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SUMMARY

Two general types of non-linear equation are considered, In

part 1, it is shown that the generalized Bernoulli equation

Yd_z.}: =k(_‘}_¥_)2 + P(x)y. 9% + Q(x)y? + R(x)y<H!

dx2 dx dx

can be transformed into a linear differential equation, and thus the
general solution can readily be found, Other related equations are
also considered,

In part 2, non-linear equations of the form

%y o+ f(x,y)dy + alx,y) =0
dx2 dx

are dealt‘with. Methods are given for obtaining the general firét
integral} ‘
The aim throughout this report is tqmreduce many of the
miscellaneous methods of solution at present used to a more orderly.
system, General results are given which apply to large classes of

non-linear second order differential equations,
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General Introduction

In the analysis of'many dynamical systems, we are cbnfronted
with a set of non-~linear differential equations. .The classical
method of solution is to confine our attention to smqll disturbances
and to linearise the equatioﬁs. However, the behaviour of systems
undergoing large amplitude disturbanges is often of inferest; non-
linearities in the forces and momenfs may well be of major‘importanée
in these cases.

Approximate procedures (e.g. those based on the method of
Kryloff and Bogoliuboff) are widely used for determining the free-
oscillation characteristics of non-linear systems. However, there is
often a loss in generality in the resulting solution, as compared with
’the analytical solution of linear equations; this emphasizes the need
for a systematic treatment of non-linear equations. .

In this report we attempt to classify ordinary second-order
non-linear differential equations according to their methods of
solution, In part 1, we consider equations which can be reduced to
linear differential equations (which can then be solved by classical

methods)., In part 2, we consider differential equations of the form

%y + £(z,y) ay + &lx,y) =0
de cedx

which have first integrals

dy = F(z,y).
dx

In both parts of this report we give some useful general results,
which apply to many types of non-linear differential equations of the

second-order,
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Part 1 Non-linear Second Order Differential Equations

Related to the Bernoulli Bquation

1.1 Introduction

We consider the generalized Bernoulli equation

2
STk gxf + P(x)y gy + Q) + Ry, (1)
dx2 |l dx b SR

-where k is a constant, As shown in ,§ 1.2, any nonmhomogeneous
linear differentigl equation of the secdnd order can be transformed
into an equation of this form. Various transformations are given,
relating (1) to other second order differential equations,

In § 1.4, the general solution of (1) is obtained, when a
‘particular solution is known, Power series and polynomial solutions
are examined, Two other second ofdér equations related to the Bernoulli
equation are given in § 1:.0: Finally, in § 1,7 corresponding resultse .

are given for some nth order differential equations,

1.2 A Second Order Bernoulli Eguation

As is well known, the first order Bernoulli equation

¥

%x = A(x)y + B(x)y¥* , (2)

where' k is a constant (k:F1), can be reduced to the linear form
by‘putting

L (3)
From (2) and (3), we see that u satisfies the non-=homogeneous

“linear differential equation of the first order given by

%_1_1_, - (1-x)A(x)u = (1-k)B(x). (4)

Considef now the second order equation
2

d“u - P(x) au - (1-k)Q(x)u = (1-k)R(x). (5)
dx2 dx
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On meking the substitution (3), we see that

du = (k)7 gy
dx dx -

and g2y = (1-k)(-k)y™" (gxf + (x)y¥ g2y
d12 ' = . ' dxz :

Thus (5) becomes

. f% =k (%1)2 + P()ySE  + Qx)y? +R(x)y : (6)
- :

dx

.which can thus be termed a second order Bernoulli equation.
Conversely any equation of the form of (6) can be reduced to a
non~homogeneous linear differential equation of the second order
(or 1lower). The solutions of equations of this type are discussed
by Babister (1967) and Murphy (1960), If k=k1, we use the
éubstitution (3)e If k=1, we can take R = O without loss of

generality. Put

-k dy -
VEY & (7
Then dy = vy,
dx ;
Py = (4x -+ Vz)y
2 dx
dx

and (6) becomes (with k=1 and R=0)

dv = P(x)v + Q(x).
dx

If k=0, equation (6) reduces to

2
Q—% = P(x)dY + Q(x)y + R(x).
dx dx

If k:4:1, the substitution (7) reduces (6) to

gv = Qlx) + R(x)v + (-1)v? + R(x)exp [(kt) fvax) (8)
dx '

which reduces to a Riccati equation if R(x)’:—‘.’ 0.
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Differentiating (8), we obtain

vy =49 + 4P + pdv  + 2(k-1)ydv 4+ [%3 + (k=1 )Rv:l exp [(k—-1)jvdx}
2 dx dx dx dx Cldx !

Using (8) to eliminate the exponential term, we find that v satisfles :

the second order equation

%y = 3(k-1)vaT - (k=1) 2,3 4+ (‘P+_1_ gg)[gg - (1:-1)v2:\ +
dx i " R

dx2 dx /| dx
+dp -(k-?)Q-P R|v+dQ -Q dR . (9)
dx dx dx -R dx

Putting q, = Q' /R) - Q'

q, = P(R/R) -P'+ (k1)q,
q, = (R R)s s
and 1 = 1k,

" where primes denote differentiation w.r.t. x, we see that (9) is a

particular case of the equation
( / /y 2 2 3
v+ (4 #30,v)v 4q4q, v+{aya54a5) v 4azv” = 0, (10)

which is the form of the Ricocati equation of the second order
(Wallenberg, 1900).
The corresponding result for the first order Bernoulli equation

(2) is that the substitution-(?) leads to the equation

dv = i&-é@.%[l - (i-1)a V+(k-1)v :
ax dx B dx B dx

vwhich is a particular case of the generalized Riccati equation of the
first order.

If Q(x)=0, on putting
weyk i (11)

we see that (6) reduces to the non-homogeneous first order equation

dw = P(x)w + R(x). (12)
dx
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Finally, if

e = (1-k)Q,
dx ‘ ;

equation (6) can be put in the form

dx

On integratlng, we obtain

. —- — P(x)y + yk fR(x dx,

dx
which is a first order Bernoulli equation.,

1.3 Related Second Order Equations

The transformation y = H(x)z reduces (6) to an equation of

the same form,

]%é , +{ P+ 2( k-1 dzs '+ +
Z 2 : [ dx} ZEE

2 2
P 1o e W [ M L [
[Q*’ H odx T 2 Hz (dx) i dxa] gt Sl Bl

imilarly, putting y=g where m is a constant) in , We
Similarly, putti F/u ( pi tant) in (6)

obtain another related second order Bernoulli equation,

=(Pk"l“1)(%§>2 i *l.%z +;: HP2 (1)

More generally, if y = f(z), (6) can be put in the form

a2z = s(z) _d_z_)2 +P(x)dz + Q(x) £(z) _ +R(x) L%, (15)
ax 2 dx dx df/dz df/dz

: , 5
k df - d?f/dz° .
These ) = 7 &

In particular, with y=ez, we see that any differential equation of

the form
4% =nfdz)? +P(x)dz + a(x) + R(x)e™, (16)
2 dx dx

dx
in which we have replaced k-1 by h, can be reduced to the second order

Bernoulli equation,
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The corresponding result for a first order differential equation
is that, by putting y=e?, any equation of the form:

dz = A(x) + B(x)eM? 2417)
dx g ‘

can be reduced to the first order Bernoulli equation (2), with h = k-1,

Now dy = __1
dx dx7dy
and dzx = - 1 d2x .
i (ax/ay)> ay°

Thus equation (6) can be expressed in the form

Lg +kgz s 2 ) + [ax)y + R(x)yk](si.z)3 = 0
Gt 4 dy dy

and equation (16), with 2z 7replaced by y, in the form
&’z + pdx + P(x) (gr + [Q(x) + R(x)e™ ](g_x_f = 0,

dy2 dy dy dy

Interchanging x and y in each of these equations, we see that the

solutions of the two second order equations

dy vk g+ <y>( + [ar)x + 2)" J(axP =0 19)

dx - x

and gfg, + h%x + P(y)(- [Q(y) + R(y)ehf](- ) = 0 (19)
dx %

can be expressed in terms of the solutions of a second order Bernoulli{
equation.

144 General éoiution when a particular solution is known

As shown in § 1.2, by means of the substitution (3), the second

order Bernoulli equation

y__z ,{Ty_} + P8+ q(x)y® + R(x)y (0}
with k41, can be reduced to the second order linear equation
%y - P(x)du - (1-k)a(x)u = (1-k)R(x). (21)
dx2- =gx

If the general solution of (21) is of the form

w=f(x) + C1f1(x) + szz(x),
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where C, and 02 are arbitrary constants, the general solution of

1
(20) is . _

y = [£) + 0,0, c 2,0 | /00, : (22)
Thus, if P(x),Q(x) and R(x) are simple functions of x, it is pdssible'
to express the solution of (20) in terms of known transcendental
functions (Babister, 1967). :

It may happen that a particular solution of (20) can be found by
inspection., = Thus, if R(x) = cQ(x), where ¢ 1is a constant, a
particular solution is y1_k = =¢, More generally, if ¥, is a particular
solution of the general equation (20), then, on putting

1k -k
W T (23)

we see that v satisfies the homogeneous linear equation

gfg - P(x)dv - (1-k)Q(x)v =0, _ (24)
dx2 dx

Alternatively, y can be shown to satisfy a first order Bernoulli

equation, Put

y;ky’ - gy
i ekl (25)
P
y "Y1

in which primes denote differentiation w.r.t. =x. On substituting in
(20), we find that w satisfies the Riccati equation

antotaqlx) & Blxdv #: (ks )t ' (26)
dx '

Using (25) we see that
d
dr=vw|y-x\ 7| +(z} .
dx ¥4 ¥, dx

If w and y, are known as functions of x, this is a first order
Bernoulli équation.
Again, if H(x) is a particular solution of the second order

Bernoulli equation with R(x)?E O, dies,. if H(x) is a particular solution of
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2. 2
y-g- = k(glx-’) + P(x)yay + Q(x)y° ,
dx dx

then, writipg y = H(x)z;.we see frmm§1.3 that 2z sgtisfies an
equation of the form (20) with the coefficient of,22 zero. As ‘shown
in§ 1.2, in that case, on putting w=z—kdz/dx, we’find that w satisfies:
a non-homogeneous linear equation of'the first order.

1.5 Power series and polynomial solutions

In the generachase, it is not possible to express the solution of
(1) in terms of known transcendental functions, A solution for y as
an infinite series in powers of x can most easily be obtained by using
the form (16). If the solution of (16) is written as a Taylor series

)
o Z (.d_n_z.) xn/n!~ »

n=0 dxn
o}

the coefficients can be determined by successive differentiation of
(16). In certain cases the series may terminate. We shall now examine
some polynomial solutions of the second order Bernoulli equation (1),

expressed in the form

LB+2 [yif_% = k%ﬁ)z} =§(x)y%§ + Q(x)y° + ﬁ(x)ykﬂf (27)
b.q -

where a is an integer > -2, In (27), P(x), Q(x) and R(x) are taken

to be polynomials in x of degrees p+l, q and r respectively,

Let y = cx®t o+ c1xm-1 + 40 t+ C
m

be a polynomial solution of (27), and 1et<>l,/g and 7 be the leading
coefficients of the polynomial expansions of P, § and R respectively.
Writing only the leading powers of each term in (27) we have
2_at2m 2 2_a+2m
c x

m(m;1)c x - km

= °mepr—!'zm ¥ ﬁc2xq+2m +Yck+1 xr+xnk+m e (28)

+ e00

We assume firstly thattl,ﬂ ,3’ are not zero and that kck 135 On equating
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the degrees of the greatest exponents in (28)‘ we see that,
if k<1, 0<m(1-k) = nin (r-a, r-p, r-q), ‘ (29)
provided that aﬁ“-‘p:}:q. . If any of the éoefficients ot,', ﬂ and Y are zero;
the corresponding exponent does not occur in (29) |

If any of a, p or q are equal, other values of m may be
possible, Thus, if a = p>q, one value of m is given_by (r—a)/(1—k).
However, it may be possible to find a larger value. Thus, if a = p>>q
and m(1—k)> r-a, another relation for‘ determining a value of m is
obtained by équatiné the coefficients of the exponents a + 2m and
P+ 2m in (28). We find

n(m-km—1 )c2 =<~Lm02.

Thus, if m 30, another value of m is given by (146l )/(1-k) provided
that this is a positive integer. We note that in this case the value
of ¢ is undetermined (it is, in fac.t,. one of the arbitrary constants
in the solution of the differential equation). Similar additional

solutions can be found if a = q>»> p or if p=q > a or if a = p = q.

0 and P =d.x, (27) becomes
) k+1

In particular, if a = p
2 2
= |2y -]z
2 dx
dx
1-k

On making the substitution u =y —, this is transformed into the

q
d 2 (

OLXYEX "'(‘)’y +R (x
=gty

non-homogeneous Euler equation

5 . -
2 i_]_{% —otg%lxl_ - (1x)Bu = (1-k)R(x),

the solution of which is readily found as a power series in x (Babister,‘

1967).
If k>1, on putting ¥y = 1/v in (27), we obtain the equation
2 2 [ _
a+2 | dv if dv = dv..: = 2 k' +1
LE ekl = — x)v - Rix
x [V';;Z (dx) ] P(x)vdx Q(x) | R(x)v . (30)
where k' =2-k <1, This equation is of- preecisely the same form as

(27) and the above analysis holds, almost unchanged, with k replaced

1
by k .
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1.6 Other second order equations related to the Bernoulli equation

There are two other non-linear equations of the second order which
it is of interest to note here. Both of them can be obtained directly

from the first order Bernoulli equation

%% = Alx)y + B(x)yk. ' (31)

On dividing both sides of (31) by y, and differentiating w.T.t. X,

we obtain
1% L (wr)? = @ + BEk + (e)p(x)y*-2 &
J o 2 2 (dx dx dx dx
X y
that is,
2 i 2 2 k+1 k
Ay = [dr\" + dalx) o2 4 dB(E). ¥y 4o (ke1)B(x)55 4X e
2 dx dx dx dx
dx
Conversely, any equation of the form
2 2 s
ey = QI) * P(x)y2 + Q(x)yk+1 + R(x)yk 4y (5]
2 dx dx
dx
in which %; R(x) = (k-1)a(x), (33)

can be made exact on dividing by y2. The first integral is the

Bernoulli equation

%1 = y~SP(x)dx + R(x) yk/(k~1).

Again, in (31), put y = 13'%% 5 Then (31) becomes
z

D 2 k
1. 8%, . . gg) = A(x) L. 42 4+ B(x) (-d—z-)
2% dx gt (dx M ;EE -

On multiplying both sides of this equation by za+1 we see that any

equation of the form

2 2 A k
02 sfiel 4 Al)e8E » BTN &
2 dx dx dx

(34)
dx :

can be reduced to the first order Bernoulli equation,
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1.7 Extension to differential equations of ﬁhe nth order

The analysis given above can be extended to differential equations
of higher order. Consider the nth order non—homogeneous linear
differential equation

Mu 4+ p{(x)Dn-1u + eee * pn(x)u = £(x), i (35)

where D = d/dx. ~ The general solution of(35) is of the form

u = F(x) + C1f1(x) + oee + Cnfn(x)
where C,, soey C_ are arbitrary constants.-
1 n

In (35), put
u=y , | (36)
where|> is a constant. Differentiating (36) wer.t. X we obtain
you = A(Dy)u . (37)
Repeated differentiatién of (37) giveé,'fromeeibnitz' rule,

yD%u + (mf) oy. 0"l & (m;) 0Py 0" %0 i sus +. 0 y.Du

- X[Dy.DmJu " (-~m;1) D2y, 0™ 2%y +( m;) e e MR Dmy.u]
. (m=1 to n). (38)
The n equations (38) cén be used to determine the ratios Dmu/uj
(m=1 to n) in terms of y and its derivatives, We find

m/.m 2 , m-1 m
y (D u)/u = a11(m)Dy a12(m)D Ve a1,m—1(m)D y a1m(m)D y

: M2 me-1
a21(m)y a22(m)Dy cve az’m_1(m)D y aZm(m)D y

- -2
0 a32(m)y voe a3'm_1(m)Dm 3y a3m(m)Dm y

v

© 0000000000000 0000000000000 000000006000086

(m)y a n(m)Dy  {(39)

0 : 0 oo &
m,m-1

in which the element ars(m) is given, in terms of the binomial

coefficients, by the formula

ars(m) =)\<m—r) - (m—r ) , (r,8=1to m) (40)

S-T g-r+i

with (f") =0 ify<O0 or if v > /W . TFrom (40) we see

-
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that arm(m) = )\ (r =1 tom). Thus we can write

y(0%) =\ Uu (m=1ton) (41)
where Um is a polynomial in ¥y, Dy, eco » Dmy which

is homogeneous in y and its first m derivatives.
Equation (35) can then be written
S n n-N
U+ 0, (050, + eee + 5 (D770 4 (DA =2y A . (42)
» The general sglution of (42) is

ey [F(X) ¥ e () +cnfn(x)1 1/ .

Such a differential equation can certainly be called a Bernoulli equation
of the “nth® order, S Pit N = 1=k Then, if n=2, (42) is of the same

form as (6). The corresponding third order Bernoulli equation is

Y20y = Dy, 0%y = x(ks1) (09)% - 2, (2) [ ¥0% - w(op)?] -
- p,(1)5°Dy = py(x)y’/(1-k) + £(x)y*?/(1-1), (43)

Other related nth order equations can be obtained from (42), for
example, by putting y = ez. The third order equation corresponding
to (16) is found to be (with h = k~1)
D’z = 3uDz;D%% = hl(Dg)’ = », (x) [Dez <= p(08)2 ok
= p,(x)Dz + pg(x)/n - £(x)e™/n. (44)

 REFERENCES

A.W. Babister, Transcendental functions satisfying non-homogeneous
linear differential equations (Macmillan, 1967).

G.M. Murphy, Ordinary differential equations and their solutions
(Van Nostrand, 1960).

G.'Wallenberg, ber Riccatische Diffentialgleichungen hBherer Ordnung,
Jour, fUr Mathematik, 121, p. 196, 1900.
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Part 2 Pirst Integrals of Certain Non—linéar Second Order

Differential Equations

2.1 Introduction

We considér those non-linear second order differential equations

of the form
2 ,
Y + f(x,y)4L + glx,y) =0 . (1)
dx2 dx ' -

which have first integrals

§

%% = F(x,y). | (2)

In §§ 2.2 and 2.3, g(x,y) is expressed in terms of f and F, and
both particular and general first integrals of (1) are obtained. A
method is given for finding the generél‘first,intggral when two
pafticular solutions are known. In ;§5é¢5 the analyéis‘is extended to
related differential equations, and some non—iineér equations h;ving
simple first integrals are considered in.§‘2.6.

242 Second‘order equations having a given first integral

If (2) is a first integral of the second order equation (1) we

see that
a° d
Y -Fr 4+7 & _p 4+ PP, (3)
dx2‘ X y dx X y

On using (2) and (3), we see that (1) must be of the form

2

SF el oF c(F )P el (4)
d 2 dx X y

X

Thus g(x,y) = - Bos (Fy + T)F. (5)

Conversely, putting (4) in the equivalent form

2
AT p.  w.0¥ QI-F) =0 (6)
ax2 x ¥ dx +¢ dx 4

h =
W gre 96 f + Fy’ y (7)
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and writing

U=dy -F, @) :
dx 5s » ;

we see that (4) becomes

%E + ¢(x,y)U_= 0, Eh o (9)

It is obvious that (4), or (9),'always has a first integral given
by
| gzdl AF=o0, : (10) -
This solution does not contain any arbitrary constant, and is therefore

only a particular solution of (4). It may nevertheless be of interest.

2,3 The general first integral

Under certain circumstances, the general first integral of (4) can
be obtained from (9). If ¢> is a fuﬁction of x_ only (or a constant),
we have, on integrating (9),

U =C exp [‘- j&(x)d;] (11)

where C is an arbitrary constant., Thus, if (f+Fy) is a function of

X only, the general first integral of (4) is

Y =F + C exp {- J(fmy)dxj .' ’ (12)

dx

If'¢ is of the form f1(y)dy/dx, from (9),

U=Cexp[—ff1dy] ; | (13)

where C is an arbitrary constant.
More generally, it is readily seen that, if (f+Fy) is a function

of x only, the second order equation

— ‘
. i-:zl f[:(x.y) + f1(y)%%J gz ["y oty f1(Y)%§]F =2 Uy

has the general first integral

%iﬁ =F + C exp [- f(f+Fy)dx - ff1dy]”. (15)

In a similar manner, if 9b and Hﬁ are functions of x only,
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and k is a constant, we see that the second order equation

d i d - - = d. e
e R -

(16)
becomes ;

é-.g. + ¢U =1+'Uk,

dx
on using (8). This is the Bernoulli equation and can readily be
integrated, In particular, if F =0, (16) becomes
d2 ' a i d k 3 ' :
LY + ¢ =L ()LL) . (17)
dx2 dx dx

Put p = dy/dx. Then
.d_'P- + = K
.+ ¢ (x)p = ¥ (x)p

which is the Bernoulli equation.

If f1 and‘f2 are functions of y only, and- k is a constant,

the second order equation

2 2 k
ey ay\ _ (7 Ql—F=f.§l§I-)
dx® f f1(-dx) ( y+f1F) dx X 2 3x \ax

(18)

becomes, from (8),

au +f1§1U=f.@lUk

dax = dx 23x
or ' aut 30p7798 Bp s

which isagain the Bernoulli equation. In particular, if F =0, (18)

becomes

2

2 ) K+
&L+ 1,(y) (21 = £,(y) (sll)
dx dx dx

(19)
Put p = dy/dax. Then d2y/dx2 = pdp/dy and (19) reduces to

k
d =
-55- + £,(y)p £,(y)p

which is the Bernoulli equation.
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2.4 The genefal first integral when two particular solutions are known
It sometimes happens that it is possible to éxpress the second order

equation (1) in the form‘(6) in two different ways. We then have two:

équations
L +dpyu=o0 s - (20)
du . ,

and 1
— +¢, (x,5)0, = 0. ‘ , (21)

It may then be possible to eliminate 'y between (20) and (21) to obtain
a single equation %n X, Thus if, in (1)~and (2), f=0and F is a
function of y only, g = - FFy and we find that

U=y’-F,9S=F | (22)

and U1

y' +F,¢, =-F . (23)

From (20)—(23) ’

1har. 10
Tder -0 dx - !

1

which gives the first integral of (1) in this case in the form

UU1=C,

that.is, y’2 =T s : (24)

where C is an arbitrary constant, Since, in this case, f = 0 and :

g is a function of y only, this solution could be found by more

elementary methods, Thus
2 / 2 i ) '
d7y/dx" = FFy = %? (3F°) and (24) follows immediately,
1]

on putting y = d/dy‘(%y’?)and integrating. However, this method

is of general application.

Thus, consider the equation

2

L+ et @E 4 [ D]y - o
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where b and k are constants, It is readily verified that this

equation can be put in the forms of (20) and (21), with

_ 4y - by< s k-1
U= 4y -y, @ =ke(x) + Kby ey
_dy g k 2 Goaatied '
and U, =L 4 £(@)y + vy, Py = kflx) - wy . - (21)
Using (20) and (21), we see that
1 40 4 wp(x) == 1 1~ kf(x)
U dx * (x) U' dx :
and thus log(UU1) =C - 2k ‘[f(x)dx,
which gives the first integral of (25) in the form
S 4 2(x)y V2 = 9°F 4.0, exp | kel elx)ax |, . (28)
dx 1

C and C1 being arbitrary constants.

2.5 Related differential equations . -

The transformation y = h(z) reduces (1) to

B (z)% + £(x,h)h { (z)%i- + n'(z2) (g—:) : + g(x,h) = 0" (29)

Thus any differential equation of the form

2 7, a2
dz 4+ F(x,z)42 +h_Lz) (dz g =0
dx2 (x, )dx hf (z) | dx + &(x,2) : . : (30)

can be reduced to the form of equation (1), with
f(x,h) = T(x,z)
o /
and g(x,h) = g(x,z)h’(z).

In particular with y = h(z) = exp(az) we see that the equation

2 - 2: o
4z 4 f(x,z)(_i.z. + a(% +vg(x.z) =0 {31)
dx2 dx ‘ :

can readily be reduced to equation (1),
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In (1), we can write

av 1
dx - dx/dy

and : d2x = - 1 ' gf; .
dx2 (dx/dy)3 dy2

Thus equation (1)_can be expressed in the form

izg - f(X.y)(%§)2 - é(x,y)(%§)3 =0

and equation (31), with = replaced by Yy, in the form

2 - 2 - ;
Cx - odx - Fxy)(22)” - Bx,y) gf S
dy2 dy dy dy

Interchanging x and y in each of these equations, we see that the

solutions of the two second order equations

iy f(y.X)(éz)z - g(y,X)(ix)3 =0 : (32)
P 2 dx dx
X
4 a iy _ T ay¥ = iy )
A 7 .8 . Flga) (_1) . g(y,x)(_x) = (33)
dx2 dx dx dx

can be simply found from those of (1) and (31). As shown in part I
[}q.(19)] i f and g are functions of y only,'the solution of (33)
can be expressed in terms of that of a second order Bernoulli equation.

Equafion (32) is of the form

% + P(x,y)(%ﬁ)&-& Q(x,y)(%%)p = 0, (34)

whefe e(:r:ﬁ = As shown in §2.3, if P and Q are both functions of thé
same variable, the first integral of (34) can be found in a gimple form
for certain values of o and "3 o

If P is a function of x only and @ is a function of y only,

ol
divide (34) by (dy/dx) . Then (34) becomes

‘(%%)'&» d_ZAZL + P(x) + Q(y) (%)ﬁ'd = 0. H (35)
dx
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This e uétion is exact if [3 =ol +1, with a first integral

.-1_.1__&(%%)1-J+J.P(x)dx. '% _[Q(y)dy

const., el#1),

or log(dy/dx) + \fP(x)dx + .rQ(y)dy = const, (ol =1),
This case can be further generélized as foliows.
Consider the equation

895 ot o)

= 0. (36) :

On putting p = dy/dx, we see that (36) can be written in the form
o 3
f(p)%;% + P()p”  + alp)el = o,

that is, f(p)p'd.glz + P(x) + Q(y)%.! g0
X X

This equation is exact if [8=ol +1, with a first integral
% -& >
J}(p)p dp + J%(x)dx + j&(y)dy‘= const,

2.6 Other non-linear equations having simple first integrals

We have seen that, in a number of cases, non~linear second order
equations can be reduced to Bernoulli's equation, and hence the first
integral can readily be found, Smith (1961) has shown that if
(n+2)byn - 2a

y [; + (byn - a)?] ’ .

where a; b, c and n are constants, the general solution of

£(y)

]

]

and g(y)

2 . ;
g—% + f(y)gx + gly) =0 , (37)
dx dx

can be expressed in terms of elementary functions,

Another family of non-linear equations which are readily integrated is

v =32 2y, (38)

/]

Put'yl =P ¥y = pdp/dy. Then (38) becomes

y dp/dy = p £(y"p%). (39)
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Let u = ympn. Then, as shown by Murphy (1960), we obtain
y du/dy = u(m+nf).

Thus (38) has the first integral

d . : :
logy+0=f-ﬂ—m%§y, (40)
where u = ymy'n ‘ (41)

and C is a constant,

Similarly the equation

/ / m 7 , i |
xy.c= 5 ey ) ; (42)

can be shown to have the first integral

_— dv
log x + C =‘/v2m+nf; (43)

n
where v = xmyl p : (44)

Pinally, in the equation

xzyl' =y £(xy'/ /y>. (45)

put w = xyl‘/y. Then the first integral of (45) can be

obtained from either of the equations

= dw
dx
x £(w)=w(w=1) 2 ‘ (46)
or dy = __wdw
vy flw)=w(w=1 : ‘ (47)
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