at state t
given the action profile.

• For j ∈ I, t ∈ S, and aj ∈Aj , the variable xj�t�aj represents the weight player j puts on
his action aj in state t.

20It is possible for a game to have Bayesian ε-equilibria that are not measurable as in, for example, Simon
(2003) or Hellman (2014b).

21That paper assumed positivity of the type space, although as remarked there it is not a crucial assumption.
Here this assumption is not used at all for this theorem.
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Formally, in the framework and notation of Section 3.1, we would have the various
dimensions of the input data FD = (N1� � � � �NK)= (2� � � � �2�1� � � � �1), where Nj = 2 for
j ≤ |I|,Nj = 1 for |I|< j ≤K := |I|+ |I|×i |Ai|, as there are 2 ×S×S variables to specify
the beliefs of each of the I players, and there are S variables to specify the payoffs for
each player for each action profile. FU = L = ∑

i |Ai| and F = (1� � � � �1) ∈ R
L, as there

are S variables to specify over all states the weight to give a specific action for a specific
player. We now construct the formula α:

• ∑
(xs) ≥ ∑

(ys) (which we write instead of the more notationally cumbersome
R((xs)� (ys))), which holds in R if and only if (xs), (ys) are summable and

∑
s xs ≥

∑
s ys;

such a formula can easily be written in a quantifier-free formulation in the spirit of Exam-
ple B.3.

• For each i = 1� � � � � I, define βi((xai)), which holds if and only if (xai) ∈ �(Ai), that
is, (xai) represents a mixed action of player i:

βi
(
(xai)

)=
(∑
ai∈Ai

xai = 1
) ∧
ai∈Ai

(xai ≥ 0)� (4.2)

• For each j = 1� � � � � I and s� t ∈ S, define

ηj�s�t
(
(τj�u�v)u�v

)=
∧
u

(τj�s�u = τj�t�u)�

which is understood as holding if player j has the same beliefs at state s as in state t.
•

β
(
(xi�t�ai )� (τi�u�v)

)=
[∧

i

∧
t

βi
(
(xt�i�ai )

)]

∧
[∧

i

∧
s�t

(
ηi�s�t(τj�u�v)u�v

)→
∧
ai

(xi�s�ai = xi�t�ai )
]
�

which holds if and only if mixed actions are played at each state (which is what the∧
i

∧
t β

i((xt�i�ai )) term just after the equality sign means), and strategies are measurable
with respect to player i’s knowledge (which is what the term at the bottom line means).

• For each j ∈ I, let

γj�t
(
(gj�t�a)� (xt�i�ai )� (τi�t�u)

)
=
∧
b∈Aj

(∑
u

∑
a

τt · gj�t�a
∏
i

xt�i�ai ≥
∑
u

∑
a

τt · gj�t�b�a−i

∏
i �=j
xt�i�ai

)
� (4.3)

which is understood as it not being profitable for player j in state t to switch to any action
b when beliefs are (τj�t�u), his payoff at state t under action profile a in gj�t�a, and at state
t player i places weight xt�i�ai on action ai in state t.

• Finally, let

α
(
(gj�t�a)� (xt�i�ai )� (τj�t�u)

)
=
∧
j

∧
t

γj�t
(
(gj�t�a)� (xt�i�ai )� (τj�t�u)

)∧β((xi�t�ai )� (τi�t�u))�



610 Z. HELLMAN AND Y. J. LEVY

which is understood as γj�t holding when the payoffs are given by j’s payoffs and for j’s
belief at state t, for each j ∈ I and t ∈ S, as well as the strategies being legitimate and
functions of only each player’s knowledge.

The determined variables here are

FD = {
(τj�t�u)t�u∈S�j∈I� (gj�t�a)t∈S�j∈I�a∈∏i A

i

}
�

that is, the beliefs of the players and the payoffs, which are regarded as the ‘givens’ of a
Bayesian game, while the undetermined variables are the strategies that the players may
choose,

FU = (xt�i�ai )t∈S�i∈I�ai∈Ai �
Continuing along the lines of the general description of Section 3, ζj�a(ω) here is the

payoff at state ω of player j when action profile a is played, for each j and profile a, and
ζk(ω�θ) is the belief of player k at state ω about the probability of state θ, for each k.
Then, by Equation (3.1), the mapping ζ determines these variables of the model, given by
the components (rj(·� a)) and (πj(·)[·]):

ζk(ω�θ)= πkω(θ)� ζj�a(ω)= rj(ω�a)�
Recalling Equation (3.2), namely Z = {x ∈�FD ×�FU | α(x) holds}, where in this case

α is the statement that it is not profitable for any player to switch to any other action at
any state, we have that Z is Borel by Proposition 3.6.

Furthermore, following the definition in Equation (3.3), for every equivalence classC of
E and any bijection φ of C with S, the set Z[ζ�φ] is precisely all the Bayesian equilibria
of the Bayesian game over the image of the state space C under φ, with payoffs and
beliefs induced by φ : C → S and ζ. Every Bayesian game with a countable state space
possesses equilibria (see, e.g., Simon (2003, Proposition 1)), and furthermore, the set of
equilibria is compact in the Tychonoff topology. Since S is at most countable, it follows
that Z[ζ�φ] �= ∅ and is compact.

We now have all the pieces for applying Theorem 3.1(b). That is, for a Bayesian game
over a smooth type space, there exists a Borel-measurable mapping� :Ω→ S s.t. for each
class C, �|C is a bijection between C and S, and a Borel-measurable Ψ , whose domain
is the collection of equivalence classes of E (i.e., the common knowledge components of
the game), such that the mapping Ψ selects, for each common knowledge component C,
one Bayesian equilibrium over S, with the payoffs and beliefs induced by the payoffs and
beliefs on C. Formally, for each equivalence class C, it holds that in the game on state
space S, where, for player i, payoffs in state s under action profile a are ri(�|−1

C (s)�a) and
belief in state s about state t is πi

�|−1
C (s)

(�|−1
C (t)), the profile in which, in state s, player i

places on action ai weight Ψi�s�ai (C) is an equilibrium.
The selection of an equilibrium underΨ for each component is the crucial step towards

the ‘gluing’ of these equilibria into one global, measurable equilibrium. Fomally, define
for each player j ∈ I and each action aj ∈Aj ,

σj(ω)
[
aj
]=Ψj��(ω)�ai

(
ι(ω)

)
�

where ι :Ω→Ω/E is the quotient map. This is the measurable Bayesian equilibrium we
seek, relating the probability of player j choosing action aj at state ω ∈ Ω to the corre-
sponding value in the equilibrium selected by Ψ in the common knowledge component
containing ω. Q.E.D.
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REMARK 4.8: The proofs of several theorems in this paper will follow the general lines
of the proof of Theorem 4.7. As mentioned above, the key in many of the theorems here,
relating to some game over an uncountable state space, involves showing that this state
space can be considered to be composed of disjoint countable sets, each of which is ‘natu-
rally’ identified as the equivalence class of a Borel equivalence relation, and furthermore,
each such countable Borel equivalence class can be identified with at least one measurable
equilibrium.

Then if the defining countable Borel equivalence relation is smooth, all we will need
to do is to construct a formula α in an Lω1�ω language that ‘witnesses’ the existence of
an equilibrium over the countable Borel equivalence classes and follow the steps of the
proof of Theorem 4.7, mutatis mutandis. In several subsequent proofs, we will therefore
be satisfied with the task of constructing such a formula and rely on the rest of the proof
being obvious from that point onwards, pointing to the proof of Theorem 4.7 as showing
the way to the completion of the proof.

5. STOCHASTIC GAMES WITH COUNTABLE ORBITS

5.1. The Stochastic Games Model

The components of a discounted stochastic game with a continuum of states and finitely
many actions are the following:

• A Polish space Ω of states.
• A finite set I of players.
• A finite set of actions Ai for each i ∈ I.
• A discount rate λ ∈ (0�1).
• A bounded payoff function r :Ω×∏

i A
i → R

I , which is Borel-measurable.
• A transition function q :Ω×∏

i A
i → �(Ω), which is Borel-measurable.22

The game is played in discrete time. If z ∈Ω is a state at some stage of the game and
the players select an action profile a ∈ ∏

i A
i, then q(z�a) is the conditional (given the

past) probability distribution of the next state of the game. A stationary strategy for player
i is a behavioral strategy that depends only on the current state; equivalently, it is a Borel-
measurable mapping that associates with each state z ∈ Ω a probability distribution on
the set Ai.

For any profile of behavioral strategies σ = (σi)i∈I of the players and every initial state
z1 = z ∈Ω, a probability measure Pσz and a stochastic process (zn� an)n∈N are defined on
H∞ := (Ω × ∏

i∈I A
i)N in a canonical way, where the random variables zn�an describe

the state and the action profile chosen by the players, respectively, in the nth stage of
the game (see, e.g., Bertsekas and Shreve (1996)). The (unnormalized) λ-discounted ex-
pected payoff vector under σ , in the game starting from state z, is

γλσ(z)=Eσz
( ∞∑
n=1

(1 − λ)n−1r(zn� an)

)
� (5.1)

Let Σi denote the set of behavioral strategies for player i ∈ I. A profile σ ∈∏i∈I Σ
i will be

called a Nash equilibrium of the (λ-discounted) stochastic game if

γiσ(z)≥ γi
(τ�σ−i)(z)� ∀i ∈ I�∀z ∈Ω�∀τ ∈ Σi� (5.2)

22Where �(Ω), the space of regular Borel probability measures on Ω, possesses the Borel structure induced
from the topology of narrow convergence.
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It is well known that a stationary profile σ is an equilibrium iff for all z ∈Ω, σ(z) is an
equilibrium in the game with payoffs:

Gσ(z�a) := r(z�a)+ (1 − λ)
∫
Ω

γσ
(
z′)q(dz′ | z�a)�

5.2. Countable Atomic Orbits

DEFINITION 5.1: A stochastic game is purely atomic if it has countable orbits, meaning
that:

• For each state z ∈Ω and every action profile a ∈A, the transition measure q(z�a) is
a purely atomic measure. Denote

Q(z) := {
z′ ∈Ω | ∃a ∈A�q(z′ | z�a)> 0

}
�

• For each z ∈Ω, the set

Q−1(z)= {
z′ ∈Ω | ∃a ∈A�q(z | z′� a

)
> 0

}
is countable.

That is, from each state, there are at most countably many states it can go on to, and
at most countably many states from which it could have arrived. We use this to define
an equivalence relation whose equivalence classes are the orbits of q, namely, the transi-
tive, reflexive, and symmetric closure of Q. Under the above assumptions, each orbit is
countable.

When Ω is itself countable, the game clearly has countable orbits. When Ω is count-
able, it is well known that the game has stationary equilibria (see Parthasarathy (1973)).
Levy (2013b) showed, however, that when the state space of a stochastic game is uncount-
able, even if the game has countable orbits,23 it may not possess (measurable) stationary
equilibria.24

A purely atomic stochastic game with countable orbits in which the orbit equivalence
relation, as defined in Definition 5.1, is smooth may be termed a smooth stochastic game.
Smooth stochastic games can arise naturally in economic models, as the next example
shows.

In contrast to the negative result of the counter-example in Levy (2013b), the following
theorem provides a sufficient condition for the existence of measurable stationary equi-
libria in a stochastic game with an uncountable state space.

THEOREM 5.2: A purely atomic stochastic game in which the orbit equivalence relation is
smooth admits a measurable stationary equilibrium.

PROOF: The proof is similar to that of Theorem 4.7, as per Remark 4.8. Again, by
Proposition 3.4, it suffices to consider the case when all orbits are of the same cardinality

23The game in Levy (2013b) technically has an absorbing state with payoff 0 that can be reached from any
state, making the orbits not strictly countable, but the single absorbing state can be replaced with a set of
absorbing states; alternatively, see the related notion of S-countable orbits below.

24A different example of a stochastic game lacking equilibria appears in Levy and McLennan (2015), but in
that case all transitions are absolutely continuous with respect to a fixed measure; in particular, the transitions
there are not purely atomic.
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S. We use the language L= (+� ·�>�=�0�1�λ), much like in the earlier, but now add the
discount factor to the language, which has the assignment in (0�1) of the game’s discount
factor; over the parameter space X = R, these functions and relations have the usual
meanings. We again define a quantifier-free formula in the language Lω1�ω, where again
the indices s, t are understood to be in S; i, j are indices of players in I; ai is an action in
Ai; and a is a profile of actions in

∏
i A

i.
• The relations

∑
(·) ≥ ∑

(·), β1� � � � �βI are as defined in the proof of Theorem 4.7,
where

∑
s xs ≥

∑
s ys denotes (instead of a more cumbersome R((xs)s� (ys)s)) the summa-

bility of both series and the inequality of the sums, and βi((xai)ai∈Ai) defined in (4.2)
denotes that (xai)ai∈Ai is a mixed action of player i; also define similarly

∑
(·)=∑

(·). We
similarly write v=∑

t xt to express that fact.
• Let gs�i�a be interpreted as the payoff to player i at state s when a is the action profile,

qs�t�a be interpreted as the probability of transition to state t when action profile a is
selected in state s, xt�i�ai be the wait player i ∈ I places on action ai ∈Ai in state t ∈ S, and
vi�t denote the payoff for player i in the game beginning in state t.

• Let

ρ
(
(vi�s)� (gs�i�a)� (xs�i�ai )� (qs�t�a)

)
=
∧
i

∧
s

(
vi�s =

∑
a

(∏
i∈I
xs�i�ai

)(
gs�i�a + (1 − λ)qs�t�avi�t

))

state that at each state s ∈ S, the payoffs under the mixed action profile (xs�i�ai ) of the
auxiliary game induced by the dynamic program is vi�s for player i.

• Let

η
(
(vi�s)� (gs�i�a)� (xs�i�ai )� (qs�t�a)

)
=
∧
i

∧
s

∧
b∈Ai

[
vi�s ≥

∑
t

∑
a

(∏
j �=i
xs�j�aj

)(
gs�j�b�a−i + (1 − λ)qs�t�b�a−i vj�t

)]

state that at each state s ∈ S, no deviation in the auxiliary game induced by the dynamic
program with continuation payoff (vi�t) yields payoff no more than vi�s.

• Finally, let

α
(
(vi�s)� (gs�i�a)� (xs�i�ai )� (qs�t�a)

)
=
∧
j∈I

∧
s∈S
βj
(
(xs�j�aj )

)
∧ ρ((vi�s)� (gs�i�a)� (xs�i�ai )� (qs�t�a))
∧η((vi�s)� (gs�i�a)� (xs�i�ai )� (qs�t�a))�

that is, each player is playing a probability distribution in each state, and the profiles in
state s give the right payoffs using equilibrium strategies.

The rest of the proof follows the same lines (see Remark 4.8) as the proof of Theo-
rem 4.7, relying on the fact that, as already mentioned, stochastic games with countable
state spaces possess stationary equilibria (Parthasarathy (1973)). Q.E.D.
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5.3. Countable Orbits With Respect to Finite π-Systems

Say that a subset S ⊆Ω is Q-invariant if Q(z)⊆ S for all z ∈ S. Recall that a π-system
S is a non-empty collection of subsets closed under finite intersection. Given a finite π-
system S on Ω of Q-invariant sets, for each S ∈ S ∪ {Ω}, denote

Ŝ = S \ S0� where S0 =
⋃{

S′ | S′ ∈ S� S′ ⊆ S�S′ �= S}�
Define the S-orbit equivalence relation OS on S (actually, on Ŝ) to be the reflexive, sym-
metric, and transitive closure of the relation Q ∩ (Ŝ × Ŝ). From this, define the S-orbit
equivalence relation OS =⋃

S∈S∪{Ω} OS .
Intuitively, for each element S of a π-system S (or S =Ω), let S0 denote the union of all

S elements strictly contained in S. (Note that S0 is also Q-invariant.) Then two elements
ω1, ω2 which are in Ŝ := S \ S0—that is, in S but not in S0—are in the same S-orbit if
and only if there is positive probability of eventually reaching some state ω3 also in Ŝ
from either ω1 or ω2, by some selections of actions. In other words, S-orbit equivalence
is like regular orbit equivalence, but it takes into account only what happens in S without
entering S0.

We will say that a game has S-countable orbits if all the S-orbits are countable.
We will next show that if the game has S-countable orbits and the S-orbit relation is

smooth, then there is always a measurable stationary equilibrium over the entire state
space. The idea is that it suffices first to find equilibria in the game restricted to each ⊆-
minimal element of such a collection S , and then to do so inductively for larger elements
of S until finally one attains a measurable equilibrium for all Ω. The proof is given in the
Appendix.

THEOREM 5.3: If there is a finite π-system S of Q-invariant sets such that the game has
S-countable orbits, and the S-orbit relation is smooth, then it admits a measurable stationary
equilibrium.

EXAMPLE 5.4: N players are gambling. At each stage, a player who chooses to enter
must bet his entire wealth, and payoffs from each bet are always double-or-nothing. The
actions of the agents (as well as perhaps the wealth held by the agents at that round) affect
the odds of each player doubling his money or losing everything.

The state space is taken to be Ω= R
N
+ , the nonnegative N-tuples of real number. The

transitions are such that

q

(
N

ą

i=1

{
0�xi�2xi

} ∣∣∣ (x1� � � � � xN
)
�
(
a1� � � � � aN

))= 1 (5.3)

for all wealth levels x1� � � � � xN , and all actions a1� � � � � aN . Now, for each K ⊆N , define

ΩK = {(
x1� � � � � xN

) | ∀j ∈K�xj = 0
}
�

which are easily seen to be Q-invariant (in particular, Ω∅ =Ω, ΩN = {(0� � � � �0)}). Let S
be the π-system {ΩK |K ⊆N}; indeed, ΩK ∩ΩK′ =ΩK∪K′ . We see then that every S orbit
is of the form{(

x1� � � � � xN
) | ∀j ∈K�xj = 0 and ∀j /∈K�∃nj ∈ Z� such that xj = aj · 2n

j}
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for some K ∈N and some (aj)j /∈K ∈ R
N−K; this orbit is contained in ΩK . The smoothness

of the relation induced by these orbits follows from Theorem A.1 of the Appendix (in-
deed, a limit point of an orbit in ΩK would be a point in ΩK′ for some K′ strictly larger
thanK) and hence the game possesses a smooth S-orbit relation. As a result, Theorem 5.3
shows that if the transitions of a stochastic game satisfy (5.3), then the game possesses a
stationary equilibrium, without the need to impose further assumptions on transitions or
payoffs.

A further application of Theorem 5.3 is given in Section 6.

6. REPEATED GAMES WITH SYMMETRIC INCOMPLETE INFORMATION

The following games were introduced in Kohlberg and Zamir (1974) in the case of de-
terministic signaling in zero-sum games, and generalized to random signaling in zero-sum
games by Forges (1982). For the extension to the non zero-sum case, which is relevant to
the presentation here and other developments, see Neyman and Sorin (2003, Chapter 21)
and the references therein. For a general model of repeated games, see Mertens, Sorin,
and Zamir (2015, Chapter IV).

We first present an economic example of a repeated game with symmetric incomplete
information.

In the model here, there are a finite K manyG1� � � � �GK I-player strategic form games,
with finite action space Ai for each player i ∈ I. A game is chosen, once and for all, at
the start of play according to a prior p ∈ �(K) that is known to the players, but the game
is not revealed to the players. The game is played repeatedly, with each player observing
the actions of the other players. In addition, following a stage at which a profile a ∈∏i A

i

was played, a signal from a finite setM is received according to a distribution qk(a) onM
when the kth game was chosen.

This can be modeled naturally as a stochastic game with a continuum of states, where
the state space is Ω= �(K), the simplex of possible probability distributions over the K
games. If at any point in time the beliefs of the players about the true game are given by
p ∈ �(K) and a profile of actions a is played leading to a signal m, the new belief p′ of
the players is obtained via Bayesian updating as

p′
k = pk · qk(m | a)

K∑
l=1

pl · ql(m | a)
� k= 1� � � � �K� (6.1)

Hence, the transitions in the auxiliary game, which by mildly abusive notation we will also
denote q, can be written (by

∑
E we mean

∑
e∈E e)

q
(
p′ | p�a)=

∑{∑
k∈K

qk(m | a) ·pk
∣∣∣m ∈M

s.t. p′ =
(
pk · qk(m | a)
K∑
l=1

pl · ql(m | a)

)
k∈K

}
�



616 Z. HELLMAN AND Y. J. LEVY

Note that this probability is 0 (as the sum is empty) except for finitely many (in fact, at
most |M| many) values of p′. Hence, the auxiliary state change follows a stochastic games
dynamic. The payoffs, as a function of the new state in the game, are now given by

r(p�a)=
K∑
k=1

pkG
k(a)�

Given a discount rate λ, it can be shown (see references above) that a measurable
stationary equilibrium σ of the λ-discounted auxiliary stochastic game induces an equilib-
rium in the repeated game which depends only on the current common state belief in the
obvious way. Furthermore, if we let S = {�(L) | ∅ �=L⊆K}, then it is easy to see that the
game has S-countable orbits.

If the game is a two player zero-sum game, then it is known that a measurable equi-
librium exists, as discounted zero-sum games with general state spaces possess measur-
able value and optimal strategies; see, for example, Parthasarathy (1972, Chapter 4). For
general-sum games, the matter is open, since, as remarked earlier, discounted general-
sum stochastic games need not in general possess measurable equilibria. Furthermore,
the auxiliary game on the simplex in general, and in fact generically,25 does not possess
smooth S-orbits (when S is the set of faces of the simplex); this is shown in Hellman and
Levy (2019).

6.1. Analysis of an Example

Suppose the signal space is M = K ∪ {∅} and that there are mappings μ1� � � � �μk :∏
i A

i → (0�1) such that for all action profiles a ∈∏i A
i,

qk(k | a)= 1 −μk(a)� qk(∅ | a)= μk(a)�
That is, with probability 1−μk, it is announced that the true state is some state k, and with
probability μk, the signal is ∅. We will make the strong assumption that 1 > μK > · · · >
μ1 > 0 for all action profiles. If S denotes the vertices of �(K), then by Equation (6.1)
the game has S-countable orbits. We contend that under these assumptions, the S-orbit
relationship is smooth. Denote

δ= min
{
μj+1(a)−μj(a)

∣∣∣ a ∈
∏
i

Ai� j = 1� � � � �K − 1
}
> 0�

Define f : �(K)×∏
i A

i → �(K) by

f (p�a)=
(
pkμk(a)∑
l

plμl(a)

)
k∈K
�

In this case, transition in the auxiliary game from state p under action profile a is to
f (p�a) or to one of the pure states, with probabilities given by

q
(
f (p�a) | p�a)=

∑
�

p�μ�(a)� q(δl | p�a)= (
1 −μl(a)

)
pl� (6.2)

25That is, for a collection of (qk(a))k�a�m of Lebesgue-null and meager complement in (�(M))K×A.
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Denote F(p) := {f (p�a) | a ∈∏
i A

i}. Fixing some p0 ∈ �(K), which is not a pure state,
denote by L the support of p0, and let T := maxL and B := minL. Since p0 is not pure,
one has T > B. We contend that

lim
n→∞

Fn(p0)= δT � lim
n→∞

F−n(p0)= δB�

where the convergence is in the sense of Hausdorff. Indeed, denoting L′ =L \ {T }, for all
a ∈∏i A

i and each p with the same support as p0,∑
k∈L′

pkμk ≤ (1 −pT)max
k∈L′ μk�

and ∑
k∈L
pkμk(a) < μT(a)�

and hence

pTμT(a)∑
k∈L
pkμk(a)

−pT =
pT

[
(1 −pT)μT(a)−

∑
k∈L′

pkμk

]
∑
k∈L
pkμk(a)

≥
pT(1 −pT)

(
μT − max

k∈L′ μk(a)
)

∑
k∈L
pkμk(a)

> pT(1 −pT)
μT − max

k∈L′ μk(a)

μT(a)
> δpT(1 −pT)�

Similarly, one can show that if L′′ =L \ {B}, then

pB − pBμB∑
k∈L
pkμk

≥ pB(1 −pB)δ�

Furthermore, for each pure state δk, F(δk)= F−1(δk)= {δk}, where F−1(p)= {p′ | p ∈
F(p′)}. Hence, for all p, p′ with p′ ∈ F(p), ‖p′ − p‖∞ < 1. Therefore, since Gr(F) is
compact, we see that

C := sup
{∥∥p′ −p∥∥∞ | p′ ∈ F(p)}< 1�

Recall that S are the pure states in �(K). Denote ε= 1−C
2 and define the set

M :=
{
p ∈ �(K)

∣∣∣ ∧
k∈K
p[k] ≤ 1 − ε

}
� (6.3)

It then follows that the intersection of each S-orbit with M is non-empty and finite. (The
non-emptiness follows by considering that any nontrivial orbit must contain elements ar-
bitrarily close to at least two different vertices; since C < 1 and by the choice of ε, the
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orbit cannot ‘leapfrog’ over M .) It follows from Proposition 2.5 that the S-orbit equiva-
lence relation is smooth. Hence, the auxiliary game possesses a stationary equilibrium by
Theorem 5.3, and therefore, the original repeated game with symmetric incomplete in-
formation has an equilibrium strategy profile conditional only on the current belief over
states.

7. AN APPROXIMATION TECHNIQUE

We present here an application of Theorem 3.1, which, in addition to being useful for
its own sake, will be applied to deduce the general version of Theorem 8.2 below.

THEOREM 7.1: Let E be a smooth CBER on a Polish space Ω, let K be a compact met-
ric space, and for each n, suppose fn : Ω→ K is Borel. Then there exists a Borel mapping
g :Ω→K such that, for every class C ∈Ω/E , the sequence of restrictions (fn|C) has a sub-
sequence converging point-wise to g|C .

Note that, although Tychonoff’s theorem guarantees a limit of (fn) in the Tychonoff
topology on ΩK , the latter’s topology does not have a countable basis and hence there
need not (and generally will not) be a convergent subsequence of (fn). While it is true
that applying Tychonoff’s theorem on each class C separately would give such a function
g, doing so would not guarantee g’s measurability.

PROOF: We will apply Theorem 3.1, with parameter space X = K. Again, by Propo-
sition 3.4, we can assume all classes of E are of the same cardinality as some S. Let
d : K ×K → R+ be a metric on K. Fixing some positive weights (αs)s∈S with

∑
αs <∞

(e.g., αs = 2−s if S = N), we know that KS is compact (by Tychonoff’s theorem), and
metrizable with metric

ρ
(
(xs)� (ys)

) :=
∑
s∈S
αsd(xs� ys)�

The topology on KS is that of point-wise convergence.
Fix the language L = (=�+� ·�<�0�1� d), where d is a 2-place function symbol identi-

fied as the metric.26 Define the formula α, with undetermined variables (xs)s∈S and deter-
mined variables (zns )s∈S�n∈N,27

α
(
(xs)�

(
zns
)) :=

∧
k∈N

∨
n∈N

(
k ·

∑
s∈S
αsd

(
zns � xs

)
< 1

)
�

that is, ∀k ∈ N, ∃n ∈ N, ρ((zns )� (xs)) <
1
k

. Hence, α((xs)� (zns )) holds if and only if there
is a subsequence (znks ) of (zns ) converging point-wise on S to (xs). Let ζn ≡ fn. For any
class C of E and any bijection φ : C → S, the set Z[ζ�φ] defined in Theorem 3.1 is just
the set of limit points of (fn(φ−1(s))s∈S)n∈N, which is, by Tychonoff’s theorem, non-empty
and compact. Hence, by applying Theorem 3.1(b), there exist� andΨ as described there.
That is, � :Ω→ S is Borel s.t. for each class C of E , �|C is a bijection, and Ψ(C) is a limit
point in KS of (fn(�|−1

C (s))s∈S)n∈N. Finally, set g(ω)=Ψ(�(ω)). Q.E.D.

26Formally, we should take the space X =K ×R, identify d(·� ·) to be a metric on the product, and identify
K, R with K × {r0} and {k0} ×R for some fixed r0 ∈R, k0 ∈K.

27For this sentence, the weights (αs) should be definable in the language Lω1�ω; indeed, αs = 2−s if S = N is
suitable, as are αs = 1

|S| if S is finite.
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8. GRAPHICAL GAMES OF COUNTABLE DEGREE

Let (Ω�G) be a graph (i.e., G ⊆Ω×Ω is an irreflexive and symmetric relation). For
finite graphs, Kearns, Littman, and Singh (2001) defined a graphical game to be a strategic
form game such that Ω is the set of players and the payoff of each player depends only
on his actions and those of his neighbors in G. Formally, suppose the (finite) action set
of each agent is A. For a finite graph, letting N(g) denote the set of the neighbors of
g in Ω under the vertex relation G, the payoff function of a player g is a function ug :
A×AN(g) → R. Payoffs extend multi-linearly in the usual way.

The generalization to infinite G adds the requirement that the payoff function ug :
A×AN(g) →R is continuous in the Tychonoff topology. The existence of a Nash equilib-
rium was proven in Peleg (1969); an example showing the necessity of the continuity w.r.t.
the Tychonoff topology is also presented. (Note that the continuity implies that N(g) is
countable for each g ∈G.) However, even ifΩ has a Borel structure and the payoffs obey
some natural measurability requirements, the resulting equilibria need not be measur-
able; see Levy (2013a, Section 8).

Indeed, the model above generalizes immediately to the case in which Ω is a Polish
space, G ⊆ Ω × Ω is Borel, the degree of G is countable (i.e., for all g ∈ G, N(g) is
countable), and the payoffs are Borel. Specifically, the payoff function is a function u :
Ω×AΩ → R, understood as u(g�a) being the payoff of g when the profile a is played,
such that u(g� ·) depends only on the actions of g and his neighbors. (Formally, if g ∈Ω
and a�a′ : Ω→ A are two action profiles such that a(g) = a′(g), and a(h) = a′(h) for
each h ∈N(g), then u(g�a)= u(g�a′).)

Given these definitions, we will assume that:
• ug is continuous in the Tychonoff topology on A×AN(g).
• Whenever α :Ω×Ω→A is Borel, g→ u(g�α(g� ·)) is Borel.

DEFINITION 8.1: For a graphical game (Ω�G) over a Polish space with a Borel edge
relation E , the equivalence relation induced by the edgesG (i.e., the symmetric, reflexive,
transitive closure of E) straightforwardly satisfies the conditions for being a CBER. We
will call such a game a purely atomic graphical game.

A (measurable) Nash equilibrium of a graphical game is naturally a (measurable) map-
ping σ : G → �(A) such that u(g�σ) ≥ u(g� (b� (σ(h))h�=g)) for each g ∈ G and each
b ∈A, that is, replacing the mixed action chosen by player g by any pure action b (while
the mixed actions of the other players remain fixed) does not increase g’s payoff.

THEOREM 8.2: If the equivalence relation E of a purely atomic graphical game is smooth,
then the game admits a measurable Nash equilibrium.

PROOF: We begin with the case in which each vertex has only finitely many graph neigh-
bors. Given the similarity to the proofs of Theorems 5.2 and 4.7, we need only sketch a
proof. Each connected component of G—that is, each class of E—is countable and by
assumption smooth, and hence an equilibrium exists for each component. The existence
of an equilibrium over the entire graph is easily expressed using a quantifier-free formula
(i.e., only countable quantifiers) in Lω1�ω of an appropriate language L.28 Our assump-

28This is where we need the assumption that each vertex has finitely many neighbors, since otherwise the
payoff function can take on a different value for each of the uncountably many profiles of actions that can be
played; the logical language we have been using cannot accommodate uncountably many free variables.
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tions imply that the notion of ‘neighbor’ and the payoffs are Borel; these will constitute,
in some form, the functions ζj in Theorem 3.1. The result then follows from Theorem 3.1.

We now deduce from this the existence of a measurable equilibrium in the case in
which vertexes may have countably infinitely many neighbors. Fix an increasing sequence
of Borel subsets of Ω, Ω1 ⊆Ω2 ⊆Ω3 ⊆ · · · with

⋃
n Ωn =Ω, such that for each n and each

equivalence class C of E , Ωn ∩C is non-empty and finite; such is seen to exist by applying
Proposition 2.6, with S = {s1� s2� s3� � � �}, and setting Ωn =�−1({s1� � � � � sn}).

Fix some a0 ∈A. Recall that u :Ω×AΩ → R, understood as u(g�a) being the payoff
of g when the profile a is played. For an action profile a and element h ∈Ω, denote by ah
the action in a associated with the index h. Then, for each n ∈N, denote

un(g�a) := u(g� ãn)�
where

ãnh =
{
ah if h ∈Ωn�

a0 if h /∈Ωn�

un then satisfies the required measurability and continuity conditions, and each player’s
payoff under un depends only on his action and the actions of neighbors in Ωn.

For each n, let σn be an equilibrium of the game restricted to Ωn, with payoff function
un. For each fixed equivalence class C and g ∈C, the payoff functions u(g� ·) and un(g� ·)
are well-defined functions on AC . It follows from the continuity of u(g� ·) that, for all
g ∈G, un(g� ·)→ u(g� ·) uniformly on AC , and since AC is compact, u(g� ·) is uniformly
continuous on AC . From this, it follows that any limit point29 of σ̃n|C in (�(A))C is an
equilibrium of u over C. Hence, applying Theorem 7.1 yields a Borel equilibrium σ onΩ.

Q.E.D.

9. BETTING

9.1. Preliminaries

If (Ω�B) is a measurable space, μ ∈ �(Ω), and F is a sub-σ-algebra of B, then (see
Blackwell and Ryll-Nardzewski (1963)) a proper regular conditional distribution (hence-
forth, proper RCD) of μ, given F , is a mapping t : Ω × B → [0�1] such that for each
B ∈ B, ω→ tω(B) is Borel and measurable in F , and such that

μ(B)=
∫
Ω

tω(B)dμ(ω) for all B ∈ B� (9.1)

and

tω(A)= 1 for μ-a.e. ω ∈A ∈F �
It can be shown that Equation (9.1) implies that, for every T ∈ B,

tω(T)=Eμ[1T |F ](ω)� μ-a.e.ω ∈Ω�
In terms that may be more familiar for game theorists, a proper RCD t of a probability

measure μ may be thought of as the posterior t of a prior μ with respect to a knowledge
structure F = σ(E), where σ(E i) is the σ-algebra of Borel E i-saturated sets.

29σ̃n extends σn to a0 outside of Ωn.
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Given a type space (Ω�B� (ti)i∈I), a measure μi ∈ �(Ω) such that ti is a proper RCD
for μi given σ(E i) is a prior for ti. A common prior is a measure μ that is a prior for the
type functions of all the players i ∈ I.

9.2. Acceptable Bets

For a type space τ = (ti)i∈I on a space Ω, a bet is a list of (f i)i∈I of bounded30 random
variables f i :Ω→ R such that

∑
i∈I f

i(ω)= 0 for all ω ∈Ω. An acceptable bet is a bet that
satisfies the condition that

Ei
[
f i |ω]=

∫
Ω

f i(s)dtiω[s]> 0 for all i ∈ I�ω ∈Ω� (9.2)

Note that when the underlying space is discrete (e.g., if it is a countable component of
a purely atomic type space), there are no measurability requirements on the bet.

THEOREM 9.1: If the common knowledge equivalence relation of a purely atomic type
space is smooth, and there is an acceptable bet on each common knowledge component, then
there is an analytically measurable acceptable bet on the entire space.

PROOF: Fix a space S such that all common knowledge classes are of cardinality S; by
Proposition 3.4, it suffices to deal with the case in which all classes are of equal cardinality.
We again define a quantifier-free formula in the language Lω1�ω, for L= (+�=�>), where
again the indices s, t are understood to be in S, and i, j are indices of players in I.

• The relation
∑
(·) > 0, where

∑
s∈S xs > 0 expresses—similarly to Theorem 4.7—the

summability of a series and the positivity of the sum; we write this for clarity instead of a
more formal formula γ((xs)s∈S).

• Let

α
(
(τj�s�t)� (xj�s)

)=
∧
u

(∑
j

xj�u = 0
)∧

u

∧
j

(∑
v

τj�u�vxj�v > 0
)
�

which expresses the fact that if τj�s�t is the probability that player j associates to state t
when in state s, then (xj�s) is an acceptable bet.

The proof then follows the similar template, along with our assumption that every com-
ponent possesses an acceptable bet, with the notable exception that we must use Theo-
rem 3.1(a) instead of Theorem 3.1(b) since the collection of acceptable bets need not be
closed.31 Q.E.D.

Hellman and Levy (2017) presented an example, adapted from one in Lehrer and
Samet (2011), of a hyperfinite but not smooth knowledge space in which there is no
measurable acceptable bet on the entire space but one can construct an acceptable bet
individually over each common knowledge component. Hence, smoothness is necessary
in the statement of Theorem 9.1.

30We assume boundedness to avoid anomalies; see Feinberg (2000) and Hellman (2014a).
31It is not σ-compact in general either, which follows from the fact that the positive sequences (0�∞)N is

not σ-compact. This clearly is equivalent to RN not being σ-compact, and indeed it follows from the Baire
category theorem that any completely metrizable topological vector space is not σ-compact.
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That same example also exhibits the anomaly of a knowledge space with a common
prior which nevertheless admits an acceptable bet over each common knowledge compo-
nent, a striking situation in light of the Aumann No Disagreement Theorem. Theorem 9.2
shows that smoothness guarantees that such an anomaly cannot occur. This result was also
proved in Hellman and Levy (2017) in a different way.32

THEOREM 9.2: On a smooth type space with a common prior μ, there is no acceptable bet
for μ-almost every common knowledge component.33

PROOF: Suppose by way of contradiction that there is a subset Θ⊆Ω that satisfies the
properties that it is common knowledge for all the players, that μ(Θ) > 0, and that over
every common knowledge component in Θ there is an acceptable bet. By Theorem 9.1
restricted to Θ, one can then construct an analytically measurable acceptable bet over all
of Θ. However, Θ admits a common prior probability measure restricted to Θ, namely
μ(·)/μ(Θ). The existence of a common prior on a space excludes the existence of an
acceptable bet over the space. This is a contradiction. Q.E.D.

10. CONCLUSION AND DIRECTIONS FOR FURTHER RESEARCH

We have shown how the measurable selection theorem (Theorem 3.1) can be used to es-
tablish the existence of measurable equilibria in smooth purely atomic Bayesian, stochas-
tic, and graphical games. What other types of games are amenable to being studied under
the purely atomic paradigm?

Furthermore, all the focus in this paper is on purely atomic games and countable Borel
equivalence relations. What can be said about equilibrium existence in games that are not
purely atomic, for example, in Bayesian games in which the knowledge structures of some
players admit knowledge partitions with uncountably many states, or in stochastic games
with uncountable orbits?34

APPENDIX A: A CONDITION FOR SMOOTHNESS

For practical purposes, and to aid the reader in grasping the concept of smoothness, we
present Theorem A.1, which yields a prototypical but hardly exhaustive class of smooth
relations. Intuitively, this theorem states that as long as, within each equivalence class,
the elements of the class do not get ‘bunched up’, the equivalence relation is smooth.
A particular case of this occurs if, for some metric d, the condition infx �=y�x�y∈C d(x� y) > 0
holds for each class C of E ; one may think of this as requiring that the elements within
each class ‘keep their distance’, as witnessed by infd(x� y).

32It was shown there that under smoothness and a common prior, almost every common knowledge compo-
nent has a common prior. Hence, almost every common knowledge component cannot possess an acceptable
bet.

33That is, the union of the collection of common knowledge components on which an acceptable bet may
exist is of μ-measure 0.

34With respect to the existence of measurable Bayesian equilibria in games with continuum-many types,
Milgrom and Weber (1985) proved that such equilibria exist when players have absolutely continuous infor-
mation. Games with absolutely continuous information form a disjoint class from the class of purely atomic
Bayesian games. More details on this appear in Hellman and Levy (2017), based on Stinchcombe (2011). We
are not aware of similar results for stochastic games.
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THEOREM A.1: Suppose Ω is a Polish space and that E is a CBER such that for each
equivalence class C of E and each z ∈ C, z is an isolated point of C, i.e., z /∈C \ {z}. Then E
is smooth.

REMARK A.2: Theorem A.1 complements, to some extent, Sullivan, Weiss, and Wright
(1986, Lemma 1.1), which shows that for relations induced by a countable group of
homeomorphisms of Polish spaces, the existence of dense equivalence class implies non-
smoothness. Hence, although Theorem A.1 is not an exhaustive criterion for smoothness,
it well encompasses its spirit.

PROOF: Let (Vn)n∈N be a countable basis for Ω. For each n ∈ N, define ψn : N →
{0�1�2� � � � �∞} by

ψn(ω)= ∣∣{Vn ∩ [ω]E
}∣∣�

Each ψn is measurable, by Proposition 2.6. Our assumption that, for each equivalence
class C of E , each point is an isolated point of C, further implies that M(ω) = {n ∈ N |
ψn(ω) = 1} is non-empty for each ω; indeed, for each z ∈ C, there exists n such that
Vn ∩C = {z}, and such that the function m(·)= minE(·) is measurable.

Hence, by construction, the Borel set

E ∩ {
(ω�θ) ∈Ω×Ω | θ ∈ Vm(ω)

}
is the graph of a Borel function which is constant on each atom. It follows that E is smooth.

Q.E.D.

APPENDIX B: FIRST-ORDER AND INFINITARY LOGIC

B.1. First-Order Logic

We begin by recalling the standard notions of first-order logic; see, for example, Ender-
ton (2001). Let L be a finite base language, that is, a fixed first-order language, consisting
of:

• The connective symbols35 →, ¬, ∧, ∨, and the equality symbol =.
• A finite or countable collection of variables V .
• The quantifier symbols ∀, ∃.
• A (possibly empty) collection of constant symbols, denoted C.
• For each n, some possibly empty collection Rn of n-place predicate symbols; denote

R=⋃∞
n=1 Rn. (Equality is considered a 2-place predicate symbol as well.)

• For each n, some possibly empty collection Fn of n-place function symbols; denote
F =⋃∞

n=1 Fn.
The collection of formulae is constructed inductively in the well-known manner:
• The terms consist of those expressions created by the variables, the constant symbols,

and the function symbols by repeated composition.
• The atomic formulae are of the form R(t1� � � � � tn) for some predicate symbol R and

terms t1� � � � � tn.
• The well-formed formulae are those expressions built up from the atomic formulas

and repeated use of the connective symbols and the quantifier symbols.

35Actually, at a minimum → and ¬ alone can suffice.
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The free variables of an atomic formula are simply those variables that appear in it. If
Fα, Fβ are the free variables of formulas α, β, respectively, and v is a variable, then Fα
(resp. Fα ∪ Fβ, resp. F \ {v}) are the free variables of ¬α (resp. α→ β, α∧β, and α∨β,
resp. ∀vα and ∃vα), respectively. Variables that are not free are called bound variables.
A formula with no free variables is called a sentence.

A structure M consists of a set that is called a universe (by mildly abusive notation de-
noted also M), and assignments of a set RM ⊆Mn to each n-place predicate, an element
cM ∈ M to each constant symbol c ∈ C, and a function fM : Mn → M to each n-place
function symbol. For elements m1� � � � �mn, R(m1� � � � �mn) holds if (m1� � � � �mn) ∈RM; in
the usual inductive and intuitive way, for any well-formed formula α with free variables
x1� � � � � xn, it is well defined for each m1� � � � �mn whether α(m1� � � � �mn) holds or not. If
� is a collection of sentences such that every sentence in � is true in the structure M, we
say that M is a model for �.

B.2. Infinitary Logic

First-order logic, for all its expressiveness, can sometimes fail to enable the expression
of some of the most elementary expressions used in everyday discussions of mathematics.
A simple but striking example involves the formal expression of finiteness. One can state
that there are 5 elements, or 1028 elements in a model perfectly well in first-order logic,
but there is simply no way to say ‘there are n elements, where n is any finite integer’
by way of a first-order sentence, despite the ease with which we use such expressions in
informal daily language. Indeed, it is a well-known corollary of the compactness theorem
(e.g., Enderton (2001)) that, in first-order logic, there is no sentence φ that witnesses the
finiteness of a model; that is, there exists no sentence φ such that M is a model for φ if
and only if the universe of M is finite.

Therefore, we now extend this language to an infinitary language; see, for example,
Keisler (1971). For clarity, we adopt only the generalization we will need in this paper,
that of the language Lω1�ω. In this language, in addition to the formulae allowed above,
we allow formulae of the form

∧∞
n=1 αn and

∨∞
n=1 αn, whenever (αn)∞n=1 is a countable

collection of formulae. If Fn is the collection of free variables in αn, then
⋃

n Fn is the
collection of free variables in

∧∞
n=1 αn and

∨∞
n=1 αn. In such a case, given a structure M,

if F = ⋃
n Fn = (xj)j∈F and (mj)j∈F is a collection in M, then (

∨∞
n=1 αn)((mj)j∈F) (resp.

(
∧∞

n=1 αn)((mj)j∈F)) holds if and only if αn((mj)j∈Fn) holds for some (resp. all) n.

EXAMPLE B.1: It is a well-known corollary of the compactness theorem (e.g., Enderton
(2001)) that in the standard first-order language, there is no sentence φ that witnesses
the finiteness of a model; that is, there exists no sentence φ such that M is a model for
φ if and only if the universe of M is finite. There is, however, such a sentence φ in the
infinitary logic Lω1�ω.

For each n ∈N, let φn be the sentence

φn = ∃x1 · · · ∃xn∀y(y = x1)∨ · · · ∨ (y = xn)�
φn states that there are at most n elements. Then, let

φ=
∞∨
n=1

φn�

Clearly, M is a model for φ if and only if there is n such that M has at most n elements,
that is, if and only if M is finite.
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EXAMPLE B.2: Suppose we have the language L = (+�>�0). Let R be a structure in
which the universe consists of the real numbers and these symbols have the standard
interpretation. We can write a formula φ with countably many free variables x1�x2� � � �
such that, for anym1�m2� � � � in R, φ(m1�m2�m3� � � �) holds if and only if limn→∞mn exists
(in the finite sense). Indeed, write, for each n ∈ N,

αn(x�L�ε)= (L+ ε > x)∧ (x+ ε > L)�
and

βn(L�ε�x1�x2� � � �)=
∧
m≥n

αn(xm�L�ε)�

and finally

φ(x1�x2� � � �)= ∃L∀ε
(
(ε > 0)→

( ∞∨
n=1

βn(L�ε�x1�x2� � � �)

))
�

Obviously, in the standard first-order language over L, such a statement cannot be en-
coded, since only finitely many variables may appear in the formula.

Of particular interest for us will be the quantifier-free formulae, that is, those formulae
which are constructed without the use of quantifiers.

EXAMPLE B.3: Let us re-do Example B.2 in a quantifier-free way, with the larger lan-
guage L= (+� ·�>�0�1). Since we do not want to state the existence of the limit explicitly
in the sentence (something that would involve a quantifier), we use the Cauchy criterion.
Let

γn(x� y)= (n · y + 1> n · x)∧ (n · y < n · x+ 1)�

(i.e., |x− y|< 1
n
) where n is shorthand for (1 + · · · + 1) n times, and then

ψ(x1�x2� � � �)=
∧
K∈N

∨
N∈N

∧
n�m≥N

γK(xn�xm)�

that is, ∀K ∈ N, ∃N ∈N, ∀m�n≥N , |xm − xn|< 1
K

.

APPENDIX C: PROOF OF THEOREM 3.1

(a) Let Sym(S) denote the symmetric group on S, that is, the set of bijections from S to
S, endowed with the Tychonoff topology as a subspace of SS , making it a Polish space; see,
for example, Becker and Kechris (1996, Section 1.5). Begin with any Borel map �̂ :Ω→ S

for which �̂|C : C → S is bijective for each class C; such a map exists by Proposition 2.6.
Define a correspondence Λ :Ω/E → Sym(S)×XFU by

Λ(C) := {(
σ�xFU

) ∈ Sym(S)×XFU | xFU ∈Z[ζ�σ ◦ �̂|C]
}
�

By assumption, for all C ∈ Ω/E , Λ(C) �= ∅. This correspondence Λ has a Borel graph;
indeed, define two Borel subsets of Ω

E × Sym(S)×XFD ×XFU by

W =
{(
C�σ�ζ[σ ◦ �̂|C]� z

) ∣∣∣ C ∈ ΩE �σ ∈ Sym(S)� z ∈XFU

}
�
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and

V =Ω/E × Sym(S)×Z�
V is clearly Borel; to show thatW is Borel, note that we can write ζ[σ ◦�̂|C] = σ∗(ζ[�̂|C]),
where σ∗(x)j(s1� � � � � sNj ) = xj(σ

−1(s1)� � � � �σ
−1(sNj )) for x ∈ XFD . The mapping Ω

E →
XFD given by C → ζ[�̂|C] is shown to be Borel by Proposition 2.6.

Then Gr(Λ) is the projection of W ∩ V to Ω
E × Sym(S) ×XFU , and this projection is

injective on W . Hence, by the Aumann Selection Theorem (see the version of, e.g., Wag-
ner (1977, Corollary 5.2) or Kechris (1995, Theorem 18.1)), there exists an analytically
measurable selector (σ̂�Ψ) of Ŝ. Define � :Ω→ S by

�(ω) := σ̂(ι(ω)) ◦ �̂(ω)�
where ι :Ω→Ω/E is the quotient map; �, Ψ is then the desired pair.

(b) In this case, take �= �̂ and define the simpler correspondence Λ :Ω/E →ΩFU by

Λ(C) := {
xFU ∈XFU | xFU ∈Z[ζ��|C]

}
�

Λ is now a correspondence with non-empty σ-compact values, and a Borel graph, which
has a Borel-measurable selection Ψ by the Arsenin–Kunugui theorem (see, e.g., Kechris
(1995, Theorem 35.46)).

APPENDIX D: PROOF OF THEOREM 5.3

We may assume that the system S is closed under finite unions and that Ω ∈ S ; this
completion of the system preserves S-orbits. (Note that if S ∈ S can be written as a union
of strict subsets in S , then there are no S-orbits as Ŝ = ∅.) By assumption, each S ∈ S is
Q-invariant, hence we may consider the stochastic game restricted to states in S, denoting
this game by �S .

We construct equilibria on (�S)S∈S in such a way that if σS , σT have been constructed for
S�T ∈ S , then they agree on S ∩ T ∈ S (and, hence, we have defined an equilibrium σS∪T
on �S∪T ). For each minimal set S ∈ S , the orbits of �S are countable, hence an equilibrium
σS exists on �S by Theorem 5.2.

From here, continue inductively: fix S ∈ S such that the equilibrium has not yet been
constructed but has been constructed for the unique maximal subset T ∈ S of S.36 Denote
Ŝ := S \ T . Define an auxiliary game, with the same sets of players and actions, by (see
Figure 3):

• Ω′ = Ŝ ∪ (Ŝ× T)∪ {∅}.
• Payoffs r ′, for all a ∈∏i A

i, given by

r ′(s�a)= r(s� a)� ∀s ∈ Ŝ�
r ′
(
(s� t)� a

)= γλσT (t)� ∀s ∈ Ŝ�∀t ∈ T�
where γ was defined in (5.1), and

r ′(∅� a)= 0�

36Such a unique maximal subset of S in S exists as we have assumed that S is finite and closed under finite
union and intersection.
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FIGURE 3.—Transitions in the auxiliary game in proof of Theorem 5.3.

• Transitions q′ given, for all a ∈∏i A
i and for all s� s′ ∈ Ŝ with s �= s′ and t ∈ T , by

q′(z | s� a)=

⎧⎪⎨
⎪⎩
q(z | s� a) if z ∈ Ŝ�
q(t | s� a) if z = (s� t)�
0 if z = (

s′� t
)

or if z = ∅�

and

q
(∅ | (s� t)� a)= q(∅ | ∅� a)= 1�

This auxiliary game has countable orbits—every orbit of the auxiliary game is contained
in a set of the form C∪ (C×Q(C))∪{∅}, where C is an S-orbit of the original game—and
hence an equilibrium σ ′ exists by Theorem 5.2. Now, if we define

σS(s)=
{
σT(s) if s ∈ T�
σ ′(s) if s ∈ Ŝ = S \ T�

then σS is an equilibrium of �S , which is what we were seeking.
Continuing in this way, we eventually construct a measurable stationary equilibrium of

�Ω, which is the original stochastic game with which we began.
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