
University of Glasgow
DEPARTMENT DF

AEROSPACE
ENGINEERING

Domain/Mesh Decomposition of L

Unstructured Grids with Pre-Ordering and
Smoothing

Yufeng Yao

Engineering
PERIODICALS

Domain/Mesh Decomposition of

Unstructured Grids with Pre-Ordering and
Smoothing

Engineering
PEHiODlCALS

Yufeng Yao

Dept, of Aerospace Engineering
Aero. Report 9506

University of Glasgow

May 19,1995

Domain/Mesh Decomposition of Unstructured Grids

with Pre-Ordering and Smoothing
Yufeng Yao

Dept, of Aerospace Engineering
University of Glasgow

Glasgow G12 8QQ
e-mail: yufeng @ aero .gla.ac.uk

Abstracts

Increasingly large scale computations are using unstructured discrete computational grids.
A typical example is unstructured grid calculations based on finite volume methods
(FVM) in computational fluid dynamics (CFD). One of the efficient ways to deal with
such large scale problems is parallelization. The present paper will focus on domain/mesh
decomposition. This is the first step for distributing unstructured computational domains
on a MIMD-type parallel computer system. A graph theory framework for this problem
will be constructed. Based on the framework three domain decomposition algorithms:
recursive coordinate bisection (RCB), recursive angular bisection (RAB) and recursive
graph bisection (RGB), will be introduced, tested and discussed. A pre-ordering and
smoothing technique is proposed. It is necessary in the procedure for obtaining a 'good'
domain partitioning result. Another interesting method, called the domain decomposition
technique (DDT), is also investigated, which is driven in an inverse way, i.e. domain
decomposition followed by mesh construction. Finally a simple and direct strategy called
the mesh tailor technique (MTT) is discussed. Numerical comparisons using 2D CFD
problems will be given. The further research work required to carry out a parallel
implementation of a flow problem will be mentioned.

Keywords: domain/mesh decomposition, unstructured grid, pre-ordering and smoothing

Section 1: Introduction

Many large scale computations are emerging using unstructured discrete computational
grids because of their ability for dealing with complex geometries and allowing simple
grid adaption. A typical example is the unstructured grid calculation based on finite
volume methods (FVM) in computational fluid dynamics (CFD). With advances in
parallel computer systems, one of the efficient ways of calculating large scale
computations is to implement a parallel computation procedure. For those domains
discretised with a structured mesh the partitioning is simple and straightforward.
However for those domains discretised with an unstructured mesh the partitioning is not
easy and direct. The reason is that generally for unstructured meshes, the elements are
ranked in a random order. It is difficult to find a cutting point or line with a natural
ordering. Hence a major problem when implementing such large scale unstructured grid
problems with parallel computing is the efficient decomposition (or partition) of the
underlying computational domain. This is the focus of the discussion in this paper.

First we will investigate three widely used algorithms for partitioning unstructured
domains. The three algorithms considered are recursive, i.e., the computational domain is
subdivided by some strategy into two subdomains, and then the same strategy is applied
to the subdomains in a similar way. In this way a partition into p=2**k subdomains is
obtained after carrying out k of these recursive partitioning steps. These three algorithms

thus only differ by the partition strategy of a single domain into two subdomains These
three algorithms are:
1) recursive coordinate bisection (RGB);
2) recursive angular bisection (RAB);
3) recursive graph bisection (RGB).

The RGB and RGB algorithms have been used by a number of researchers. In particular
RGB is a very direct approach, which comes immediately to mind, when considering the
partitioning problem. In this paper another version of RGB, here named RAB is also
discussed when considering the angle ordering instead of the coordinate ordering
Another very recent method, named recursive spectral bisection (RSB) developed bv
Pothen, Simon and Liou[l], will not be discussed here. The RSB method is based on the
computation of an eigenvector of the Laplacian matrix associated with the graph. As the
cost of the spectral partitioning is very high (even using a Lanczos algorithm to compute
the eigenvalue problem), it has yet to be determined if the spectral partitioning will have
practical merit.

In section 2, we will formulate a general framework for the partitioning problem based on
SOrfn^rDPh ^f^ry.notation. In section 3, the three partitioning algorithms, RGB, RAB
and RGB, will be introduced and discussed. Section 4 will discuss in particular a pre-
ordering and smoothing technique which is necessary in the procedure for obtaining a
good partitioning result. Also another interesting method, called the domain
decomposition technique (DDT), is discussed in section 5, which firstly divides the
domain into several sub-domains and secondly constructs an unstructured mesh within
sub-dornams. Section 6 will discuss a simple and direct partitioning strategy, named the
rnesh tailor technique (MTT). Section 7 will give some quantitative comparisons of
algorithms directed at 2D GFD problems. Section 8 will offer conclusions and indicate
further work required to refine these methods.

Section 2: The Partitioning Problem

So-called "efficient" partitions are both dependent on the problem and the computer
considered. Given NP, the number of processors, one generally would like to partition the
given problem into NP sub-problems of about equal size (this process called load
balancing), and at the same time minimize the amount of communication information
needed between processors in a parallel computation. Minimizing the communication is a
function of both the length of the boundary of the subdomains, as well as of the number
of neighbouing subdomains. For an explicit algorithm, the achievement of good load
balancing is probably more important than minimizing communication costs, whereas for
an implicit algorithm with higher communication requirements the situation might be just
the reverse.

In this work the main target is a implicit implementation on a MIMD-type computer with
a moderate number of parallel processors, for example the Intel iPSG/860 or a
Workstation Gluster a parallel computer system based on a series of workstations in
which each one represents one working processor. The target application finally to test
the approach is a point implicit two dimensional Euler/NS solver for unstructured grids
[2,3]. With this computer/application combination in mind the partitioning problem can
be defined more precisely.

The partitioning problem can be considered as a generalization of the graph bisection
problem, which is defined as followings: Given an undirected graph G, with the set of
vertices V (either nodes or center points of each element) and the set of edges E,

G = (V ,E), partition V =VI^ V2, Vl nV2 = 0, such that

\Ee\ = {e\e eE;e = (vJ/v2);v1 eV1;v2 eV2}

is minimized, subject to some constraint on the partition. Here we choose
IVll = IV2I, if n = IVI is even and IVll = IV2I - 1, if n is odd.

The assumption that the underlying problem can be expressed as an undirected graph is in
no way restrictive. For example, for our target application, the upwind cell-centered
finite-volume flow solver for the Euler/NS equations, the solution variables are associated
with each element and flux computation is performed at the edges of each non
overlapping control volume. Each edge connects a pair of control volumes. In the
partitioning which we are planning to use, mesh triangles are assigned to a particular
processor. Fluxes are computed by the individual processors associated with the triangles.
Communication is required along the inner edges, which are shared between the adjacent
triangles residing in different processors. Hence for the purposes of establishing the
partitioning of the problem, i.e., the assignment of triangles to different processors, we
consider the dual graph. The triangles of the original mesh are vertices of the dual graph,
and two triangles are considered to be adjacent vertices of the graph, if and only if they
share an edge in the original mesh. A graph partitioning of this dual graph will thus yield
an assignment of triangles to processors. In a similar way most general partitioning
problems can be transformed to a graph partitioning problem. The approach used here is
thus quite generally applicable.

The relationship between the unstructured mesh and its dual graph is shown in Figure 1
and Figure 2.

Section 3; Partitioning Algorithms

The general idea behind the three partitioning algorithms is to used an optimal strategy to
partition a domain into two subdomains, and then to apply the same algorithms
recursively for k steps until p=2**k subdomains have been obtained. The three
algorithms thus only differ in the partitioning strategy for a single domain into two
subdomains.

1) Recursive Coordinate Bisection (RCB)

This is probably the easier algorithm conceptually. It is based on the assumption that
along with the set of vertices V=(vl,v2,...,vn), there are also two or three dimensional
coordinates available for the vertices. For each Vj £ V we thus have an associated tuple
vi=(xi,yi) or triple vi=(xi,yi,zi), depending on whether we have a two or three
dimensional model. A simple bisection strategy for the domain is then to determine the
coordinate direction of longest expansion of the domain. Without loss of generality,
assume that this is the x-direction. Then all vertices are sorted according to their x-
coordinate. Half of the vertices with small x-coordinates are assigned to one domain, the
other half with the large x-coordinates are assigned to the second subdomain. The
algorithm for RCB is summarized in table 1:

Table 1: Recursive Coordinate Bisection (RCB)

1) Determine the longest expansion of the domain (x,y,or z direction)
2) Sort the vertices according to coordinates in the selected direction
3) Assign half of the vertices to each subdomain
4) Repeat recursively (divide and conquer)

Figure 3 gives an example of application of the RCB algorithm on an unstructured mesh
used for the calculation of the flow over a NACA 0012 airfoil resulting in 8 partitioning.

2) Recursive Angular Bisection (RAB)

Another method similar to RGB, here named RAB, is also considered. The only
difference is that it ranks in the angle ordering instead of the coordinate ordering. The
algorithm of RAB is the same as that of RGB except for the ordering procedure. Figure 4
gives the results of RAB applied to a NAGA 0012 airfoil shape resulting in 8 sub-
domains.

3) Recursive Graph Bisection (RGB)

The weakness of both RGB or RAB is that the algorithm does not take full advantage of
the connectivity information given by the graph. For efficiency, the main goal is to
minimize the number of graph edges, which are connecting different subdomains. Thus
instead of using the Euclidean distance between the vertex coordinates, a better way is to
consider the graph distance between vertex given by d(vi,vj)=lshortest path connecting vi
and vjl. With this change in metric one can define a new partitioning algorithm, which
here is called recursive graph bisection (RGB).

First two vertices of maximal or near maximal distance in the graph are determined. Then
all other vertices are sorted in the order of increasing distance from one of the extremal
vertices. Finally vertices are assigned to two sub-domains according to the graph
distance. The only difficulty is the determination of the diameter (or at least of a pseudo
diameter) of the graph. However there exist some very good heuristic algorithms for that
purpose. These algorithms are also quite well-known in the engineering structures
community, since they can also be used for reducing the storage requirements of sparse
matrices in envelope or skyline storage format. Here the reverse Guthill-McKee (RGM)
algorithm of SPARSPAK[4] is used.

The RGM algorithm first finds two pseudo-peripheral vertices in the graph (i.e. vertices
which have a very large distance, but which are not necessarily the pair of vertices with
maximum distance). Then starting from one of the vertices, the root vertex, a so-called
level structure is constructed. The level structure is a convenient way of orginizing the
vertices in the graph in sets of increasing distance from the root. Hence the level structure
delivered by the RGM algorithm forms the basis for the recursive graph bisection
algorithm. Half of the vertices, the ones which lie closer to the root are assigned to one
subdomain, the remaining vertices to the other subdomain. If we start out with a
connected graph then by construction it is guaranteed that at least one of the two
subdomains (the one including the root) is connected. The algorithm of RGM is
summarized in table 2.

Table 2. Algorithm of Reverse Guthill-Mckee

1) Find vertex with lowest degree. This is the ROOT vertex.
2) Find all neighbouring vertices connecting to the ROOT by incident edges.

Order them by increasing vertex degree. This forms level 1.
3) Form level k by finding all neighboring vertices of level k-1 which

have not been previously ordered. Order these new vertices by
increasing vertex degree.

4) If vertices remain, go to 3).

Figures 5 and 6 illustrate nonzero entries of Laplacian matrix produced from natural
ordering and RGM ordering. It shows that the band of the matrix is significantly reduced
using RGM ordering.

By using RGM the algorithm of RGB can be summarized in table 3.

4

Table 3: Recursive Graph Bisection (RGB)

1) Use the RCM algorithm to compute a level structure
2) Sort vertices according to the RCM level structure
3) Assign half of the vertices to each sub-domain
4) Repeat recursively (divide and occupy)

Figure 7 gives the results of the RGB algorithm for a NACA 0012 airfoil resulting in 2
sub-domains.

Section 4: Pre-ordering and Smoothing Technique

Although in the above three strategies the load balance can be guaranteed strictly, it is
difficult to visualize the partitioning results, i.e. the connectivity of the sub-domain and
the smoothness of the cutting line. From the above result some serious problem still
remains. One is that elements sometimes become seperated when using the RGB
algorithm (see fig.7) This is obviously not a 'good' partitioning. The reason is that
theoretically the RGB partitioning can only guarantee ONE sub-domain in which a root
vertex is connected. Another problem is that the cutting line will normally take the saw
tooth shape (see fig.3,4,7) resulting an increase in the cost of communications between
sub-domains. These two pheonomena are also repeated in other publications on
partitioning[5]. To date however the method of overcoming these shortcomings appears
not to have been addressed. In this report two algorithms are proposed to solve the
problem.

One technique attempted is pre-ordering. Generally the mesh generated by advancing
front technique(AFT) or delauney triangulation(DT) is in a random order. Hence the
graph of the mesh is also ordered randomly. This state has resulted in the phemonemon of
separated elements (see fig.7). This problem can be overcome by carrying out a pre
ordering step before implementing the partitioning. The algorithm of pre-ordering is as
follows:

Table 4: Pre-ordering algorithm

1) read in the mesh file
2) list and number elements in 1-D namral ordering
3) select an ordering rule, i.e. the barycenter of element, the minimum

coordinate value of its node, etc.
4) pre-order all elements according the rule selected.

The results of RGB are found to be different whether or not pre-ordering is used. This can
be seen in Figure 8 with pre-ordering when compared to Figure 7.

Another technique is called smoothing. After partitioning the domain under the rule of
load balancing using a particular strategy, there will normally be produced a saw-tooth
shape boundary between sub-domains. The smoothing algorithm is used to adjust some
vertices and change their identity, which will result in a cutting line with relative
smoothness. The algorithm of smoothing is as follows:

Table 5: Smoothing Algorithm

1) do the partitioning using either RCB. RAB or RGB giving the initial
sub-domain (without smoothing)

2) Flag each vertex with the number the same as that of the sub-domain it
belongs to

3) do loop over each sub-domain { for each vertex counting the identity of
its neighbouring vertex. If the identity of all its neighbours did not belong
to this sub-domain then it means this vertex is separated from its sub-domain.
Find out where it belongs and change its identity. If more neighbouring
vertices belong to same neighbouring sub-domain found then this vertex
is better belonging to that sub-domain. Change their identity. } end the do loop

4) re-counting the number of vertices in each sub-domain (this may result in a
small lack of balance.)

5) output the sub-domain depending on its flag number

Figs 8-11 give the result with smoothing. Compared with Figs 3,4,7 it can be seen that
using the smoothing technique, partitioning results are improved. Figs 13-16 illustrate the
unstructured mesh over the NACA 0012 airfoil shape with 8 partitioning using the RGB
method with or without pre-ordering and smoothing. It can be seen that by using both
pre-ordering and smoothing improved results are obtained.

Section 5: Domain Decomposition Technique (DDT)

All the above discussions are based on certain pre-conditions, i.e. given a domain of
interest, firstly construct the unstructured mesh, then partition the mesh using a particular
strategy. The advantage of using this approach is that the load balance can be retained,
although pre-ordering and smoothing need be considered as discussed above. The
shortcoming is a lack of knowledge of the quality of the partitioning results, i.e. the
relationship between each sub-domain and the shape of cutting lines. Hence another
approach is to consider the inverse. For the given domain, divide it first into several sub-
domains. In this way we can organise the relationships of the sub-domains and make the
connections as simple as possible as well as the shape of cutting lines. Secondly we can
construct the unstructured mesh in each sub-domain. Unfortunately one cannot guarantee
strictly the load balancing in this way. This strategy is called the domain decomposition
technique (DTT). The algorithm of the DDT is as follows:

Table 6: DDT algorithm

1) Define the interested domain
2) Divide the domain into several sub-domain
3) for each sub-domain use Delaunay Triangulation (DT) to construct

the unstructured mesh. As the DT method always takes the given
boundary points as its triangular node, hence there will be no
over-lapping points occuring in the common line between neighbouring
sub-domains

4) Construct the relationship between the sub-domains and the data
structure of the communication information

Figure 12 gives an example for the NACA 0012 airfoil shape with 4 sub-domains using
the DDT method. Ref [6] applies the same strategy in parallel CFD simulation.

Section 6: Mesh Tailor Technique (MTT)

Although another suitable bisection strategy, recursive spectral bisection(RSB), is not
discussed here, results show that the subdomains obtained from RSB approach are
connected (although there is no theoretical guarantee for it), and nicely rounded and
compact. The cost of the RSB method has yet to be determined and thus whether it will
have practical merit. The impression of the result of domain partitioning is that the
domain is simply cut into several parts. This suggests the use of some basic simple
geometric shapes such as squares, triangles, circles, curved lines etc. to tailor the given
mesh graph. Based on this idea the following algorithm of the mesh tailor technique
(MTT) is proposed.

Table 7: mesh tailor technique (MTT)

1) Unstructured mesh construction
2) Define the number of partitions and set the tailor strategy
3) Use the basic tailor elements to cut the domain
4) Flag and divide the sub-domain

Figs 17-20 show some typical results by using the above algorithm, which use either one
type of basic tailor element or combination of them.

Section 7 : Comparisons

In this section we will give some quantitative comparisons between the algorithms.
Before unbarking on this we will make some general observations of the algorithms: Both
RGB and RAB produce long and narrow sub-domains. RGB creates more compact sub-
domains, but sometimes they will have disconnected sub-domains. Hence in order to get
a better partitioning, a smoothing technique is needed for the RGB and RAB algorithms,
while both pre-ordering and smoothing techniques are necessary for the RGB algorithm.
For the DDT method, the size and shape of sub-domains depend on the domain
decomposition strategy chosen. More compact, connected sub-domains can be obtained
after careful investigation. The problem is how to achieve load balance between sub-
domains. As for the MTT method, the shape of sub-domains need be selected before the
method is implemented. It is hoped in the near future that more general curves can be
used to cut and partition the domain with the help of GAD.

To obtain a more quantitative comparison , the number of cutting edges, named Ec, in
each sub-domains will be presented. For the condition of balanced load the value of Ec
represents the information exchange cost. The great the value Ec the more GPU time will
be wasted on communications.

Table 8 gives the number of elements in each sub-domain(Elem_sub) and the number of
cutting edges(Ec) for three algorithms RGB,RAB and RGB with or without pre-ordering
and smoothing. The unstructured mesh around the NAGA 0012 airfoil shape considered
here is generated by the AFT method. It results in 4854 elements and 2504 nodes.

7

Table 8 The number of sub-domain elements and cutting edges
(Elem_sub and Ec) — nelem=4854 node=2504

Method 0 S elements in sub-domain ... Ec
RGB No No 606 607 607 607 606 607 607 607 ... 232
RGB No Yes 605 606 606 608 607 608 607 607 ... 227
RAB No No 606 607 607 607 606 607 607 607 ... 262
RAB No Yes 596 611 604 605 601 619 599 619 ... 206
RGB No No 606 607 607 607 606 607 607 607 ... 330
RGB Yes No 606 607 607 607 606 607 607 607 ... 366
RGB No Yes 591 603 597 626 586 612 616 623 ... 255
RGB Yes Yes 591 603 607 616 593 605 613 626 ...253

Table 9 illustrates the results on fine mesh which includes 21152 elements.

Table 9 The number of sub-domain elements and cutting edges
(Elem_sub and Ec) — nelem = 21152 node = 10666

Method 0 S elements in sub-domain ...Ec

RGB No No 8 * 2644 ... 504
RGB No Yes 2643 2644 2646 2643 2643 2644 2643 2646 ...499
RAB No No 8 * 2644 ... 594
RAB No Yes 2617 2644 2644 2641 2645 2655 2629 2677 ...501
RGB (8) No No 8 * 2644 ... 805
RGB (8) Yes Yes 2598 2629 2620 2661 2603 2682 2657 2702 ...595

RGB (16) No No 16 * 1322 = 21152 .. 1210
RGB (16) Yes Yes 1274 1324 1297 1333 1309 1311 1308 1352

1296 1307 1331 1351 1311 1346 1336 1366 ...928

* Notes: O represents pre-ordering. S represents smoothing.

Table 8 shows that RGB will normally creates more cutting edges than RGB and RAB.
By using a smoothing technique the number of Ec will reduce in each of the RGB, RAB
and RGB methods. For the RGB algorithm in particular, by using both smoothing and
pre-ordering, Ec reduces by 25% compared to that without its use. From Table 9 we
obtain the same conclusions.

Table 10 illustrates the 4-subdomain partitioning results using the DDT method. Also we
are interested in comparing the number of elements in each sub-domain and the number
of cutting edges. Here we use Delauney Triangulation to generate the unstructured mesh
in each sub-domain.

Table 10 The number of sub-domain elements and cutting edges
(Elem_sub and Ec)

Method elements in sub-domain ... Ec

DDT 1040 1178 1184 1090 ... 200

This table shows that the number of elements in each sub-domain is different (min=1040
Max=1184). By using the DDT method one can define the position of the boundary
points(edges) resulting in the same number and position on the boundary. However it is
not possible to know how many elements will be generated within the defined domain.
Thus how to retain a reasonable load balance when using DDT needs still to be
investigated.

Finally in table 11 we illustrate the results of the MTT method. The four tailor strategies
considered here are square, triangle, circular and curved line tailoring.

Table 11 The number of sub-domain elements and cutting edges
(Elem_sub and Ec) — nelem=4854 node=2504

Method S elements in sub-domain ...Ec

MTT_square No 606 606 606 606 606 606 616 602 ... 254
MTT_square Yes 605 604 610 605 606 607 614 603 ... 247

MTT tri No 606 607 607 607 606 607 607 607 ... 276
MTT_tri Yes 604 603 607 602 614 606 606 612 ... 249

MTT circle No 606 607 607 607 606 607 607 607 ...217
MTT_circle Yes 601 608 605 607 607 607 611 608 ... 202

MTT_curve No 606 606 606 609 606 606 606 609 ... 268
MTT_curve Yes 601 602 608 615 603 598 614 613 ...236

Section 8: Conclusions

From the above investigating the following conclusions are made:
1) RCB, RAB and RGB are three efficient methods of partitioning an unstructured mesh.
They can be developed to deal with 3D meshes in theory.
2) With a pre-ordering and smoothing technique the quality of partitioning can be
considerably improved.
3) The DDT is a potential method of partitioning. But the means of keeping load balance
still needs further investigation.
4) The MTT is a simple and direct method. Although it has been successfully used in 2D
it still needs more theoretical development. It is speculated that CAD method could
provide a way forward.

Following partitioning, the next step is to implement the parallel procedure using an
Euler/NS solver on an unstructured mesh. The major challenge is efficient message
communication between sub-domains. An improved data structure must be constructed to
make this.

References

[1] Pothen,H-Simon,and K.P-.Liou "Partitioning Sparse Matrices with Eigenvectors of
Graphs" SIAM J. Mat. Anal. AppL, 11(3):430-452,1990
[2] Y.F.Yao "Simulation of Compressible Inviscid Flow on Adaptive Remeshing
Unstructured Meshes" Dept, of Aerospace Engineering Aero Report 9424, University of
Glasgow, 1994
[3] Y.F.Yao "A Navier-Stokes Solver for Laminar Viscous Flow on General Grid
Topologies" Dept, of Aerospace Engineering Aero, report 9503, University of Glasgow,
1995
[4] Alan George & J.W.Liu "Computer Solution of Large Sparse Positive Definite
Systems" Prentice Hall, Englewood Cliffs, 1981
[5] T.J.Barth "Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler
and Navier-Stokes Equations" AGARD R-787, 1992
[6] N.A.Verhoeven et al. "Interim Stage in the Development of a Parallel Mesh
Generator" ACME UK'95 Jan.4-5 Oxford

Fig.l Unstructured Mesh around NACA 0012 generated by AFT method
Fig.2 Dual graph around NACA 0012 in comparison to Fig.l
Fig.3 RCB 8 sub-domain partitioning without smoothing
Fig.4 RAB 8 sub-domain partitioning without smoothing
Fig.5 Nonzero entries of Laplacian matrix from natural ordering
Fig.6 Nonzero entries of Laplacian matrix after reverse Cuthill-Mckee ordering
Fig.7 RGB 2 sub-domain partitioning without pre-ordering and smoothing
Fig.8 RGB 2 sub-domain partitioning with pre-ordering but no smoothing
Fig.9 RCB 8 sub-domain partitioning with smoothing
Fig. 10 RAB 8 sub-domain partitioning with smoothing
Fig. 11 RGB 2 sub-domain partitioning with pre-ordering and smoothing
Fig. 12 DDT 4 sub-domain partitioning by Delauney Triangulation Method
Fig. 13 RGB 8 sub-domain partitioning without pre-ordering and smoothing
Fig. 14 RGB 8 sub-domain partitioning with pre-ordering but no smoothing
Fig. 15 RGB 8 sub-domain partitioning no pre-ordering but with smoothing
Fig. 16 RGB 8 sub-domain partitioning with both pre-ordering and smoothing
Fig. 17 NACA 0012 8 sub-domain partitioning with MTT_square strategy
Fig. 18 NACA 0012 8 sub-domain partitioning with MTT_triangle strategy
Fig. 19 NACA 0012 8 sub-domain partitioning with MTT_circle strategy
Fig.20 NACA 0012 8 sub-domain partitioning with MTT_curved line strategy
Fig.21 NACA 0012 fmemesh 8 sub-domain partitioning by RGB without S&O
Fig.22 NACA 0012 fmemesh 8 sub-domain partitioning by RGB with S&O
Fig.23 NACA 0012 fmemesh 16 sub-domain partitioning by RGB without S&O
Fig.24 NACA 0012 finemesh 16 sub-domain partitioning by RGB with S&O

10

Figure 1 Unstructured Mesh around NACA 0012
generated by AFT method

Figure 2 Dual Graph around NACA 0012 in Compariso
to Figure 1

V.S sJ-

Figure 3 RCB 8 sub-domain partitioning without smoothing Figure 4 RAB 8 sub-domain partitioning without smoothing

Figure 5 Nonzero entries of Laplacian Matrix from
natural ordering

Figure 6 Nonzero entries of Laplacian Matrix after
reverse Cuthill-Mckee ordering

Figure 7 RGB 2 sub-domain partitioning without
pre-ordering and smoothing

Figure 8 RGB 2 sub-domain partitioning with
pre-ordering but no smoothing

ill*

Figure 9 RGB 8 sub-domain partitioning with smoothing Figure 10 RAB 8 sub-domain partitioning with snioothi

iaiiiiiili
' ''iy'

m..

Figure 11 RGB 2 sub-domain partitioning with
pre-ordering and smoothing

Figure 12 DDT 4 sub—domain partitioning
by Delauney Triangulation Method

illii i

Figure 13 RGB 8 sub-domain partitioning without
pre-ordering and smoothing Figure 14 RGB 8 sub-domain partitioning with

pre-ordering but without smoothing

Figure 15 RGB 8 sub-domain partitioning without
pre-ordering but with smoothing

Figure 16 RGB 8 sub-domain partitioning with
both pre-ordering and smoothing

VlM>S'Miyi*.'AV^W>VkV{i*UVWa>AW.V

Figure 17 NACA 0012 8 sub-domain partitioning
with MTT_sqnare strategy

Figure 18 NACA 0012 8 sub-domain partitioning
with MTT_triangle strategy

Figure 19 NACA 0012 8 sub-domain partitioning
with MTT_circular strategy Figure 20 NACA 0012 8 sub-domain partitioning

with MTT_curved line strategy

Figure 21 NACA 0012 Finemesh 8 sub-domain
partitioning by RGB without S & O

Figure 22 NACA 0012 fineniesh 8 sub-domain
partitioning by RGB with S & O

Figure 23 NACA 0012 finemesh 16 sub-domain
partitioning by RGB without S & O

Figure 24 NACA 0012 finemesh 16 sub—domain
partitioning by RGB with S & O

NOTE: S----smoothing
O----pre-ordering

