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Abstract

Since residual vector in a control volume is the linear combination of inviscid and viscous flux 

vectors on its all edges when a finite volume method is used, we can use flux vectors instead 

of residual vector in the formulation of generating Jacobian matrix elements. In the actual 

numerical calculation, after setting a variable perturbation in a control volume, we only 

calculate these flux vectors that according to the analysis they will change values because the 

variable perturbation, therefore we don't need to calculate all flux vectors which wiU compose 

of the residual vector. The new procedure decrease the amount of computation greatly, and 

also reduces the extent of the physical state variables used. For parallel computation the new 

procedure will short the storage of physical state variables in each subdomain.
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1. INTRODUCTION

Recent advances in high-speed supercomputers and parallel distributed memory multi­

processors allow the Newton's method, a memory-intensive method, to be used in solving the 

Navier-Stokes equations. In practical applications it is very difficult to obtain the analytical 

Jacobian matrix of the nonlinear system when a high order high resolution scheme is used (it 

is almost impossible if turbulence or chemical reactions are involved). Different ways can be 

employed to handle this problem. One is to use the symbolic manipulation expert system 

MACSYMA to develop the exact Jacobian matrix [1,2], the other is to use numerically 

approximate methods to develop the approximate Jacobian [3,4,5]. By using the letter 

methods the quadratic convergence property of Newton's method is still retained.

2. NEWTON'S METHOD AND JACOBIAN MATRIX

2.1 Discretised Navier-Stokes equation

The structured grid, finite volume method, and Osher's upwind scheme are used to discretise 

the Navier-Stokes equation. The 2-dimensional flowfleld is discussed as the example. In each 

conti'ol volume or cell (i,j) the discretised physical state variable vector and residual vector are

vcell(i,j) -

1 vij) ^ Ra,j)(v) 1
V(i,j)

> Rcell(i,j)(V) —

v(ij) R0.J)<V)

V(U) i \R(iJ)(v)/

(2.1)

where (i,j) = (1,1), ..., (1,J), and V = { Vceii(i,j) I (ij) = (1>1)> — (U) }• Since in a cell (i,j) 

residual vector is composed of the inviscid and viscous flux vectors on its four interfaces



between the cell pairs (i-l,j), (i,j); Oj), (i+l,j); (i,j-l), and (i,j), (i,j+l) respectively, we 

have a vector fonnulation

Rcell(i,j)(V) = FIi+i/2j(V) - FIi-i/2j(V) + FIy+i/2(V) - FIij.i/2(V) 

+ FVi+i/2j(v) - FVi-i/2>j(V) + FVij+i/2(V) - FVij-i/2(V)
(2.2)

Therefore, the discretization of the Navier-Stokes equations results in a non-linear equations in 

a cell (i,j) as follows:

Rcell(i,j) (v) — 0 (2.3)

The calculation of the flux vectors on the cell's edges will only use the discretised physical 

state variable vectors within its neighbouring cells, and when using a high order Osher scheme 

we have a 13 cell stencil as in Fig.2.1.

Fig. 2.1 13 cell stencil

Where we calculate the residual vector in cell marked squai'e, and the discretised physical state 

variable vector need to be used witliin the cells marked square and circle.



Consolidating all the discretised Navier-Stokes equations in every cells we have a non-linear 

algebraic equation as follows:

^(y) = 0 (2.4)

where 5^(v) = { RCell(i,j)(v) I (ij) = (1,1). (IJ) }• For a 2-dimensional flow the vectors v 

and 5(,(v) are N-dimensional, N=IxJx4.

2.2 The Newton's method

For Eq. (2.4) the general Newton's method is

^kAV = -^(v, 

vk+i = vk + Akv
(2.5)

Since Eq. (2.4) is composed of Eq. (2.3) in each cell, we have the Newton's formulation in 

each cells as follows:

(3Rcell(i,j) (Vl/avf Avk = - Rcell(i,j) (Vk) (2.6)

For any vceii(i>m), 3Rcell(i,j)/5vcell(l,m) is a 4x4 sub-matrix, where i, 1 =1, ..., I, and 

j, m =1, ..., J. Since the 13 cell stencil above we know that Eq. (2.6) includes 13 4x4 sub­

matrixes, which will form a block row of Jacobian matiix and are

5Rcell(i,j)/5vcell(i-2,j), 5Rcell(i,j)/3vCeii(i-i,j-l), 9Rccll(i,j/9vCeIl(i-lj), 

3Rcell(i,j)/5vCeii(i-l,j+l), 9RcelI{i,j)/3vcell(ij-2), ^RcelKij/^VceiKij-i),

5Rcell(i,i)/9vCeii(i;j), (2.7)

9Rcell(i;j)/3vCeii(ij+i), 5Rcell(i,j)/9vCeii(ij+2), 5Rcell(i,j)/5vcell(i+l,j-l), 

9Rcell(i,j)/3vcell(i+l,j), 3Rcell(ij)/9vCeii(i+1 ,j+1), 9Rcell(i,j/9vCeii(i+2,j).



Therefore the Jacobian matrix of Eq. (2.5) will be a block 13-point diagonal matrix which can 

be denoted as

On the other hand, a block column of Jacobian matrix will be

^Rcell(i-2,j)/3vcell(i,j)» ^^celKi-lJ-l)/^vcell(i,j)> 3RCell(i-l,j)/3vCell(i,j), 
SRcelKi-bj+li/^VceiKij), 3Rcell(i,j-2)/3vCeii(i(j), 3Rcell(i,j-l)/9vCeii(i,j),

3Rcell(ij)/9vcell(i;j),

9Rcell(i,j+l)/3vcell(i,j), 5Rcell(i,j+2)/9vCeii(ij), 9Rcell(i+l,j-l)/9vCell(i,j), 

3Rcell(i+l,j)/3vCeii(ij), 9Rcell(i+l,j+l)/5vCeU(ij), 3Rcell(i+2j)/9vCell(ij).

(2.8)

From (2.8) we can see that in order to generate a block column elements of the Jacobian matrix 

we need calculate the residual vectors with 13 cells, which have the same stencil as in Fig.2.1. 

For obtaining these residual vectors we should calculate 36 inviscid and viscous flux vectors, 

which are shown in Fig.2.2. Fig.2.2 also shows that the cell extent of physical state variable 

vectors are needed in this procedure.
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x; inviscid flux vector needed. A: viscous flux vector needed, 

squai-e: the perturbation position. Physical state variable vectors used lie within bold line

Fig. 2.2 The fluxes needed in the original formulation

A new simplified procedure can be implemented by substituting (2.2) to (2.8). We have

(dFIi+i/2,m - 5FIl-l/2,m + 3FIl,m+l/2 - 3FIi,m-l/2
9Rcell(l.m)/9vcell(ij) = (+ 9FVi+1/2,111 - 9FVi.i/2,m + 3FVi,m+i/2 - 9FVi,m.i/2)

/3v,cell(i,j)

where (l,m) will be one of the 13 cells in Fig.2.1. After changing vceii(i,j) the flux vectors 

changed are only 8 inviscid and 12 viscous flux vectors, which are shown in Fig.2.3. 

Therefore the amount of calculations of inviscid and viscous flux vectors decrease from 36 to



8 and 36 to 12 respectively. Fig.2.3 also shows the cell extent of physical state variable 

vectors needed in this new procedure.

- i i k

: ] : □ 1 1 3 :

i k i k

X: inviscid flux vector needed. A: viscous flux vector needed, 

square; the perturbation position. Physical state variable vectors used lie within bold line

Fig. 2.3 The fluxes needed in the new formulation

Therefore we have the following fonnulations;

5Rcell(i-2,j)/9vcell(ij) = 9Fli-3/2,j/9vcell(ij)

3Rceii(i-l,j-l)/9vcell(ij) = (3FVi-i/2,j-i + 3FVi.ij.i/2) /9vcell(ij) 

SRcelKi-bj/SvceJKij) =

0FIi-l/2,j - 9FIi-3/2,j + 3FVi.i/2,j + 3FVi.i>j+i/2 - 3FVi_i j.1/2) /9vcell(ij)

3Rcell(i-l,j+l)/5vcell(i)j) = (3FVj.i/2j+i - 3FVi.ij+i/2) /^VceJKy)



9Rcell(ij-2)/9vcell(i;j) = 3FIiij-3/2/9vcell(ij)

SRcellCij-l/Svce^ij) =

(8FIij.i/2 - 3FIi;j-3/2 + 9FVij.i/2 + 3FVi+i/2j-l - 3FVi-i/2,j-l) /3vcell(i;j)

I (3FIi+i/2j - 3FIi-i/2j + 3FIij+i/2 - 3FIij.i/2 
3Rcell(ij/3vcell(jj) = /+ 3FVi+i/2,j - 3FVi_i/2jj + 3FVi>j+i/2 - 3FVij.i/2)

\ ^3vcell(ij)

3Rcell(i,j+l)/3vcell(i>j) =

(3FIij+3/2 - 3FIij+i/2 - 3FVi;j+i/2 + 3FVi+i/2>j+i - 3FVi.i/2j+i) /3vceI1(ij)

3Rcell(ij+2)/3vcell(i j) = - 3FIij+3/2 /3vcell(ij)

3Rceil(i+l,i-l)/3vCeii(ij) = (3FVi+i;j.i/2 - 3FVi+i/2)j-i) /3vcell(ij) 

3Rcell(i+l,j)/3vCeii(i)j) =
(3FIi+3/2,j - 3FIi+i/2,j - 3FVi+i/2,j + 3FVi+ij+i/2 - 3FVi+ij.i/2) /3vceu(ij) 

3Rceii(i+i,i+i)/3vcell(i;j) = (- 3FVi+i/2j+i - 3FVi+ij+i/2) /3vcell(i>j) 

3Rcell(i+2>j)/3vcell(ij) = - 3FIi+3/2>j /3vcell(ij)

Using the above formulations we prefer to generate the elements of Jacobian matrix according 

to the order of column by column.

2.3 Numerically Approximate Jacobian matrix

An approximation for generating the above elements of the Jacobian matrix can be obtained by 

replacing derivative with a finite difference foiTnulation as follows:



9F/3v,cell(i,j)
_ F (V + Avcell(i j)) - F (V) 

^vcell(i,j)
(2.9)

where F is FI or FV, which presents the inviscid or viscous flux vector. Various ways of 

selecting Avcen(ij) have been suggested in the numerical analysis literature. When choosing 

AvCeii(ij) = h e(ij), where e(i>j) are unit vectors, Dennis and Schnabel [6] pointed out that if a 

sequence {h^} is used for the step size h, and if this sequence is properly chosen, then the 

quadratic convergence property of Newton's method is retained and Newton's method using 

finite differences is 'virtually indistinguishable' from Newton's method using analytic 

derivatives. In this paper the h is chosen as e x vCeii(ij), where e ~ V [machine epsilon] and 

vcell(i,j) are tlie state variable vector.

3. NUMERICAL TESTS

The foregoing numerical tests have been carried out on the test case of a laminar Mach 7.95 

flow around a shaip cone with a cold wall (Tw =309.8K) and at an angle of attack of 24°. The 

Reynolds number is 4.1xl06 and the flow temperature is 55.4K. The numerical solution is 

simplified to 2-D flow case since conical flow theory is used.

A structured grid and cell-centred finite volume method are used. The spatial discretization 

scheme used is the Osher flux difference splitting scheme. The fonnal accuracy is third order 

for the convective fluxes and second order for the diffusive fluxes. The linearization iterative 

method is Newton's method. The block element of the Jacobian matiix is a 5x5 sub-matrix 

since there are five state variables in each cell. The streamwise flux need to be calculated. 

However the simplified procedure reduced these calculations from in 13 cells to just in one 

cell. The computer used is the IBM RISC 6(XK)/320H workstation.
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Table 1 gives the compaiison of the cpu time needed for the two procedures for generating the 

Jacobian matiix.

Table 1: CPU time (second) for generating the Jacobian matrix

Grids Original foiTnulation New formulation
34x34 30 sec 6 sec
66x34 65 sec 13 sec
66x66 135 sec 28 sec
66 X 130 314 sec 54 sec

Table 2 gives the comparison of the cpu time needed for generating the Jacobian matrix using 

one step of an explicit iteration as the basic scale.

Table 2: CPU time needed for generating Jacobian matrix

Grids Original fonnulation New fonnulation
34x34 27.3 5.4
66x34 29.5 5.9
66x66 31.2 5.6

66 X 130 36.1 6.2

5. CONCLUDING REMARKS

The new simplified procedure presented in this paper creates significant economy in generating 

a Jacobian matrix. For the test cases the cpu time needed is only about 6 times of one step of 

an explicit iteration. This new fonnulation also reduces the extent of physical state variables 

used, so that for parallel calculation the new formulation can decrease the storage of these 

variables in each subdomain.

1 1
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