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1. Introduction

Behavioural patterns associated with natural predator/prey interactions often comprise 

complex sequences of distinct behaviour. Interpretation of this global behaviour and 

identification of the determining factors forms the basis of much experimental effort (see, for 

example. Young & Taylor [1988]). While the mechanisms leading to the transition from one 

type of behaviour to another are difficult to assess, the nature of the latter stages of 

pursuit/evasion are dependent, primarily, on the local behavioural characteristics of both 

predator and prey. These characteristics are often associated with particular objectives or 

goals and the outcomes of interactions are influenced, to a significant degree, by the 

individual sensing and performance capabilities of the predator and prey.

Attempts to model such local interactions have focused on simple time-evolving deterministic 

representations of the predator/prey kinematics and detection processes (Weihs & Webb 

[1984]). Although models of this kind provide some insight to the factors which influence the 

outcome of predator/prey interactions, such models are unrepresentative of natural 
interactions in which the principal processes are event driven and may be probabilistic or 

known only imprecisely. Furthermore, purely deterministic models are not easily reconciled 

with experimental observations in which wide variability of data is present.

Efforts to model analogous pursuit/evasion problems in other fields have met with similar 

difficulties (Baron etal. [1970]). To circumvent these deficiencies, a more robust stochastic 

modelling approach based on state-increment dynamic programming is adopted in which the 

system description is absorbed into a discrete sequence of controllable transition probabilities 

representing the event-dependent progression from one system state to another under the 

action of a control (c/. Eaton & Zadeh [1962]). More recently, this approach has been 

extended to accommodate fuzzy system descriptions in which the system dynamic and state/ 
control environment are defined imprecisely (Baldwin & Pilsworth [1982], Yoshida [1994]). 
In conjunction with robust procedures for the construction of fuzzy system descriptions 

(Yager & Filev [1994]), this approach offers the potential for the introduction of more 

representative models of natural predator/prey interactions while maintaining simple heuristic 

descriptions of the constituent processes. Additionally, the fuzzy system description provides
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a convenient basis for the identification from input/output data of rules governing internal 
processes

The aim of the present work is to outline a fuzzy modelling methodology applicable to local 
descriptions of a class of predator/prey interaction problems and to indicate how such a 

methodology might be used to test hypotheses on the internal control actions and sensing 

mechanisms adopted by predator and/or prey. The work concludes with a detailed example of 

fuzzy modelhng procedures applied to a simplified pursuit/evasion problem.

2. Template-Based Fuzzy Modelling of Dynamical Systems 

2.1 Fuzzy Decomposition of the State/Control Space

In the template-based approach to fuzzy system modelling, the model structure is pre­
assigned on the basis of expert knowledge. The state space, X = X1x...xXn, and control 
space, U = Ulx ...xUm, aie assumed to he partitioned into a finite number of fuzzy regions 

such that

’ u=\Ju<i>

where X(!>, U(,) represent appropriate Cartesian products of templates in X and U. Each of 
the template fuzzy subsets, X[i),..., X'^}, U[i),.... UtJl), is associated with the linguistic label, 
Lx['),Lx(n‘), Luill)LuiJ1), respectively.

In general, each of the template fuzzy subsets is associated with a membership function , 
Xro) (xi )> Xjn (uk) e [0,1], indicating the degree to which any state or control component is a

Xj J Uk MT

member of the respective set.

2.2 Fuzzy System Model

The partitioning of the state and control space forms the template used to construct the rule- 

base representing the fuzzy system model. In general, the rule-base may be expressed as a 

collection of rules of the form

IF current state is Lx<‘> AND control is Lu<i>
THEN transition state is Lx<,>

where Lx<l> - Lx{l) x... x Lx(f and L\xU) = Lu[i> x... x Lu(Jl>.
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Each rale defines a fuzzy relation, R(l), on XxUxX and the aggregation of individual fuzzy 
relations, R = , defines the fuzzy system model.

i

The membership function of the aggregate fuzzy relation is denoted by Xr(u’ x;x).

If X c Z denotes the fuzzy current state with membership function Zxfxj, then under the 

action of the fuzzy control u c f/ with membership function xJu)^ the fuzzy transition state 

xeZis characterized by the membership function Xx defined by the max-min inference rale 

(Yager &Filev [1994])

Xx(x) = (XtU^,XxU{X(xJ X, U) A XR( U, x; xj)

where X<x.Jx,u) = xJx)AxJu)

and V, A denote max, min operators, respectively.

A computationally efficient algorithm for the determination of the transition state 

membership function is defined by

X^j(Xj) = VTiAXIJo,(Xj)

where
= [V-. {xijc<n ) A XXl (^l))] A ... A (^XIjc<0 (xJa XXn (xj)]

/.I (xiM<n (M.) A Xu, ))] A ... A [vUm (Um ) A XUn (um )j

2.3 Fuzzy Decision Processes

A multi-stage decision process is considered in which the fuzzy control sequence 
u = (u0. Up .ur_1) leads, via the transition mapping, to the fuzzy final state xr.

Fuzzy constraints, defined by the membership function sequence {Xo> Xi> Xr-ij’ a1-6 

assumed on the controls ui>0<i<T-l. Also, a fuzzy goal constraint, defined by the 

membership function Xr^is imposed on the final state xT.

A measure of the degree to which these constraints are satisfied is provided by the truth 
function

rfuRx7.)=;i;aoRoZxr
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where ° denotes the max-min composition and the relational matrix R is defined as

R(Uq, Mj, Uj_i> Xj) — Xo(^o) j A ... AXj-_i(Uj-_i) AXt^Xt)

It is easily verified (Baldwin & Pilsworth [1982]) that

r(uRxr) = (Zo °Zu0 M(Zi02(0. M... A(Xt_1 °xar_l )MXt°XXt)

The optimal fuzzy decision sequence is defined as the control sequence which maximizes the 

truth function and is obtained via dynamic programming.

That is, with Sk(xk) defined as

Sk(xk)= max TfUjt... Uy.jRxj.)
“k ••• ur-i

the optimal decision sequence is determined from

Sk(xk) = m^[(xk °2(„t) ASk+1 (Xjt+jj] 

k = T-l,T-2,...,l,0

subject to the terminal condition
ST(xT) — ^Xt 0 XnT)

Here, xt+1 is the fuzzy state resulting from the fuzzy control action ut when the system is in 

state xk. Evaluation of >S't+1(xJt+1) is accomplished by means of a. fuzzy interpolation 

procedure (Baldwin & Pilsworth [1982]).

3. Fuzzy Models of Predator/Prey Interactions

The local characteristics of predator/prey interactions are assumed to be defined via a finite- 
dimensional fuzzy state-increment model of the kinematics and detection and control 
processes. Such a model consists of a set of rules defined on fuzzy subsets of the state/control 
space which describe the fuzzy transition state of the system for given fuzzy values of the 

current state and control action.

In the context of natural predator/prey interactions, the decomposition of the state space into a 

finite number of fuzzy regions corresponds to fuzzy event partitions derived from a priori
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knowledge of the detection envelope and detection resolution of predator and/or prey. The 

fuzzy event partitions are presumed to initiate a change of control action. The decomposition 

of the control space into fuzzy partitions is accomplished via vague descriptors of the possible 

predator/prey control actions.

The system state, x(t) e X, is assumed to be a composite state defining the state of the 

predator and prey, and the control, u(t)eU, is a composite control comprising elective 

predator/prey manoeuvres. The predator/prev state variables and control actions are assumed 

to be resolved only to within a fuzzy subset of the state/control space. Prescribed pursuit/ 
evasion rules are incorporated, implicitly, in the definition of the model while elective 

manoeuvres are selected to optimize some pre-defined objective over a fixed (finite) horizon.

To illustrate the rule-based modelling methodology in the context of predator/prey 

interactions, a simple prey evasion/avoidance problem is described in which a generic 

decomposition of state/control space is employed.

3.1 Kinematic State/Control Variables

The principal kinematic variables in a predator centred co-ordinate system are illustrated in 

Fig. 1. Motion is assumed restricted to the plane Oxy. Here, r is the relative prey range, ^ is 

the azimuth of the prey relative to the predator, 6 is the orientation of the prey relative to the 

predator, and yr is the prey heading relative to the prey orientation. The (variable) speeds of 
predator and prey are denoted Va and Ve, respectively.

Ve - Prey Speed

r- Range- Predator 
ii Speed

Predator
Figure 1
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In prey-centred co-ordinates (r, 6) -^(r', 6') (see Fig. 2). An appropriate set of
independent state variables is defined by (r', Vr) where Vr is the speed of the prey 

relative to the predator. The inclusion of ^ as a state variable allows for a convenient
description of the detection envelope of the predator. The set of control variables comprises 
the prey acceleration, Ve, and prey heading, y/, while the prescribed pursuit rule is defined in 

terms of the predator speed, Va, and instantaneous turn rate, 6'.

Predator

Figure 2

3.2 Decomposition of State/Control Space

The fuzzy model structure is assigned on the basis of 'expert' knowledge of the sensing, 
kinematic and other behavioural characteristics of the predator and prey. These include 

predator and prey detection envelopes, detection resolutions, relative speed ranges of predator 

and prey, manoeuvre ranges, and prescribed pursuit/evasion rules.

To facilitate application of the proposed modelling methodology to a broad class of 

predator/prey interactions in which only limited details of the detection mechanisms and 

kinematic characteristics of predator and prey are available, the structure of the state/control 
space is based on a generic decomposition of the principal spatial and kinematic variables. 
This decomposition implicitly defines the event partitions which initiate a (change of) control 
action. In general, the control actions of predator and prey are affected asynchronously.

Details of the decomposition and parameterization of state/control space appropriate to the 

restricted prey evasion/avoidance problem considered here are summarized in Table 1 and 
Table 2.
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Table 1

State Space
Variable Subset Linguistic Label Membership

Function

r' r' <r'< r'mm 1 Near Field (NF) Xr’<m
r'<r'< r'r 2 — ' — ' max Far Field (FF) Xr'im

Centre Field (CF) X^’(cn

Left Field (LF) X^'(LF)

0<^'<K Right Field (RF) X^-<m

Line of Sight (LoS) X^a^s)

<^2 < <^ < 7T

No Line of Sight (NL) X^im

0 < Vr < 1 Slow (S) Xy(S)

i-fvri-ij<yr<vri Relative(R)
Fast(F) Xy(F)

Table 2

Control Space
Variable Subset Linguistic Label Membership

Function
K o<ve<yei Low (Lo) ^y(Lo)

o<ye<Ke emax High (Hi) XylHi)

¥

V
I

V
I1 Forward (QO) Xv(Qf»

0 < 1// < nil Quadrant 1 (Ql) XV(Q»

n/1 <\j/<n Quadrant 2 (Q2) Xy,«QV

n< \f/<?>nl2 Quadrant 3 (Q3) Xy,ie3)

3;r/2< y/<2n Quadrant 4 (Q4) X¥(a‘i>
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3.3 Rule-Base Tableau

The rule-base is constructed in accordance with known predator/prey kinematic behaviour 

and pre-defined predator pursuit rules. Where explicit (deterministic) forms of the kinematic 

relations are available, construction of the rule-base is achieved via direct simulation*.

Table 3 illustrates the format of the matrix of rules associated with the decomposition of 

state/control space defined in §3.2.

Table 3

LxmfLvtii) 1 LoxQO HixQO LoxQl ... LoxQ4 ffixQ4
NFxCFxLoSxS
NFxLFxLoSxS
NFxRFxLoSxS
FFxCFxLoSxS
FFxLFxLoSxS
FFxRFxNLxS
NFxCFxNLxS
NFxLFxNLxS
NFxRFxNLxS
FFxCFxNLxS
FFxLFxNLxS
FFxRFxNLxS

■

•

-
NFxCFxNLxF
NFxLFxNLxF
NFxRFxNLxF
FFxCFxNLxF
FFxLFxNLxF
FFxRF xNLxF 1

* A simple procedure for the generation of the rule-base derives from fuzzification of the 'crisp' output of the 
deterministic kinematic equations to 'crisp' inputs corresponding to de-fuzzified values of the fuzzy input sets.
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3.4 Fuzzy Control Strategy

Fuzzy control policies* ((Ve0, y/J, (VeV y/l), ...,(VeT_l, yfT_l))for T = l, 2, 3,... stage decision 

sequences are determined for prescribed fuzzy initial states (r'0, <^0, Vr0) and pre-defined
constraints via fuzzy dynamic programming, as described in §2.3. The prey evasion/ 
avoidance strategy is expressed as a collection of rules on fuzzy sets corresponding to 

appropriate fuzzy initial states.

Goal constraints for evasion/avoidance are defined in terms of the capture/detection envelope 

of the predator as summarized in Table 4. Additionally, control constraints can be imposed at 
each decision stage (e.g. to account for energy depletion of the prey).

Table 4

Goai Constrittnts
Variable Subset Linguistic Label Membership

Function
r'T r/ < r/ < r7'capture — ’T — ^detection Evasion (Ev) 2(r'(£v)rT

Avoidance (Av)

The T stage manoeuvre strategy evaluated by dynamic programming is optimal in the sense 

that the truth function associated with the terminal (goal) constraints and control constraints is 

maximized. However, the resulting optimal manoeuvre strategy relates to a particular 

decomposition and parameterization of state/control space and to a particular rule-base. 
Consequently, the optimal manoeuvre strategy depends implicitly on the predator/prey 

detection mechanisms, kinematic characteristics and prescribed predator pursuit rules 

assigned to the model.

At each stage, the control action comprises either a single manoeuvre or a presribed sequence of manoeuvres.



4. Conclusions and Recommendations for Further Research

Fuzzy system modelling techniques offer scope for more representative models of natural 
predator-prey interactions. In contrast to classical predator-prey models in which pre-defined 

goals are assumed unequivocally for predator and prey, and in which both protagonists are 

assumed to perceive environmental change in a precise and continuous manner, the fuzzy 

system model accommodates event-driven (or threshold) internal processes and imprecise 

sensory information. The fuzzy system description also provides a convenient basis for the 

identification and assessment of particular detection and control mechanisms via appropriate 

state/control decompositions and rule-bases.

A natural extension of the proposed rule-based modelling methodology is the characterization 

of each rule by its credibility; that is, the possibility that the output satisfies the rule 

consequent if the input satisfies the rule antecedent. The fuzzy decision process is then 

formulated in the context of a controllable Markov process (c/. Yoshida [1994]). This 

approach supports elimination of certain low credibility rules from the rule-base. The high 

order of the rule-base in the present application is a major deficiency of the modelling 

procedure. Moreover, the system attributes employed in the construction of the rule-base are 

essentially kinematic in origin. Formal methods for the reduction of a rule-base to a minimal 
rule-base are the focus of much current research effort in fuzzy modelling and it is expected 

that some of the techniques reported in the literature are applicable to the present problem, in 

which case an alternative set of system attributes may be appropriate.

Rule induction algorithms - based on statistical procedures in which relationships between 

system attributes and outcomes are formalized by a set of rules - provide an alternative route 

to the identification of a minimal rule-base. The application of rule induction techniques 

requires the availability of appropriate experimental or simulated data sets from which the 

underlying behavioural rules may be identified. Additionally, experimental or simulated data 

may be used to identify the structure and parameterization of the decomposition of state/ 
control space thereby alleviating the need to prescribe the decomposition in advance.
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