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SUMMARY

Two general types of non-linear equation are considered. In

part 1, it is shown that the generalized Bernoulli equation

+ p(x)y, dy + Q(x)y2 + R(x)yk+1
dx

can be transformed into a linear differential equation, and thus the

general solution can readily be found. Other related equations are

also considered.

In part 2, non-linear equations of the form

d2y + f(x,y)_gz + g(x,y) = 0

dx2 dx

are dealt with. Methods are given for obtaining the general first

integral.

The aim throughout this report is to reduce many of the

miscellaneous methods of solution at present used to a more orderly

system. General results are given which apply to large classes of

non-linear second order differential equations.
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General Introduction

In the analysis of many dynamical systems, we are confronted

with a set of non-linear differential equations. The classical

method of solution is to confine our attentio�'to small disturbances

and to linearise the equations. However, the behaviour of systems

undergoing large amp�itude d�sturbanc:es is often of interest; non­

linearities in the forces and moments may well be of major importance

in these cases.

Approximate pr-ocedures (ei.g., these based on the method of

Kryloff and Bogoliuboff) are widely us�d for determining the free-
. 1;', ' I • ,

oscillation characteristics of �on-�inear systems. However, there is, 1

often a loss in generality in the resulting solution, as compared with';,

the analytical solution of linear equations; this emphasizes the need

for a systematic treatment of non-linear equations.

In this report we attempt to classify ordinary second-order

non-linear differential equations according to their methods of

solution. In part 1, we consider equations which can be reduced to

linear differential equations (which can then be solved by classical

methods). In part 2, we consider differential equations of the form

d2X + f(x,y) � + g(x,y) = 0

dx2 dx

�hich have first integrals

_gz = F(x,y).
dx

In both parts of this report we give some useful general results,

wnich apply to many types of non-linear differential equations of the

second-order.
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Part Non-linear Second Order Differential Eguati�n§

Related to the Bernoulli Equation

1.1 Introduction

We consider the
2

d y
= k (ll)2Y 2 dx

dx

generalized Bernoulli equation

+ p(x)y.!!I. + Q(x)y2 + R(x)yk+1 ,

dx
( 1 )

. where k is a constant. As shown in j 1.2, any non-homogeneous
1

linear differential equation of the second order can be transformed

into an equation of this form. Various transformations are given,

relating (1) to other second order differential equations.

In f 1.4, the general solution of (1) is obtained, when a

'particular solution is known. Power series and polynomial solutions

are examined. Two other second order equations related to the Bernoulli

equation are given in § 1. 6. Finally, in § 1.7 corresponding results

are given for some nth order differential equations.

1.2 A Second Order Bernoulli Equation

As is well known, the first order Bernoulli equation

II = A(x)y + B(x)yk
dx

(2)

where k is a constant (k *' 1 ), can be reduced to the linear form

by putting
1-k

u = y • (3)

From (2) and (3), we see that u satisfies the non-homogeneous

linear differential equation of the first order given by

� - (1-k)A(x)u = (1-k)B(x).
dx

(4)

Consider now the second order equation

- p(x) � - (1-k)Q(x)u = (1-�)R(x).
dx

(5)



On making the substitution (3), we see that

.!b! = (1_k)y-k �
dx dx

and ::� = (l_k)(_k)y-k-l (�)2 + (1_k)y-k d2y
'2 •

dx

Thus (5) becomes

y d2� = k (*)2 + p(x)� + Q(x)y2 +R(x)yk+1
dx

(6)

which can thus be ltermed a second order Bernoulli equation.

Conversely any equation of the form of (6) can be reduced ,to a

non-homogeneous linear differential equation of the second order

(or lower). The solutions of equations of this type are discussed

by Babister (1967) and Murphy (1960). If k·�1, we use the

substitution (3). If k = 1, we can take R = 0 without loss of

generality. Put

v=l £I..
y dx (7)

Then £I. = vy,
dx

d2y (g_y_
2

= + v )'Y
dx2 dx

and (6) becomes (with k=1 and R=O)

dv = p(x)v + Q(x).
dx

If k=O, equation (6) reduces to

d2� = p(x)� + .Q(x)y + R(x).
dx dx

If k=F 1, the substitution (7) reduces (6) to

g_y_ = Q(x) + p(x)v.+ (k-1 )v2 + R(x)exp [(k-1) 5 vdx1 ' (8)
dx

which reduces to a Riccati equation if R(x):: O.
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Differentiating (8), we obtain

d2v =,gs. + dP:v + p� + 2(k-1 )v.dv + fLxR + (k�1 )RV] exp [(k-1) Jva.x1
dx2 dx dx dz dx .. ld �

Using (8) to eliminate the exponential term, we find that V satiefies

the second order equation

d2v = 3(k-1 )v:dv - (k-1) 2v3 + (p+� .9ll )[dV - (k-1 )v2 )dx2 dx .

R dx dx
+

+[dP - (k-1)Q. - P .!lliJ v + S!l -� .9ll .. (9)
dx 1 R dx dx 'R dx

I Q'Putting qo = Q(R /R)

peR I /R)
,

(k-1 )0.,q1 = - P +

q = -(R1/R) - P
. 2

., and q3 = 1-k,

where primes denote differentiation w.r.t. x, we see that (9) is a

particular case of the equation

(10)

which is the form of the Ricoati equation of the seoond order

(Wallenberg, 1900).

The corresponding result for the first order Bernoulli equation

(2) is that the substitution (7) leads to the equation

.9.!. = (.!!! - ! ill1.) + [1 .@-(k-1)AJV+(k-1)v2.,dx dx B dx B dx

which is a particular case of the generalized Riocati equation of the

first order.

If o.(x)=O, o� putting

w - y-k .!!y. '

-: dx
(11 )

we see that (6) reduces to the non-homogeneous first order equation

� = p(x)w + R(x).
dx

( 12)
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Finally, if

.9E. = (1-k)Q,,'
dx

equation (6) can be put in the form

�L (. y-k g.x,) = .L [. .!'J.iL y1-k] + R(x).
dx dx dx 1-k

On integrating, we obtain

£z = 1 ()dx T:'k P x Y

. ,

+.Y" JR(x)dx,

which is a first order Bernoulli equation.

1.3 Related Second Order Equations

The transformation y = H(x)z reduces (6) to an equation of

the same form,

= )i,?_l2 +[p+ 2(k-1) .!Y!J Z£!' +

� H dx dx

+ [Q+ z .!Y! +}L I dH)2 -.1 d2HJ z2
H dx H2 \ dx H dx2

Si�ilarly, putting y.=��/p (where f is a constant) in (6), we

+ rut=-1 zk+1. (13)

obtain another related second order Bernoulli equation,

'�2 � (1"'-1'+1) (�t +p"* +

ft .2 + \ Jlk"1'-+2 •

r
( 14)

More generally, if y = fez), (6) can be P4t in the form

d2z = S(z) ( dZ)2 + p( 'X:)� + Q(x) � + Rex) r f( z)l k
, (15)

dx2 dx dx � �

where S(z) •

In particular, with y=ez, we see that any differential equation of
'.

the form

.d2Z = h (1!)2d:z? dx/
+ P(x)dz + Q(x) + R(x)ehz,

dx
( 16)

,

in which we have replaced k-1 by h, can be reduced to the second order

Bernoulli equation.
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The corresponding result for a first orqer differential equation
is that, by putting y=ez, any equation of the form

dz = A(x) + B(x)ehz
dx

( 17)

can be reduced to the first order Bernoulli equation (2), with h = k-1,

and

Now II = 1
dx dx!dy

d2y = 1
_

dx2 (dx/dy)3
d2x

2
dy

•

Thus equation ( 6) can be expressed in the form
I

d2x + .If. dx + p(x) ( dX)2 + [Q(x)y + R(x)ykJ (�;f = 0

dy2 Y dy dy

and equation (16), with z replaced by y, in the form

::� + h� + p(x) (�;t + [Q.(X) + R(x)ehy J( �f
Interchanging x and y in each of these equations, we see that the

= o.

d2y +k

dx2 x

and d2
. .£.1L

dx2

solutions of the two second order equations

II + p(y) (�)2 + fQ(y)x � R(y)xkJ(�)3 = 0 (18)
dx dx L dx

+ � + P(y)·( &)2 + [Q(Y) + R(y)ehxJI ll)3 = 0 (19)
dx dx - ldx

can be expressed in terms of the solutions of a second order Bernoulli.
I

equation.

1.4 General solution when a particular 'solution is known

As shown in J 1.2, by means of the substitution (3), the second

equation

p(x)� + Q(x)y2 + R(x)yk+1
dx , (20)

with k =F 1, can be reduced to the second order linear equation

- P(x)du - (1-k)Q(x)u = (1-k)R(x).
dx

-

(21)

If the general solution of (21) is of the form

u � f(x) + C1f1{x) + C2f2(x),
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where C1 and C2 are arbitrary constants, th� general solution of

(20) is

y = [f(X) + C1f1(x) +' C2f2(X)] 1/(1-k). (22)

Thus, if p(x),Q(x) and R(x) are simple functions 'of x, it is possible

to express the solution of (20) in terms of known transcendental

functions (Babister, 1967).

It may happen that a particular solution of (20) can be found by

inspection. Thus,1 if R(x) = cQ(x), where. c is a constant, a

1-k
particular solution is y = -c. More generally, if Y1 is a particular

solution of the general equation (20), then, on putting
1-k 1-k

Y = Y1 + v , (23)

we see that v satisfies the homogeneous linear equation

d2v - P(x)dv - (1-k)Q(x)v = 0.'
.

dx2 dx
(24)

Alternatively, y can be shown to satisfy a first order Bernoulli

equation. Put
-kyl -k I

Y -

Y1 Y1 (25)
W = -

1-k 1-k
y' - Y1

in which primes denote differentiation w.r.t. x. On substituting in

(20), we find that w satisfies the Riccati equation

� = Q(x) + p(x)w + (k_1)w2•
dx

(26)

Using (25) we see that

� = y [y �(�J Yl]
If wand Y1 are knoWn as functions of x, this iS,a first order

Bernoulli equation.

Again, if H(x) is a particular solution, of the seoond order

Bernoulli equation with R(x)� 0, i.e., if H(x) is a particular solution of
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+ p(x)y£:t + Q(x)y2
dx

then, writi�g y = H(x)z, we see fromj' 1.3 that z satisfies an

equation of the form (20) with the coefficient of z2 zero. As shown

in§ 1.2, in that case, on putting w=z-kdz!dx, we find that w satisfies'

a non-homogeneous linear equation of the first order.

1.5 Power series and polynomial solutions

In the general case, it is not possible to express the solution of
I -

(1) in terms of known transcendental functions. A solution for y as

an infinite series in powers of x can most easily be obtained by using

the form (16). If the solution of (16) is written as a Taylor series

z = (::�)o ,

the coefficients can be determined by successive differentiation of

( 16). In certain cases the series may terminate. We shall now examine

some polynomial solutions of the second order Bernoulli equation (1),

expressed in the form

[
2

a+2 d y
x y-

dx2
- i� 2J = p(X)Y� + ti(x)l

In (27), I5(x), Q(x) and R(x) are taken

-( ) k+1
+ R x y " (27)

where a is an integer � -2.

to be polynomials in x of degrees p+1, q and r respectively.

Let
m

y = cx + + ••• + e­
m

be a polynomial solution of (27), and let d.., (3 and 1 be the leading

coefficients of the polynomial expansions of P, Q and R respectively.

Writing only the leading powers of each term in (27) we h_1ive

( -1) 2 a+2m km2 2 a+2m
+m m- c x - c x 0 ••

_I 2 p+2nJ. a 2 q+2m v k+1 r+mk+m
="",mc x + ,,,,,c x + f C X + ••• (28)

We assume firstly that J, �,1 are not zero and that k{: 1 � On equating
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the degrees of the greatest exponents in (28) we see that,

if k< 1, O� m( 1-k) = min (1'-a, r-p, r-q), (29)

provi.ded that ai=p:fq. ,If any of the coefficients J.., (3 and yare zero,

the corresponding exponent does not occur in (29).

If any of' a, p or q are equal, other values of m may be

possible. Thus, if a = p>q, one value of m is given by (r-a)/(1-k).

However, it may be possible to 'find a larger value. Thus, if a = p�q

and m(1-k»r-a, another relation for determining a value of m is

01

obtained by equating the coefficients of the exponents a + 2m and

p + 2m in (28). We find

m(m-km-1 )c2 =J.mc2•

Thus, if m A:: 0, another value of m is given by (1+d..)/(1-k) provided

that this is a positive integer. We note that in this case the vaiue

of c is undetermined (it is, in fact, one of the arbitrarY constants

in the solution of the differential equation). Similar additional

solutions can be found if a = s > p or if p = q > a or if a = p = q.

In particular, if a = p = q = 0 and P = cLx, (27) becomes

x2 [yd2:r, _ k (�) 2J = r:l Xy� + � y2 + R (x)yk+1.
dx2 dx 0 x

1-k
On making the substitution u = y this is transformed into the

non-homogeneous Euler equation
2 d2u - I :ito'£!! (0)(1.x ot 1-k 'v u =

dx2 dx
(1-k)R(x) ,

the solution of which is readily found as a power series in x (Babister,'

1967) •

If k'71,

a+2 [d2V _

x v�
dx

on putting y = 1/v

k/('dV) 2J:: p(x)v.dV
dx dx

in (27), we obtain the equation
{

-( ) 2
_ -R(x)vk +1

- Qxv, (30)

where k' = 2-k < 1 • This equation is of 'precisely the same form as

(27) and the above analysis holds, almost unchanged, with k replaced
I

by k •
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1 .6 Other second order equations related to· th�_ ��...!t91!.a�tion

There are two other non-linear equations of the second order which !

i� is of interest to note here. Both of them can be obtained directly'
from the first order Bernoulli equation

(31 )

On dividing both sides of (31) by> y, and differentiating w.r.t•. x,

we obtain

dA(x)
dx

+ dB(x)yk-1
dx

+ (k-1)B(x)yk-2 � 9

dx

that is,

�) = (*)2 + d�X) i + d��X) r + (k_1)B(x)yk � 0

dx

Conversely, any equation of

2

.)
2 2

� = (.!iY. + p(x)y
dx2 dx

the form

+ R(x)yk �y ,
dx

(32)

in which � Rex) = (k-1)Q(x),
dx

(33)

can be made exact on dividing by
2

y • The first integral is the

Bernoulli equation

.£Y. = yJp(X)dX + R(x) yk/(k_1).
dx

Again, in (31), put y = 1a � ·

z

:a �2 - .:+1 ( �Y = A(x) :a : + B(x) � (:t
Then (31) becomes

b t 'd f thO t· b
a+1

th tOn multiplying 0 h S1 es 0 1S equa 10n y z we see a any

equation of the form

. zd2z = a(�)
2

+
2 dx

dx

A(x)#.! + B(x)za+1-ak (M)kdx dx (34)

can be reduced to the first order Bernoulli equation.
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1.7 Extension to differential equations of the nth order

The analysis given above can be extended to differential equations

of higher order. Consider the nth order non-homogeneous linear

differential equation
"

n-1 "

P1(x)D u + ••• + Pn(x)u = f(x), (35)

where D:: d/dx, The general solution of(35) is of the form

where C1, ••• , Cn are arbitrary constants."

In (35), put

U ::: y , (36)

where A is a constant. Differentiating (36) w.r.t. x we obtain

yDu ::: }. (Dy)u • (37)

Repeated differentiation of(37) give�, from ,Leibnitz , rule,
m (m-1) m-1 (m-1) 2 m-2 m-1

yD u +"
1. Dy.D u +

2
D y.D u + ••• + D y.Du

= \[DY.Dm-1u + (m�1) D2y.Dm-2u + (m;1)D3YoDm-3u + ••• + Dmy.U]
(m=1 to n). (38)

The n equations (38) can be used to determine the ratios Dmu/u!
(m=1 to n) in terms of y and its derivatives. We find

ym(Dmu)/u = a11 (m)Dy a12(m)D2y ( ) m-1 a1m(m)Dmy••• a1,m_1 m D y

a21(m)y a22(m)Dy
"

m 2 a2m(m)Dm--1y••• a2,m_1(m)D
-

y

a32(m)y ( ) m-3 ( ) m-2
0 ••• a3,m-1 m D y a3m m D y

o o ••• am,m_1(m)y a (m)Dy
mm

(39)

.........................................

in which the element a (m) is given, in terms of the binomial
rs

coefficients, by the formula

a (m) '(m-r) (m-r) "('i', a ::: 1 to m) (40)
rs

=A
s-r

-

s-r+1 '

with (t) = 0 if -u < 0 or if "'\J '/ r • From (40) we see
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that a (m) = \ (r:::: 1 to m).
rm

ym(Dmu) :::: \. u uf\ m

Thus we can write

(m :::: 1 to n) (41)

where U is a polynomial in
m

is homogeneous in y and its firs·t m derivatives.

Equation (35) can then be written

U + P1(x)yU 1
+ ••• + p 1(�)yn-1U1 + p (x)yn/'A = f(X)yn-� I).. • (42)

n n- n- n

The general solution of (42) is
I _

Y = [F(X) + C1f1(x) + ••• + Cnfn(X)] 1/A

Such a differential equation can certainly be called a Bernoulli equation

of the nth order. Put � = 1-k. Then, if n=2, (42) is of the same

form as (6). The corresponding third order Bernoulli equation is

y2n3y = 3kyDy.n2y _ k(k+1) (Dy)3 - P1 (x) [y2n2y - ky(ny)2 J -

- P2(x)y2ny - P3(x)y3/(1-k) + f(x)yk+2/(1_k). (43)

Other related nth order equations can be obtained from (42), for

example, by putting y = eZ• The third order equation corresponding

to (16) is found to be (�;-i th h = k-1)

n3z = 3hDz.n2z - h2(nz)3 - ·P1 (x) [D2z - h(Dz)2 J ...

.; -: P2(x)Dz + P3(x)/h - f(x)ehz/h. (44)
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Part 2 First Integrals of Certain Non-linear Second Order

Differential Eguations

2.'1 Introduction

We consider those non-linear second order differential equations

of the form

d2y + f(x,y)Qz + g(x,y) : 0

dx2 dx
( 1 )

which have first integrals

Qz =F(x,y).
dx

In §§ 2.2 and 2.3, g(x,y) is expressed in terms of; f and F, and

(2)

both particular and general first integrals of (1) are obtained. A

method is given for finding the general fIrst integral when two

particular solutions are known. In J�' .2".5. the ana'Iys i.a is extended to

related differential equations, and some non-Lanear equations having

simple first integrals are considered in§ 2.6.

2.2 Second order eguations having a given first integral

If (2) is a first integral of the second order equation (1) we

see that

d2y -- F + F Qz
d

= F + FF •

dx2 x y x x y
(3)

On using (2) and (3), we see that (1) must be of the form

6 d

dx2
+ f(X,y)� - Fx - (Fy + f)F = o. (4)

Thus g(x,y) = - F - (F + f)F.
x Y .

Conversely, putting (4) in the equivalent form

d2y ()dx2
- F

x
- F

y *' + ¢ *' - F

(5)

= 0, ( 6)

where � = f + F ,
Y

(7)
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and writing

U =.Qz - F,
dx

(8)

we see that (4) becomes

i!! + q, (x,y)U = O.
dx

It is obvious that (4), or (9), always has a first integral given

(9)

by

u::.Qz _ F = O.-

di
(10)

This solution does not contain any arbitrary constant, and is therefore

only a particular solution of (4). It may nevertheless be of interest.

2.3 The general first integral

Under certain circumstances, the general first integral of (4) can

be obtained from (9). If ¢ is a function of x only (or a constant),

we have, on integrating (9),

u = C exp f - J<j>(X)dxj ( 11 )

where C is an arbitrary constant_. Thus, if (f+F ) is a function of
y

x only, the general first integral of (4) is

f = F + C exp [- J (f+Fy) dxJ · ( 12)

If � is of the form f1(y)dy/dx, from (9),

u = C exp [ - Jf
1 dy ] ( 13)

where C is an arbitrary constant.

More generally, it is readily seen that, if (f+F ) is a function
y

of x only, the second order equation

d2y + [f(X,y) + f1 (Y)�J * - F

dx2 x

- [I' + f(x,y) + f1 (y)_9z.] F = 0
_ y dx

( 14)

has the general first integral

*' = F + C exp [- J (f+Fy)dX - J f1dY]. (15)

In a similar manner, if 1> and 1(- are functions of x only,
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and k is a constant, we see that the second order equation

::� + (.p -Fyl*
- Fx -pF =1(* - Fy ( 16)

becomes

�
dx

+ 1>U

on using (8). This is the Bernoulli equation and can readily be

integrated. In particular, if F = 0, (16) becomes

2 i .

)k.!L1L + � (x)gz = -f(x) (gzdx2 dx dx
( 17)

Put P = dy/dx. Then

iE. + <f (x)p = "f (x)pk
dx

which is the Bernoulli equation.

If f1 and f2 are functions of y only, and k is a constant,

the second order equation

d2y + f (gz)'2._ (F +f F) gz - F = f2 gz (£z.dX - F)kdx2 1 dx y 1 dx x dx (18)

becomes, from (8),

ill!. +fgzU=fgzuk
dx . 1dx 2dx

or dU + f1U = f2uk ,

dy

which �sagain the Bernoulli equation. In particular, if F = 0, (18)

becomes

Put p = dy/dx.

2 2 k+1
d

� + f1 (y) (£z.) = f2(y) (.<U:)dx dx dx

Then d2Y/dx2 = pdp/dy and (19) reduces to

( 19)

iE. + f1{y)P = f2(y)pk.

dy

which is the Bernoulli equation.
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2.4 The general first integral when two particular solutions are known

It sometimes happens that it is possible to express the second order

equation (1) in the form (6) in two different ways. We then have two'

equations

(20)

and (21 )

It may then be possible to eliminate y between (20) and (21) to obtain

a single equation in x.
I

Thus if, in (1) and (2), f = 0 and F is a

function of y only, g = - FF and we find that
y

U = r' - F ,� =F (22)
y

and U1 = Y
J

+F , <P 1
= - F (23)

y
•

From (20)-(23),
dU

1 dU 1 1
-- + - - = 0,U dx U1 dx

which gives the first integral of (1) in this case in the form

that is,

001 = a ,

/2 2
Y = F + 0, (24)

where a is an arbitrary constant. Since, in this case, f = 0 and

g is a function of y only, this solution could be found by more

elementary methods. Thus

2 2
.

d y/dx = FF = d
y cry

on putting y
II

= d/dy (-b-/2) and

(tF2) and (24) follows immediately,

integrating. However, this method

is of general application.

Thus, consider the equation

(25)
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where band k are constants. It is readily verified that this

equation can be put in the forms of (20) and (21), with

U = � + f(x)y - byk,

and U = � + f(x)y + byk,1 dx

...I. ( ) k--!
'+' = kf x + kby

rA
= kf(x) _ kby·�-1

•T1

Using (20) and (21), we see that

dU··
.

1 .9.1!. + kf(x) = - 1 --l - kf(x)
U dx U

...
dx

and thus log(UU1} = c - 2k j f(x)dx,

which gives the first integral of (25) in the form

[� + f(X)y] 2
= b2y2k + C1 exp [ -2k S f(x)dxJ '

C and C1 being arbitrary constants.

2.5 Related differential equations.

The transformation y = h(z)
2

I
( ) d z ( )

I
( ) dz +

h z

dx2
+ f x,h h z

dx

reduces (1) to

h
1/ (z) (LdXz)

2

()+ g x,h = O.

Thus any differential equation of the form

d2z + r(x,z).<![ + � (£.�)2 + ;g(x,z) = 0

dx2 dx � dx

can be reduced to the form of equation (1), with

f(x,h) = r(x,z)

and g(x,h) = i(x,z)h'(z).

(26) .

(27)

(28)

(29)

In particular with y = h(z) = exp(az) we see that the equation
2

.

d2z + r(x, z).<![ + a (@) + i(x. z) = 0 (31 )
2 dx diJ -

dx

can readily be reduced to equation (1).
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In (1), we can write

� _ ...--1�_
dx

-.

dx!dy

and
2

.<Lz = -

__
1
__

dx2 (dx/dy)3
..

Thus equation (1) can be expressed in the form
,

.
.

.

d2x
_ f(X,y)(dX)2 -

g(x,y)( dX)3 = 0

dy2 dy dy

and equation (31), with z replaced by y, in the form

d2x _ adx _ f(X,y)(.!!!.)2 _ g(x,y)(dX)3 = O.

dy2 dy dy dy

Interchanging x and y in each of these equations, we see that the

solutions of the two second order equations

d2y f(y,X)(*)2 _ g(y,x)(�)3 = 0

dx2

and d2y a!U r(y,x) (�y - g(y,XX*f = 0

dx2 dx

(32)

(33)

can be simply found from those of (1) and (31). As shown in part I

[eq.(19)] , if f and g are functions of y only, the solution of (33);
can be expressed in terms of that of a second order Bernoulli equation.

Equation (32) is of the form

d2y + P(x,y)(�)d.+ Q(x,Y)(�)p = 0,
dx2 dx dx

where c(*�. As shown in § 2.3, if P and Q are both functions of the

(34)

same variable, the first integral of (34) can be found in a simple form

for certain values of cJ.. and l� .

·If P is a function of x only and Q is a function of y only,
, J.

divide (34) by (dy/dx) � Then (34) becomes

(£JoL �� + p(x) + Q(y} C�:;t4 = o. (35)
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This equation is exact if (3 =� +1, with a first integral

1�C£(�Y-� + ]P(X)dX + JQ(y)dY = const., (c{:f:1),

or log(dy/dx) + JP(x)dx + SQ(y)dY:::: const. (J. =1).

_
This case can be further generalized as follOws.

Consider the equation
2

t �
f{�:x� + P(x>(� + Q(Y)(�)

.

:: O.

On putting p:::: dy/dx, we see that (36) can be written in the form

.9.E r)..
f(P)dX + p(x)p

that is, f(P)P-c:.i.9.E + p(x} + Q(y)£!l: ;_f:J.. -1
= O.

dx dx

This equation is exact if (l::::d +1, with a first integral
.

jf(P)P-tJ. dp + Ip(X)dX + JQ(Y)q..y.:::: const.

2.6 Other non-linear equations. having simple first integrals

(36)

We have seen that, in a number of cases, non-linear second order

integral can readily be found. Smith (1961) has shown that if

equations can be reduced to Bernoulli's equation, and hence the first

fey) :::: (ri+2)byn - 2a

and g(y):::: � L� + (byn - a)2J '

where a, b, c and n are constants, the general solution of

2
d Y2 + f(y).1Y. + g(y) :::: 0

dx dx

can be expressed in terms of elementary functionsG

(37)

Another family of non-linear equations which are readily integrated is

(38)»" :::: /2 f(ymyln).
Put yl :::: p, y

II
:::: pdp/dy,

y dp/dy :::: p f(ympn).

Then (38) becomes

(39)
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Let
m n

u = y p • Then, as shown by Murphy (1960), we obtain

y du/dy = u(m+nf).

Thus (38) has the first integral

log y + C = J u(:�nf)
where

m Inu=yy

and C is a constant.

Similarly the equation
II '( mIn)xy = y f x y

can be shown to have the first integral

log x + C =�v(::nf)
where

n
m I

v = x y •

Finally, in the equation
2 " I·

xy =yf(xy /y),

put w = xy
I /y. Then the first integral of (45) can be

obtained from either of the equations

� =
dw

x f(w)-w(w-1)

or .9::!. = wdw

s f(w)-w(w-1) •
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