Experimental investigation of a small-scale ORC power plant using a positive displacement expander with and without a regenerator

Collings, P., Mckeown, A., Wang, E. and Yu, Z. (2019) Experimental investigation of a small-scale ORC power plant using a positive displacement expander with and without a regenerator. Energies, 12(8), 1452. (doi: 10.3390/en12081452)

[img]
Preview
Text
182416.pdf - Published Version
Available under License Creative Commons Attribution.

6MB

Abstract

While large-scale ORC power plants are a relatively mature technology, their application to small-scale power plants (i.e., below 10 kW) still encounters some technical challenges. Positive displacement expanders are mostly used for such small-scale applications. However, their built-in expansion ratios are often smaller than the expansion ratio required for the maximum utilisation of heat sources, leading to under expansion and consequently higher enthalpy at the outlet of the expander, and ultimately resulting in a lower thermal efficiency. In order to overcome this issue, one possible solution is to introduce an internal heat exchanger (i.e., the so-called regenerator) to recover the enthalpy exiting the expander and use it to pre-heat the liquid working fluid before it enters the evaporator. In this paper, a small-scale experimental rig (with 1-kW rated power) was designed and built that is capable of switching between regenerative and non-regenerative modes, using R245fa as the working fluid. It has been tested under various operating conditions, and the results reveal that the regenerative heat exchanger can recover a considerable amount of heat when under expansion occurs, increasing the cycle efficiency.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:McKeown, Mr Andrew and Yu, Professor Zhibin and Wang, Dr Enhua and Collings, Mr Peter
Authors: Collings, P., Mckeown, A., Wang, E., and Yu, Z.
College/School:College of Science and Engineering > School of Engineering > Systems Power and Energy
Journal Name:Energies
Publisher:MDPI
ISSN:1996-1073
ISSN (Online):1996-1073
Copyright Holders:Copyright © 2019 The Authors
First Published:First published in Energies 12(8):1452
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
709761Thermally Driven Heat Pump Based on an Integrated Thermodynamic Cycle for Low Carbon Domestic Heating (Therma-Pump)Zhibin YuEngineering and Physical Sciences Research Council (EPSRC)EP/N020472/1ENG - ENGINEERING SYSTEMS POWER & ENERGY
684301Dynamic Organic Rankine Cycle for Recovering Industrial Waste HeatZhibin YuEngineering and Physical Sciences Research Council (EPSRC)EP/N005228/1ENG - ENGINEERING SYSTEMS POWER & ENERGY
3002730An ORC power plant integrated with thermal energy storage to utilise renewable heat sources for distributed H&PProject Number; 102883Zhibin YuEngineering and Physical Sciences Research Council (EPSRC)EP/R003122/1ENG - Systems Power & Energy