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ABSTRACTS

An upwinding-biased finite-volume implicit high-order technique has been implemented
on unstructured grids for supersonic compressible flows. The method utilizes a Point-
Gauss-Jacobi and a Point-Gauss-Seidel implicit scheme to improve the efficiency of
computation. High-order spacial accuracy is also achieved by the use of the method of
linear reconstruction of the variables proposed by Barth & Jesperson and the method of
variable extrapolation MUSCL approach ( Monotone Upstream-centred Schemes for
Conservation Laws ) of van Leer. The above techniques have been applied to the
supersonic corner flow. Comparisons of the efficiency and accuracy between: explicit and

implicit scheme; first-order and high-order schemes have been made.
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1.Introduction

Recently, the use of unstructured grid techniques associated with the finite-volume
method for Computational Fluid Dynamics (CFD) calculations has become more
widespread, due to the flexibility they afford in discretizing arbitrarily complex
geometries (for example, a complete airplane), and also due to the possibilities they offer
in resolving highly localized complex flow phenomena through the use of adaptive mesh
refinement or mesh moving techniques. Here, a brief survey of the application of the

unstructured grid technique to CFD is given.

In 1986, Jameson et al [1] reported some very positive results for the computation of
inviscid flow over a complete aircraft on unstructured grids using a finite-element
method. They used an explicit multi-stage Runge-Kutta method with central differencing
and artificial viscosity. Mavriplis [2] employed a similar approach together with a multi-
grid technique in order to obtain faster convergence. Morgan and Peraire [3] in 1987 used
the Taylor-Galerkin method in conjuction with unstructured grids to deal with a wide
range of CFD problems. Also in 1987, Peraire et al [4] developed an adaptive remeshing
algorithm for the application of unstructured grids to CFD. Since then more attention has
been paid to a combination of upwinding technique and unstructured grids. In 1987,
Stoufflet et al [5] proposed an upwind scheme for the solution of Euler equations using
unstructured grids in 3-D. Thareja et al [6] in 1988 developed an unstructured upwind
scheme for the solution of Navier-Stokes equations. Barth & Jesperson [7] in 1989
provided a promising basis for the implementation of upwinding on unstructured grids.
Batina [8] used van Leer’s flux vector spliting method for the solution of Euler equations
on unstructured grids. The main disadvantage of employing unstructured grids is the
increased computational time. One method to improve this is to use multi-grid techniques
[2][9]. The other is to adopt implicit schemes [10-12] to speed up the convergence.
Thareja et al [10] reported on an upwind finite-element technique that uses cell-centred
quantities and point implicit schemes. Batina [11] used implicit Gauss-Seidel relaxation
scheme for unsteady aerodynamic analysis on unstructured meshes. Hwang and Lin [12]
proposed locally implicit TVD schemes on triangular meshes. More recently Batina [13]
gives the results of transonic flow around Boeing 747 airplane by application of implicit
upwind schemes (PGS and PGJ) on unstructured meshes.

In the present paper, the implicit schemes, Point-Gauss-Jacobi and Point-Gauss-Seidel,
are used associated with the Roe and Osher flux methods to improve the explicit Euler/N-
S code on unstructured grids [14]. To obtain high-order spatial accuracy, both the linear
reconstruction of variables [7] and the variable extrapolation methods [11] (MUSCL



approach) are used. To validate the present code we chose supersonic flow passing a
compressible corner as there exists analytical solution for comparison. The results show

obvious improvement on the convergence when using an

implicit scheme and the accuracy is also improved by using high-order schemes.

2.Unstructured Grid Generation

Generation of quality unstructured grids founds a basis for the success of flow
calculations using this approach. In this work a two-dimensional unstructured grid
generator, developed by Peraire using the advancing front technique, is employed to form
a set of triangular elements over the whole flow domain. The approach consists of the
construction of a background grid and the specification of a boundary condition. This is

all required by the advancing front technique. A more detailed description of this mesh
generation technique is given in Ref.[14].

3.Mathematical Model of the Euler/N-S Equations

3.1 Euler Equations in 2-D

The Euler equations in a Cartesian system of two spatial coordinates in conservation form
can be expressed as:

oU OF, oF,
+—+—=

o ax  dy (3.1)
The expressions for the unknowns and fluxes are
P pu ( pv
u u’+P vu
U= P F = P B = p7
pv puv pv-+P
pe u(pe + P) v(pe + P)

3.2)
where P,u,v,P and € are the density, velocity components in Cartesian coordinates,
pressure and specific total energy of the flow, respectively.

Pressure is related to other variables using perfect gas assumption

P=(y- l)p[e —%(u2 + VZ)J

(3.3)
where 7 is the ratio of the specific heats, i.e ¥ =Cp/Cv
The speed of sound c¢ is related to the other variables through
2_9P
- /p (3.4)



3.2 Navier-Stokes Equations in 2-D

The flow of a compressible heat conducting viscous fluid is governed by the full Navier-
Stokes equations. These equations represent the conservation of mass, momentum and
energy. The N-§ equations in non-dimensional form can be expressed as

U _9F _JF, _ 3G, _ 3G,
e = +

ot ox ay ox ay (35)

In the above equation, the definition of the vectors U and Fi (i=1,2) are the same as given
by equation (3.2). The entries for the vectors of viscous fluxes, Gi (i=1,2) are

0 0
1 T.. 1 T
Uy = s - G, = ' "
Re,, txy Re., ’ny
UT,, + VT, — 0, UTyx +VTyy —dy (3.6)

where Re€w is the free stream Reynolds number based on the representative length L, 1.e

Poli L

T represents the stress tensor and q the heat flux vector, which are given by the
constitutive equations for a Newtonian fluid

7 ;

Re, =

ox ax ay
Tyy = Tyx = _8_E+8_v
v T TGy o
v 2 du v
Ty S2U———H =+
' By 3 ox dy (3.8)
R B T 4
S T T (=) MEPr ox
oT 1 oT
g ==tle Ll . B I
oy (y-1) MZPr dy
where the coefficient of viscosity M is calculated as
3
“=(1+sj'Té S:110.4
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4. Solution Algorithm

The solution algorithm employed in the present paper is an implementation of the Finite-

Volume method on unstructured grids.

Generally the compressible Navier-Stokes equations are written in the conservation form
—t—+ === +
ot ox ay ox ay (4.1

where U is the vector of unknowns and Fi and Gi (i=1,2) denotes the inviscid and
viscous fluxes respectively in the direction xi of a Cartesian coordinate system Ox1x2.
(see equations (3.2),(3.6)).

The solution domain €2 is discretized by an assembly of triangular elements. Over a

single element £2¢ | the integral form of (4.1) is

[ Wyoo] (20,95 % 5\,
Q ot ol dx dvy I 9y

= [ n(G - Far i=12
T, (4.2)

by using the divergence theorem.

Where: n=(n1,n2) denotes the unit vector outward normal to the boundary I'e of control

volume €€,
[ See Figure 4.1 ]

Assuming a piecewise constant distribution of the unknowns Ue on each element Qe |
Eq(4.2) may be approximated in the form as
At
AU, =UI*tl_yl = Q—C(FI +GY)
e (4.3)

n
. !
Where: ~€ denotes the valus of Ue attime t =1

: s 1+1 n
At = "1 — "5 the time step between t' and t

FI and G * denotes the inviscid and viscous contributions respectively.

4.1 Upwinding Flux-Difference Scheme (inviscid contributions)

. s 3 . I . '
To evaluate the inviscid numerical flux F, two types of approximate Riemann solver



developed by Roe [15] and Osher [16] are applied locally at each interface between cells,

assuming a local Riemann problem in the normal direction at interface.

o . I .
The inviscid contributions F~ are given by

Fl = jre —nFEdl =- jr’ F,dr (4.4)

and can be evaluated by summing the contributions from each individual element side I'es

in turn. In this evaluation the normal flux Fn is replaced by a numerical flux Fy | so that

Fl=- Fdr
; jfes (4.5)

4.1.1 Numerical Flux of Roe [15]

The numerical flux of Roe can be written in terms of two discrete Riemann states ( left

and right ), with respect to an interface as:

1
FI(UL,UR) = FI(UL)+FI(UR) _IARoei(UR - UL)] (4.6)

Where: ARoc is the flux Jacobian evaluated using Roe’s average fluid states. The absolute
value symbols indicate that the absolute value of the eigenvalues were used to evalute
ARoe

- |AReel . . .
Matrix l Roel  can be decomposed in terms of its eigenvectors and eigenvalues as

[ARoe| = RINR™! @.7)

Where: R,R—1 denote the right and left eigenvectors respectively. A is a diagonal matrix
containing the eigenvalues Ai of ARee. Details about the formula can be found in

Ref.[14] and [17].

A

The mininum allowable value for ™1 is restricted according to the method proposed by

Harten [18] and is such that:

i 2,

=1 2
I O'S%AHK) i< 4.8)

€s . .
where ~A is the eigenvalue limiter.




Explicit Scheme:

An explicit scheme results from an evaluation of the forms in equation (4.6) at time level

n. Hence, the formulation using Roe’s numerical flux will take the form

At, Lrem , g _Jam la gy
AU, = ;{E[Fe £ =g oy -] s,

4.9)
where the subscripts e and r denote the value at the current element and neighbouring
element respectively, Ose is the length of the side T'es  Details about the explicit scheme
can be found in Ref.[14].

Implicit Scheme:

If the inviscid contributions are evaluated at time tn+1 , equation (4.6) leads to the
implicit scheme

— Arg l n+l n+l
Al = Q, 92{2[F th

n+l
ARoe

(U:H—l _ U:+l )]}55'3
(4.10)
Linearization of the equation for the values of the unknowns and fluxs at time level (n+1)

in the terms of the time level (n) result in

Uttt =l + AU, 110
U = Up + AU (4.11b)
Y =E + AlAU, “.110)
E" = E" + AlAU, (4.11d)
Replacing the above expressions into equation (4.10), result in
AU, = —AQ—:“ > {%[Fe" + ATAU+ " + A"AU, -[AR U + AU, - U" —AUe)]}ase

It can be rearranged as

AU, = ‘?;CZ{%[F? + Frn _IAgoel(U;‘ - Ug )]}83e
€ Se

At 1l m o
- {E[AeAUe + AMAU, -[a2 AU, - AUG)}}SSG

¢ Se

n
A Roe
(4.13)
The first term on the right hand side of the above equation is equivalent to the right hand

side of the explicit formulation given by equation (4.9). Also
S [AAU, J6s, = Y AF8s, =0
Se

Se

(4.14)
Denoting the right hand side of equation(4.9) by RHS,, and using equation (4.14), then

equation (4.13) can be written as



AUezRHSexp—é—tEZ{%[(A“ ~|ARee l) }}856

_A
o [ AD AUe}Sse
Qe SeL2
(4.15)
This equation can be rearranged as
A[ ;08 Ié‘sf.’ AUe = RHSL“( - A[E z[(Afn ROE )AU ]5
2 A (4.16)

The above system of equations can be solved in each time step, using a Point-Gauss-

Jacobi procedure given by

[1 4+ A Z‘Akm

b

ArJ)AU; ]552

AU™ = RHS" — 2 (42 -
P2Q, %
% (4.17)
Alternatively, one can use the latest available value for the neighbouring elements and
arrive at a Point-Gauss-Seidel scheme. In this case, the linearization is only performed for

the values and fluxes at the current element. That is to say equation (4.10) may be written

:+1 )]}SSe
(4.18)

Replacing from equation (4.11a),(4.11c) and (4.14) into the above equation and

as

At 1 %
AU =3¢ {;[Pe““ T
e Se <

rearranging results in
A + n "‘ n
{[WL vgtzg ZIAR(,J‘S "}AU” = Z[F F e (U’ =0 )}5
ek (4.19)

where the terms denoted by an asterisk are evaluted using the latest available values of the

variables.

4.1.2 Numerical Flux of Osher [16]

The numerical flux of Osher in terms of left and right states is defined as

1 URr
F(UL,UR) = — F(UL)+ F(UR)—JU IAOsherldQ
2 L (4.20)
where the fluxes at the right and left states are calculated in the same way as in Roe. The

integration in the above expression is performed by the procedure given in Ref. [16][17].



Considering 2-D flow, there are four characteristic fields of which the two corresponding

to A5 3 are identical. The invariant functions are:

For 7\1 = Un +C

2
¥l = U, ——=2
y-1
¥} = Pp?
I _
=Y 4.21)
For A23=Up
w23 _p
2.3
T = U (4.22)
For ;‘4 = Uy~
\Pl4 =U, +- &
Ly—1)
W = Ppfp?
4_
=Y (4.23)

In the above expressions, Un and Vt are the normal and tangential velocities to the cell
side defined as
Up =uny +vn,

Vi= _uny+vnx

(4.24)
The local speed of sound is given by equation (3.4).

The first and fourth characteristic fields are genuinely non-linear and the second and third

are linearly degenerate. The path of integration in the state

space is as shown in Figure
4.2.

By writing the invariant functions along each subpath, we obtain eight equations which

can be solved to get the eight variables that define the value of intermediate points. They
are

[VT'I((U,, )= (U),) +e + q_l]

1 1

)27y 2
C,'_I 1 + 1)1 px—l
B p;

y=1)
=)

Pisy

(4.25a)
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{y=1\
15

-3

-1
[YT((UM),' -W,))+ ¢+ Ci—lJ (1)

1
P Piy

| —

(4.25b)
y Y
Pi-2/3 Pi-1/3
B3 =P_13=R_ ('#J = B [1‘/}
i-1 Pi (4.25¢)
2
(Un)di-2/3 = (Up)i _E(Ci—l =Ci-23) = (Up)i_yy3 =
2
(Up); + E(Ci = Ci-13)
(4.25d)
Mi—23 = Vi (4.25e)
Mi-1/3 = (V); (4.25f)
The sonic points (denoted by a prime) are determined by a similar procedure. There is no
sonic point on the second subpath. For the first and third subpaths, there are
-1 2 )
(Un)di—23 == (Up)i_ ——Ci-1
TN s ke (4.262)
) b |
A2 ) [=WUn)ioz )|
Pitop3” =|——/—=pi_i
Ci—g (426b)
; Y
, Pi-2/3
By = Pi—1(—l.—/J
Pi—1 (4.26¢)
Wiz = Vi (4.26d)
Undicts = 1| W)y - —2g; |
= — — —:
(Up 1-1/3 v+ n’i v—1 1/ (4.26¢)
y-1 y-1
A2 ) _[=UDicis T
Pi~y3* = = i
i (4.261)
; Pi-1/3
Pi—l/BZPi( - ./ )
i (4.26g)
Wi-13 = Vp); (4.26h)

Having determined the intermediate and the sonic points, the integration can be carried out
using the form in Ref.[16].

11



Explicit Scheme:

The explicit time stepping formulation can now be written as

o B T b
Q, <2 2 (4.27)

Implicit Scheme:

The numerical flux of Osher in fully implicit form can be written as

Fn+1 U U _}_ Fn+l U FIH-I U _ U;“IA d
( L* R)"'z ( L)+ ( R) U,':H' Osher Q

(4.28)
Linearization of the type given by equation (4.11a)--(4.11d) requires an evaluation of the

Jacobian matrix A , which for this numerical flux proves to be a tedious procedure.

Another approach, which leads to a much simpler formulation, is used to determine the
left hand side of the implicit system of equations by replacing the numerical flux of Osher

with a flux vector splitting.

Considering the flux vector splitting scheme of Steger and Warming [19] , which can be

expressed as

F(U,Ug) = F*(UL)+F (Up) (4.29)
For an implicit formulation, this equation can be linearized and written as
aF () \' IF (Ug) )
F" (U, Ug) = F" (UL Ugp)+ (——L] AU; + {——R-j AUg
9, IUR (4.30)

The Jacobian matrices in the above equation can be approximated by
JF* (UL) [aF(UL) ]* +
= = AL

JUL oUL (4.31a)
9F (Up) _ [BF(UR)]_ e
dUg loug J 'R (4.31b)
Substituting these expressions into equation (4.30) results in the following linearization
F"* (U, UR) = F* (UL, UR) + AJAUL + AxAUR 432)
The jacobian matrices in the above expressions are defined as
AY =RAR™ (4.33a)
A =RAR" (4.33b)

Where A and A are the diagonal matrices of positive and negative eigenvalues
respectively, 1.e
AL = max(0, ;)

1

12



X, =min(0,4;)

The definition of R,R™ are the same as those in Roe’s flux.

Now the term at time level n on the right hand side of the above equation (4.32) is
replaced by the numerical flux of Osher in its explicit form. Hence the linearised implicit
finite volume formulation will be given as
AU, = RHS,, - 2= 3 [ 4*AU, + ATAU, 55,
" (4.34)

where the term RH S, represents the right hand side of equation (4.27).

Taking all the terms depending on AU, to the left hand side results in the following
Point-Gauss-Jacobi iterative procedure
I +AILZA:5SL, AU = RHS! - Al > [AAur)ss,
2 T A% 4.35)

Similiar to that of the numerical flux of Roe, an alternative Point-Gauss-Seidel

e Se

formulation can be obtained by using the latest available values (denoted by asterisk) to
determine the fluxes at the neighbouring elements. In this case equation (4.34) is written

as

dQ}}&E AL 3 [AravU, s,
Q, % (4.36)
AU

At, 1 . - U
AU = Q4 {E[Fe th —J'v: Ao

e can be written as

dQ}}SS
4.37)

On rearranging this equation and factorising the terms containing

A[e Y _ A[e 1 n B U:
Lo e A O N R

e Se

4.2 Central-Difference Scheme (viscous contributions)

Differing from the inviscid terms, which are discretised using the upwinding scheme, the
viscous terms are always discretised using a central difference type scheme because it

plays a parabolic or elliptic part in the compressible flow equations.

The definition of the viscous terms is given in equation (3.6), for a cell side s , the
numerical viscous flux is calculated using the average value of the variables in the left and

right elements, that is
ug =0.5(ug, + uR)

Vg = O.S(VL+ VR)
TS = OS(TL + TR)
(4.38)

13



The required values for | is obtained by using Ts in equation (3.9). Hence the viscous

contributions to equation (4.3) are

0
2 1 (Ttl’)S
G = '
1 I{eoq (T_\} )S
U (7)), +v (), —(q.); (4.39a)
0
Gr--L. e
2 Rew (T_\;v )S
u(7,), +v,(1,,), = (q,), (4.39b)

The normal viscous fluxes with respect to a side with outward normal vector

are therefore written as
\Y4
(Gl )n = 0

1
GY )y = ?[(IXX)SnX + (Tyx shy |

1
(Gy)n = 'Re_[(fxy)snx * (Tyy)sny]

1
(GZ n = E{[US(TXX )s +Vs(Tay)s — (@x )S]n" - [uS(Iyx s+ Vsltyy)s = (ay )S]ny} (4.40)

where subscripts denote an evaluation at the sides.

Referring to equation (3.8), the viscous stresses are determined from

du 2 du o
Valy = 2“5(5;j 3“((3‘) (a—J ]
S PP (4.41a)

(Txy)s = (Tyx)s = Hs([g_sl * (%l]
ov) 2 [fu) (av)

(tyy)s = 2“5[5)5 _3“3[\87)3 T [@)S] (4.41¢)

It is clear that the evaluation of the viscous contributions to the right-hand side of (4.3)

(4.41b)

requires a knowledge of the first derivatives of quantities, such as the velocity

components (u,v) and the temporature T.

4.2.1 Method 1: Arithematic average

The necessary first derivatives can be obtained by the same method as Ref.[14] in which
the gradients are determined by Green’s theorem along the path including side s [see

Figure 4.3 ].

14



Based on the Green’s theorem, one can obtain the gradient from

R § unydr

=% u-n
Qox r-x (4.42)
(Here we take a scalar variable u with respectto x atan element side s for example. )

Assuming a constant distribution of the gradient over this
(n1 ->n4—n2—-n3—nl), the left side becomes

du
.0
(&X‘)s

where € is the area of this domain.

domain

The right side integration is evaluated along the path s, which can be represented as 4-

subpath. Assuming each variable is constant along each subpath and is replaced by an
average value, i.e

N4 - N2 N3, _ NI -
fru- nydl= | (u- n)l4ds+fN4(u- n)42ds+fN2(u- n)23ds+JN3(u~ n) ds

31
uij IO.S(Ui+UJ’) (443)
thus the gradient /9x is completely determined by writting

(gl\_‘} = %[(lﬁ Fu )y, —y)+ (uy + )y, = y,)+ (y +u3)(ys - Vo) + (g + u)(y, =y, )]

(4.44)
For the gradient ¢fdy using the similar procedure, we have

(%) = 515[("1 +ug ) = x,) + (uy +u, )(x, —=X) + (U +uy)(x, —x,) + (Us + 1 )(x; = x, )]

(4.45)
In the above expression, it requires the knowledge of the value of variables at node points

n3 and n4. As we can see later, this will also be needed for the high-order construction.

We can calculate this value simply from the average of flow variables for all elements
surrounding the node, i.e

(4.46)
Unfortunately, for a strongly stretched grid, in a region where area of an element changes

suddenly, there will arise some errors when using the above formulation. Hence we have
atempted to use a

weighted average method instead of this simple average method.

15



4.2.2 Method 2: Weighted average

A more accurate gradient estimation at side s can be obtained by weighted average

Vi = o VI + 0rVig (4.47)
where f is physical quantity (i.e u,v, orP);

and @ is the area ratio of right triangular (n1 —-n4—n2) to quadrilateral
(n1 »n4—>n2—-n3), and wg is defined similarly.

Vfi and Vfg can be evaluated separately by the Green’s theorem along its
integral path, i.e for the left side integral path this is (n1 »n2—n3—nl), and for right
side integral path this is (n1 »n4—n2—nl).

Also a more accurate node value estimation can be obtained using a weighted average (see
Fig.4.4).

=1

o = X0y =5

i DA

=l

i
A=) A

VAN

)= (4.48)

This implies that the smaller the area Aj (i.e the nearer the point fj to node), the greater it

affects the value of that node.

The above expressions define the explicit evaluation of the viscous contributions. The
complete formulation of the explicit scheme is obtained by combining the viscous
numerical fluxes and the inviscid numerical fluxes into the right hand side of equation
(4.3).

Implicit Scheme:
A point implicit time integration scheme can be obtained by linearising the viscous

contributions as
Gg+l = Gg + BgAUe (449)

where Bg is the Jacobian matrix of the transformation.

Replacing the above linearization into the general finite volume formulation and

rearranging the terms results in

16



- - !

At,

{LHSiv - zsgase}AUe = RHS,, + ge ¥ G"8s,

eSe eSe

(4.50)
where LHSiv and RHSiv denote the inviscid contributions to the left hand side and

right hand side respectively.

The inviscid contributions, depending on the type of the numerical flux (i.e Roe’s or
Osher’s) are given in equations (4.17),(4.19) and (4.35),(4.37) respectively.

In order to calculate matrix Bg » We use another method called the variational recovery

process to obtain the first derivatives. In this process the derivatives are represented in a
piecewise linear manner over the computational domain, i.e for variable f , we have

f=3tn Lap Xy,

. i Lo (4.51)
where Pe is the piecewise constant shape function associated with element e and Ni is
the piecewise linear or bilinear shape function associated with node, I, with the no
placed at the vertices of the elements. The nodal values of the derivatives are obtai

from the integral statement

of oN
jggdeQ = [N, dI - fgfﬁdQ

des

ned

(4.52)
By inserting the approximation (4.51), the result is that
_8i = ;[jrnikadI“— ZJQE f, %d&):,

il (ML) e X (4.53)

where the summation appearing in this expression extends over those elements e which

are associated with node k, and M denotes the standard lumped mass matrix. For a

general mesh it is thus possible to write

of .
a_ = fxlk - Z bkefe
X1 k e
of -
2 = Lo — zckefe
X2 e (4.54)
where f;)} and f; 5 denote the boundary terms and
~ 1 oN
by = o, =XdQ
(ML )k ¢ axl
- oN
Cke = .‘.Q “de
(M), ™€ 9, (4.55)
Now consider the linearization of the viscous terms for element E. In particular, consider

the contribution from a side s which has associated nodes M and N, then

17



( j =—|fum — EbMe - byef + N — ZEBNefe
e#

[ j — 2 CMefe —CMmEefE +fion — ZCnefe

aXv S ezE e#E

and an evaluation at time t“+1 can be obtained in the form

n+l n
— | —bepAf,
0x; ]s (am J TR

1

n+l
- CSEAfE
(axa l (E)xf, Js

bsg = 0.5(bye + bg)

Csg = 05(5ME +6NE)

where

— befe

—Cnefg

|

(4.56a)

(4.56b)

(4.57)

(4.58)

Elements of matrix Bs are determined by using equation (4.57) as adapted for velocity
components and temperature and substituting the resulting expressions into equation

(4.40).

Detailes of the derivation can be found in Ref. [17]. The result is that

Bll =B =Bj3 =By =0 By = (§15uiE +dosure)/ PE
=—0i5/pE By =—0s5/pE Bo4 =0

B31 = (¢3SU1E +045U3E) / PE =—035 / PE

By = —Y¢7s[(U12E +u3p)" - (PE)?;]/(P?:)2 +ufEdss / PE + U2EPes / PE

By, = —0ss / PE + Y975UiE / PE B3 = =065 / PE +Y075U3E / PE

By = —Y07s / PE

where
015 = au(4n;bgg / 3+ ny¢sg)

0rg = 0(=2nCsg / 3+ nobgg)
035 = ou(nCsg — 2n,bsg /3)
045 = a(n;bsg +4nycsg /3)
Oss = (ursis + uzsP3s)

Bes = (u1sPas + UzsPss)

075 = on;bsg +nycsg) / Pr
o=Ug/Re

In these expressions Re and Pr denote Reynolds and Prandtl numbers respectively.
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Since the viscous terms on the right hand side of equation (4.50) are evaluated at time
level n, the procedure is equivalent to a Point-Gauss-Jacobi iteration for the viscous
terms. It also can use the most recent values to determine the viscous contributions to the
right hand side and result in the Point-Gauss-Seidel scheme. For a P-G-S scheme,
linearization given by equation (4.49) is replaced by

Gi*! = Gg + BgAU, 4.61)
where, as before, an asterisk represents an evaluation using the latest available values.
Apart from using the latest values of variables, details of treatment will be similar to that
of the P-G-J iteration, i.e the resulting equations can be obtained by substituting the
superscript n with * for the elements surrounding the current element in equations
(4.50),(4.57).

To avoid complexity one can chose By instead of Bs , so that the evaluation of the matrix
Bs remains unchanged. Otherwise, in order to have a compatible Gauss-Seidel
formulation, evaluation of gradients in G* must be re-calculated as soon as the relating

unknowns are updated. That is

Vi, = VE +ogVi, (4.62)

5.The Treatment of the Boundary Conditions

The treatment of the boundary conditions of a multi-dimensional flow can be performed
by analogy with the one-dimensional case. The number and type of conditions at a
boundary of a multi-dimensional domain are defined by the eigenvalue spectrum of the
Jacobians associated with the normal to the boundary. This defines locally quasi-one-

dimensional propagation properties.

5.1 Boundary Condition for the Euler Equations

All the boundary conditions used for the exterior boundary are based on the method of
characteristics. For the wall boundary, both the method of characteristics and
extrapolation from the interior flow field are used.

At the exterior boundary, we wish to minimize the reflection of outgoing disturbances.

Consider the flow normal to this boundary. Assuming it to be locally one-dimensional,
we introduce the fixed and extrapolated Riemann invariants according to 1-D Riemann
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relations
R. =q.0—-2c,./(y-1)
R, =qcfi+2c. /(Y- (5.1)

corresponding to incoming and outgoing characteristics. The normal velocity and local

speed of sound may thus be determined by
q-0=0.5(R, +R.,)

c=0.25(y-D(R, -R.) (5.2)
Two other independent conditions are needed to complete the definition of the outer
boundary condition.These are given by the values of tangential velocity and entropy. For
an outer flow boundary these are extrapolated from the interior values, whereas for an

inflow boundary they are set equal to their freestream values.

At the inner boundary, i.e a solid wall, the appropriate boundary conditions are the
wallslip boundary condition, which means that the normal component of the velocity to

the wall is zero. This can be implemented numerically in two ways, as follows.

(a) Strong Formulation

To specify the values of the unknowns, a set of imaginary elements is introduced inside
the wall boundary. The values for the variables for these elements are set so that the

average interface value satisfy the tangency condition. i.e Un=0

The values of the other two parameters (density and pressure) are taken to be the same as

the values inside the domain.

(b) Weak Formulation

Using the velocity tangency condition in equations Fn
pU,

_|pul, + P,
" pvU, + Pny
U,{pe+P) (5.3)

i.e Un=0, then the fluxes at the wall are obtained in the following expression
0

2 (5.4)
It is necessary then to determine the pressure at the wall. This also means only the

pressure contribution remains at the walls.
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Various methods can be applied in order to obtain the wall pressure.
Method 1: Characteristic Relations

Variables other than the normal velocity, in particular the tangential velocity, the pressure
and the density, can be obtained from the interior domain by applying the Riemann

Invariant. Through those relations we can find out the pressure at the wall.
Method 2: Extrapolation

This 1s a simple and efficient approach, whereby an extrapolation of generally 1st-order
or 2nd-order, is applied from neighbouring elements to the wall. For the explicit scheme,

the numerical fluxes of equation (5.4) can be imposed directly at the sides on the wall.

For the implicit scheme, however, further care is needed. The Jacobian matrix of the
transformation Ue ---> Fw must also be used on the left hand side of the implicit

equation system. It is

0 0 0 0
2,2
us+v
2 nx —‘Unx —an —nx
Aw =(y-1D By
2 ny —Uny —Vny _ny
0 0o 0 0 (5.5)

As an example the implicit formulation for an element adjacent to the wall using the
numerical flux of Roe is explained. Equation (4.10) is now written as

A 1
AUe = - ‘e( ) {—[FS*WFF“-iAﬁ:i <U;‘“—U;‘“>]}6se+wlaw]
Qe SexW 2

(5.6)
Using the linearizations

ol = Ry + AR AU, 5.7)
it can be re-written as ( in form of P-G-S )

AU, =_Ate( v {%[Fg‘ﬂf— (U; -UD+AZAU, +

*
A Roe
Q. \SezW

A’l((oclAUe ]}ése + (% + A?NAUe )BW]

(5.8)

The above equation, upon taking terms involving AUe , can be written as
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A .
[+ 3 (AT +]Ake.
e SezW

)8s, + 2A'{V6W]}AUe =

—Ate( S 0.5+[F! +E ~|Afe,

SexW

;- U, + it |

€

(3.9)

The implicit formulation for an element adjacent to wall using the numerical flux of Osher

is carried out in a similar way.

5.2 Boundary Condition for the N-S Equations

The formulation of the exterior boundary is similar to that given for the Euler equations.
For the inner boundary, i.e the solid wall, the boundary condition specific to the Navier-
Stokes equations is the no-slip wall condition which means the relative velocity between
the fluid and the solid wall is zero. Assuming a fixed wall, all the velocity components at
the wall are taken to be zero. For an isothermal wall, the temperature is fixed at the wall
temperature. For an adiabatic wall, the heat flux is zero. In this case the temperature at the
boundary side is taken to be the same as the temperature at the adjacent element inside the
domain. For the pressure, the boundary layer assumption dP/on = 0, is employed. Other

variables, in particular the density, can be determined from the equation of state.

6. High-Order Resolutions

High-order accurate evaluations of the numerical flux are not straight forward on
unstructured grids though some successes have been reported. Here we use two method
to construct high-order resolutions. One is called linear reconstruction of variables
proposed by Barth & Jesperson, which is an extension of the MUSCL concept of van
Leer [20] to unstructured grids. The other is directly using variable extrapolation
(MUSCL) reported by Batina [21].

6.1 Linear Reconstruction of Variables

Details about this method can be found in Ref. [14][17]. Here we only make a brief

explanation.

The high-order accuracy variable f over an arbitrary element can beobtained by linear
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reconstruction (see Fig 6.1)

f(x,y) = f(Xe,ye) + VE- T (6.1)

where r is the position vector of point (x,y) with respect to some reference point e .

Generally the linear reconstruction given by equation (6.1) may exhibit nonphysical
oscillations in the form of overshoots or undershoots near the flow discontinuities. To
prevent this a limiter is applied to the higher order correction term

f(x,y) = f(Xe,ye ) +OVE-T (6.2)
Normally during calculation, the centroid of the element is chosen as the reference point,
the gradient vector is assumed to be constant over the element. The element limiter, ¢ , is
determined in such a way that the value of f over the element does not exceed the

extrema of the cell-averaged values of f in the surrounding elements.

6.2 Variable Extrapolation (MUSCL approach)

Similar to that used on a structured grid, the variable extrapolation, i.e MUSCL (

Monotone Upstream-centred Scheme for Conservation Laws ) approach, is also used to

determine the resulting accuracy of the scheme. It was found [22] that use of the primitive
T. . .

variable g = [p,u, v, P] in the extrapolation is more robust than the use of conserved

variables Q .
For two given triangles j and k for example, and considering the diagram in Fig 6.2a

A k-parameter family of high-order schemes can be written as

g =q;+ {%[(1 —ks)A_ +(1+ ksl)A+]q}

. (6.3)
where Ay =gk —q; A_=qj-q;
®=q - {5—3[(1 +ksy)A_ +(1—ks, )A+]q}
4 k 6.4)
where 3+ =41~k A_=qx—q;

In equation (6.3) and (6.4), qj and gk are the vectors of primitive variables at the
centroids of triangles j and k, respectively. And qi ,ql the vector of primitive variables at
the node i,l are determined by the weighted average of the flow variables in the triangles

surrounding node i,L.
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The parameter k controls a family of difference schemes by appropriately weighting A +

and A_ . On structured meshes, it is casy to show that k=-1 corresponds to a full-

upwind second order scheme, k=0 yields Fromm’s scheme, and k=1 yields a central

difference scheme. The value k=1/3 leads to a third order accuracy upwind-biased
scheme.

The parameter s1,s2 serves to limit high-order terms in the extrapolation in order to
avoid oscillatious in the solutions at discontinuities such as shock waves. According to
van Albada et el [23], the limiting is implemented by locally modifying the difference

values in the extrapolation to ensure monotone extrapolation as
2A,qA_q+6

T T A B+ 6.5)
where & is a small number preventing division by zero in regions of null gradients.
On highly stretched meshes, the formula for 2+ (‘equation (6.3a) ) is modified to be

A, =[2a/(a+b)l(gx —q;) (6.6)
For 4- in equation (6.4b) is also modified to be

A_=[2b/(a+b)lqx ~q;) 6.7)

where a and b are the distances from the midpoint of an edge to the centroids of triangles j
and k, respectively, as shown in Fig 6.2b.

This formula weights the flow variables in the extrapolation formula, differently to
account for the streching of the mesh. For example, by substituting equation (6.6) into
equation (6.3) and letting k=0, s1=1 yields

a

L__b . q
A= Ut - (6.8)

. : ‘s . L
For the case shown in Fig 6.2b, this means more weight in calculation of qg to the flow

variables at centroid j than to the flow variables at centroid k, since b>a.

7. Numerical Results and Discussions

To validate the present codes, calculations were performed on typical supersonic corner
flow tests. Definitions can be found in Fig 7.1. The deflection angle is 16", Analytical
solution to this problem can be obtained from elementary gas dynamics. The solution
consists of two different regions of constant states which are separated by an oblique
shock wave as is sketched in Fig 7.1. It can be seen that the flow remains supersonic
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behind the shock wave. Therefore the flowfield is supersonic throughout the domain.

To illustrate the application of the mesh enrichment procedure, the numerical computation
was performed on successively refined meshes. The number of elements in the refined
meshes are 213 (coarse mesh), 1153(intermediate mesh) and 2390(fine mesh),
respectively. Computations on the coarse mesh are not sufficiently accurate but may be
used to localize the shock wave. The intermediate and fine mesh are defined with a larger
number of elements and have been refined along the shock line, computed on the coarse

mesh.

The coarse mesh is presented in Fig.7.2. There are 213 elements and 131 nodes in the
flow domain. In the present calculations we use six different codes. They are Explicit-
Roe Code, PGS-Roe Code, PGJ-Roe Code, Explicit-Osher Code, PGS-Osher Code and
PGJ-Osher Code. Figure 7.3 gives the convergence history of the Explicit-Roe, PGS-
Roe and PGJ-Roe codes. Figure 7.4 gives the convergence history of the Explicit-Osher ,
PGS-Osher and PGJ-Osher codes. It can be seen that the implicit method doubles the
efficiency in convergence over the explicit code. During the calculation we also found the
residual can not reduce than 0.5E-4 -- 1.E-5 when using single precision. For double
precision, the residual can easily reach 1.E-14 on a coarse mesh ( see Fig.7.5 and Fig.7.6
,. Fig.7.7 gives the convergence history of the Explicit -Roe code of 1st-order and high-
order (MUSCL) methods. It can be seen that more iterations are needed to reach the
convergence when uising the high-order scheme. Fig.7.8 also gives the convergence
history of the PGS-Roe code. Table 1 lists the CPU time per iteration of each code. All
calculations are performed on the computer IRIS INDIGO XS workstation. Appendix A
gives the flow results (including velocity field, contours of pressure, density and Mach

number respecting).

The intermediate size mesh is presented in Fig.7.9. There are 1153 elements and 615
nodes in the flow domain. After finishing the calculation on a coarse mesh we find that in
the flow domain there remains a region where physical parameters change rapidly. Thus
in the intermediate mesh additional elements were placed around that region. As in the
coarse mesh the six codes were implemented. Fig.7.10 gives the convergence history of
the Explicit-Roe, PGS-Roe and PGJ-Roe codes. Figure 7.11 gives the convergence
history of the Explicit-Osher, PGS-Osher and PGJ-Osher codes. All above codes used
single precision. Fig.7.12 shows the convergence history of the PGS-Roe code using
both single and double precision. Fig.7.13 shows the convergence history of the PGS-
Roe code when using the high-order scheme (MUSCL method). Table 2 gives the CPU
time per iteration of each code. All calculation are done again on the computer IRIS
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INDIGO XS workstation. Appendix B gives the flow results (including velocity field,
contours of pressure, density and Mach number).

The results on the intermediate mesh shows there exists a shock wave in the flow field. In
the fine mesh more elements were placed along the shock line (Fig.7.14) in order to
capture the shock wave more accurately. Also during the calculation on coarse mesh and
intermediate mesh it was found that although the Osher scheme gives as good results as
the Roe scheme but it takes nearly twice CPU time per iteration for the implicit scheme
due to the fact that it needs to do integration and flux-vector splitting. Hence it was
decided to adopt the Roe scheme in the fine mesh calculation. Fig.7.15 gives the
convergence history of the Explicit-Roe, PGS-Roe and PGJ-Roe codes. It can be seen
that the PGS-Roe code reaches a further improvement converged solution faster than the
Explicit-Roe code and the PGJ-Roe code provide. Fig.7.16 gives the convergence history
of Explicit-Roe code using both single and double precision. Fig.7.17 gives the
convergence history of the PGS-Roe code using both single and double precision. To
improve the calculation accuracy we use two high-order VAR and MUSCL schemes.
Fig.7.18 gives the convergence history of PGS-Roe code using 1st-order ,VAR high-
order and MUSCL high-order schemes. It can be seen that the residual does not decline
further for the VAR method after it reaches 1.E-3, however the residual of the MUSCL
method can reach 1.E-10. Fortunately both the high-order methods can give good results
of the flow including the capture of the shock wave. Table 3 gives the CPU time per
iteration of the code. All calculations are made on the computer IRIS INDIGO XS
workstation. Appendix C gives the flow results (including velocity field, contours of
pressure, density and Mach number).

To validate the Navier-Stokes code, we also select the same example as above. According
to boundary layer theory the magnituce of the flow variable gradients in the direction of
the flow is much smaller than in the direction normal to the flow. Hence in order to obtain
a compatible spatial accuracy the mesh must be much finer in the direction normal to the
flow in the vicinity of a no-slip wall. Numerical experiments have indicated that about 15-
20 grid points are required in order to accurately represent the boundary layer profile.

In a structured grid it is possible to generate very stretched quadrilateral elements along
the wall. But in the unstructured grid, difficulties are expended in the process of

computation because of the very stretched triangle mesh.

In present test we use the same mesh as the Euler code. The calculation of the PGS-Roe
(NS) code has been done on a fine mesh (Fig.7.19). Fig.7.20 gives the convergence
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history of PGS-Roe (NS) code using 1st-order and MUSCL high-order schemes. It
takes 2.872 second CPU time per iteration for the 1st-order PGS-Roe (NS) code using
double precision. For the high-order (MUSCL method) it takes 6.0802 second CPU time
per iteration on IRIS INDIGO XS. Appendix D gives the flow results (including velocity
field, contours of pressure, density and Mach number).

Further work will involve using a viscous mesh to validate the Navier-Stokes code.

8. Concluding Remarks

In this paper we develop an implicit scheme (PGS and PGJ) on an unstructured grid to
achievea more efficient code than an explicit approach using upwinding discretization
techniques for the invisid terms. We also apply the high-order MUSCL scheme as used

on a structured grid on an unstructured grid. The convergence rate is shown better than
that of VAR method.

Through calculation we obtain the following conclusions:

(1) The convergence history improves markedly when using an implicit scheme instead
an of explicit one. Although the implicit code takes a little more CPU time per iteration,
the total improvement in efficiency is important.

(2) For single precision a residual of 0.5E-4 -- 1.E-5 can be reached. After using double
precision the residual can reach 1.E-14.

(3) Both Roe and Osher schemes give satisfactory results.

(4) For the implicit scheme we suggest using Roe scheme because it takes less CPU time
than that of Osher.

(5) For PGS and PGJ both methods can give nearly the same convergence rate on coarse
and intermediate meshs. However on a fine mesh the PGS method convergences better
than the PGJ method.

(6) Implementation of the high-order scheme improves the accuracy. Both VAR method
and MUSCL method can produce the better results. The residual of VAR method can
only reach 1.E-3, however the residual of MUSCL method can reach 1.E-10.

(7) The PGS-Roe (NS) code can also run successfully on a fine mesh with reasonable
results.
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Figure 4.1
Notations for the control volume

N2

N1

Figure 4.3
Definition of the integration path

Figure 6.1
linear representation over an element
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Figure 4.2
path of integration for Osher's flux

Figure 4.4
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Code CPU time per iteration

1st-order,sp 1st-order,dp  [2nd-order,dp

Explicit-Roe 0.0872sec | 0.1062sec | 0.2137 sec

PGS-Roe 0.1385sec | 0.1657sec | 0.2922 sec

PGJ-Roe 0.1497 sec =

Explicit-Osher 0.1187 sec i .

PGS-Osher 0.2589 sec

PGJ-Osher 0.2638 sec -

Table 1 : CPU time for different codes
Mesh: Coarse Mesh
Computer: IRIS INDIGO XS

Code

CPU time per iteration

1st-order,sp

1st-order,dp

2nd-order,dp

Explicit-Roe

0.42 sec 0.5547 sec 1.3982 sec
PGS-Roe 0.72 sec 0.8744 sec 1.822 sec
PGJ-Roe 0.78 sec
Explicit-Osher 0.63 sec
PGS-Osher 1.36 sec -
PGJ-Osher 1.41 sec -

Table 2 : CPU time for different codes
Mesh: Intermediate Mesh
Computer: IRIS INDIGO XS
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CPU time per iteration

Code
1st-order,sp  [ist-order,dp  [2nd-order,dp
Explicit-Roe 0.95 sec 1.087 sec 3.377 sec
4.074 sec MUSC|
PGS-Roe 1.32 sec 1.7784sec 4 104 sec VAR
PGJ-Roe 1.76 sec

Explicit-Osher

PGS-Osher

PGJ-Osher

Table 3 : CPU time for different codes
Mesh: Fine Mesh
Computer: IRIS INDIGO XS

Shock

16(d

0=16(deg) angle of flow deflection across an oblique shock-wave

6=42.5(deg) shock-wave angle measured from uptream flow direction

Region A Region B
M=2.2 M=1.58
P=0.1475 P=0.3554
rho=1.0 rho=1.8382

Figure 7.1

Definition of the supersonic flow past a compression corner
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Figure 7.3 Convergence history of the Explicit-Roe, PGS-Roe and PGJ-Roe codes
on coarse mesh using single precision
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Figure 7.4 Convergence history of the Explicit-Osher, PGS-Osher and PGJ-Osher codes

on coarse mesh using single precision
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Figure 7.5 Convergence history of
using single and double
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Figure 7.6 Convergence history of the PGS-Roe code on coarse mesh
using single and double precision
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Figure 7.7 Convergence history of the Explicit-Roe code on coarse mesh
using 1st-order double precision and high-order(MUSCL) double precision
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Figure 7.8 Convergence history of the PGS-Roe code on coarse mesh
using 1st-order double precision and high-order(MUSCL) double precision
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Figure 7.10 Convergence history of the Explicit-Roe, PGS-Roe and PGJ-Roe codes

on intermediate mesh using single precision
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Figure 7.11 Convergence history of the Explicit-Osher, PGS-Osher and PGJ-Osher codes
on intermediate mesh using single precision
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Figure 7.12 Convergence history of the PGS-Roe code on intermediate mesh
using single and double precision
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Figure 7.13 Convergence history of the PGS-Roe code on intermediate mesh
using 1st-order double precision and high-order(MUSCL) double precision
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Figure 7.15 Convergence history of the Explicit-Roe, PGS-Roe and PGJ-Roe codes
on fine mesh using single precision
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Figure 7.16 Convergence history of the Explicit-Roe code on fine mesh
using single and double precision
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Figure 7.17 Convergence history of the PGS-Roe code on fine mesh
using single and double precision
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Figure 7.18 Convergence histor

'y of the PGS-Roe code on fine mesh using 1st-order
double precision and high-order(MUSCL and VAR) double precision
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Figure 7.20 Convergence history of the PGS-Roe (Navier-Stokes) code on fine mesh
using Ist-order double precision and high-order(MMUSCL) double precision
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APPENDIX A

SUPERSONIC COMPRESSION CORNER FLOW

COARSE MESH
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APPENDIX B

SUPERSONIC COMPRESSION CORNER FLOW

INTERMEDIATE MESH

INVICID CASE
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APPENDIX C

SUPERSONIC COMPRESSION CORNER FLOW

FINE MESH

INVICID CASE
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Figure C.6.1 Compression corner flow (fine mesh) -- Velocity field
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Figure C.7.1 Compression corner flow (fine mesh) -- Velocity field
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