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SUl'D'·lARY

Th� general nature of solution of the autonomous equation

x + (b + Ix + mx) � + c x + C x2 � 0
1 :a

is considered (for c > 0). It is shown that limit cYcles cannot occur
1

for this system if b , (-lc /c ) and (-lrn/c ) all have the same sign�'
.21 � . .

Trajectories in the (x,x) phase plane are given for various c��b�nati6n�
of sign of b , It m and c. It is shown that self-sustaining

a

osoillations occur if b = 0 and c m +- c = O.
1 2

Limi t cycles can occur for numerically small (non-aero ) va��ef3 of

b/.F_ for a certain range of values of mb/l. Examplef3 of these
1,

cycles are shown for both c = 0 and c > O.
2 2
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1. Introduction

This report is one of a series on dynamical systems vrith non-

linear characteristics (Babister, 1973 arid 1975). In the earlier

reports He considered the na tur e of solutions of the autonomous

equations

, .

(bO-t-b1X)
•

c x2 (1 )x + x + c x + 0
1 2

• • .

!-l�2 :3 (2)and x + bOx + + c x + c x O.
1 :3

'l'hese are particular cases of the generalized equation for relaxation

oscillations

II

(x,�)
.

g(x) ( 3)x + f x + 0,

or of the equivalent system
..

x y 1 (4)
y - f(x,y) y - g(x) ,

considered by Levinson and Smi t.h (1942). If both f and g are

poLynomia'l.s of the second degree (at most), the system (4) is said to

be quadratic.

rElle general topological Ulcor:; of hlo-dinensional sy s t ens of S:-"8

•

X
2

+

1
x CL x + 0, i/ + CL CL xy + CL y2

lp 01 20 11 O2
(5)

y - r:l x + f3 y + P x2 + f3 xy + i302y210 01 , eO 11

has been discussed in a number of papers (Bautin� 1954, Petrovskii,

1958f Yan-'iia..'1., 1963-4 and Coppel, 1966). Such equations occur in a

vari e ty of physical problems, notably in the mden-Fovrler equation of

astrophysics and in the analysis of an oscillator 1.,ri th quadratic t.e rms ,

However , due to the large number of coefficients in (5), the

.i.nv esti[;3. ted. it is still not

po s s ible to staf.e HhetheJ: a given syst en (5), with oxp'l i c i t Lu,-:1s:cical

co ef'f'Lc.i errt s , has limi t cyc Ie s ,
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In t.hi s paper \'1e shall conside:c solutions of the autonomous

equation
• • .. c

x2 ( 6)x + (0 +- 1x + mx)x + c x + c �O,
1 :2

or of the equ.i, va1en t system

x y 1 (7 )
y - (0 + Ix + my)y - c x - C x:2 ,

1 2

whe re b , c , c , 15 and ill are real coefficients. He shall consider
l. :2

both the global structure of the integral curves aDd the limit cycles

of (7), our aim being to get quanti tativ e data on these matters. 1..1e

note that if ill = Of (6) reduces to (1); if 1 '" 0, (6) reduces to (2).

Consider first the general nature of the solutions of (7). The

syste.m has a singular po i.n t at the origin 0, this point being a focus

(or node) if c > 0 and a saddle point (or higher order singu.l ar- point)
1

The focusif c � O.
1

b > or < O. As shown

at 0 wi Ll, be stable or un s t.ab.l e according as

by Loud (1964), the origin becomes a centre if

c ) = 0 with 0 > o.
2 1

The point (-0 /c , 0) is another sinGUlar
1 2-

On putting x = z - c / c , \ie see that (6)'
1 2

This is consideredooth b = 0 and 1 (c ill +
1

further in f 4 and § 5.

point for the system.

becomes

- c z + c Z2 = 0
1 :2

(8)

whi oh is an equation of the same form as (6).
equation of the form

110re generally, any

z + + c + c z + c Z2
012

= 0, (9 )
..

in vhi ch c and c are not both zero, can be put in the form of (6)
1 2

\vi t.h real co ef'f'Lci en t s on letting x = Z - y, \-There y is a real con s tan't ,

provided that the equation

c + c y + C y2 = 0
012

has a real root, that is,
:2 ,/

provided 0 �
1

l.c c •,

0 :2
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In (6) put x (',X, t = �:]1 , Hhere a. and p az-o constant.a,

dX
dT

+ �ac X + o,i=2c X2
1 2

x=J6 (t), 'rcth:.:

:;:: o.
(In)\ ....

e.t t = 0, ¢ (WI'),

T == O.

in (6), and that, if � is replaced b:.r - �, t is chan-red to -t.· 'rhus,
if (6) has a periodic solution, (10) wi th any non-zero a. and � '1i:tl

also have a periodic solution. If (1, = -1 and is = l, the coefficients

1, m and c in (6) change sign, and the variation of X with 7 is
2

identical wi.th that of (-x) wi th t. Again, if a. = 1 and � = -1, the

coefficients b and 1 in (6) become -b and -1, and the variation of X.

with T is identical with that of x with (-t).

Scaling factors were used in the numerical solutions given in this

r'he couput cr calculations we re carried out for the

equation

+ O.lc X + 0.2c X2
1 2

o (11)

wi th c =1 and 1, m and c each having the value 1,0, -1. As stated,
1 2

above, the origin i1:l then a focus (or node). 'rhus the solutions were

performed in real time (� = 1) with a scaling factor a. :;:: 2.

3. General theC?rems on limit cycles

For the system

i = p(x,y), Y

by Dulac's extension of Bendixson's theorem, we find that, if B(x,Y) is

a continuous function such that, in a single connected region of the

(x,y) plane,

(12)
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is of constant sign, then no closed contours exist in that region for

the given system.

-ie apply the above theorem to the system (7). li'irstly take

13 = exp [f(X) + g(Y)J (13)

and

f(x)

g(y)

where

ry.

'I'h en

(l+c r)x + c rx2 + (2m-p+br);y + (lr-q)xy + mry"J1 2

Pu t ]-I'C r
1

C, 2D-p+br = 0 a�d lr-q = O.

r -l/c, p = 28 - bl/c and q
1 1

L T3 b _ ! c2 ;:; 1:1
y2 ). (l!� ). • x

c
C 1

1

IrOH t�,e r.;l.�3. of (lLi) will be of con s t an t sLll over the who Le (x,:r)
pb,!�e p ro vidnd treat b , (-lc/c ) and (-1m/c) have the same Si.c'")1. 'l'hus

211

Liiai t cycles cannot occur for the sy s t em (7) if b , i,-lc /c ) and (-1:.1/c )
z 1 1

(,gain, from (12), Hi th 13

L = J3 (b + IX)
exp (2mx),

'I'he r s h ;s , of (IS) w iLl be of con s tar t sii�n over the ",1:'0] e (x,y) plane
if 1 is zero; no limi t cycles can then occur. This case HaG dealt

Vlith in Bab i s t er (1975). T!ore r;cnerally, from (15) He see that , if

l*C, any limit cyc l cs of (7) must intersect tb� line x = - 0/'1.

/rom (14), if b (; and 1 * 0, limit cycles canno t occur for the

system (7) if c and m huve the same s im , if both b an d c are zero,
2 ;:;

(7) has no periodic solution (if Im::f:()). Tly taking 13 = (y+a.X+�)Y expSx,
\,here eL, (3, y and 6 CM be au'i t=.b ly :ieterr.linprl, Yan-cri an (l)(�;) showed

thA.t, for c r:1+C :=t==O wi t.h 1:4='0, the system (7) Vlith b = () han no
1 2

periodic solution. r;'his is considered further in § �.l.

F'h�se plane traj ecto:r::_ies for c =0
2

'1' raj ectories in the (x,�) phase plane were found by anal orrue computer
for

.. , ,

x + (b + lx + .nx) X + c X
1

o (16)

or -cne equivalent sy s t em
•

x
•

y
1 1 (17)

y ,
- (b + Ix + ��)y - c x.
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For this system, as shown in § 3, no Lirn i t oycl e s occur if b and

'(-1m/c)
1

if c < o.
1

have the sa.me sign. NOH the origin Hill be a saddle point
Therefore in the subsequent discussion vre shall take c

1
> o.

L1.1. _Systems In th b (), c
a

0.

/\s shown by Sabister (1973 and 1975), if b = 0 the oricin becomes

a centre if, in addition, either 1 or m vanishes; self-sustaining

o sc.i Llations can then occur (for sufficiently sraal I ampl i, tU:,i,8S in x) ,

,'\8 sho-rn in § ), if 1m 4= 0, the systen (17), vri th b = 0, has no

periodic solutions. }�f�re 1 shows the trajectories for 1 = - 1,
m = 1, c = 1; these we re found by using the ana'Io.rue cc.nput er , there

1

being no exact first inte�ral. 'i118 curves eO�1ver�.:e very sl0'tllJ to the

(
.

\

origin, t:·:c coefficien t of the 6.81ilpin;r t crm Ix-rnx) beini"; ,Teatest .in

the second ouad ran t for 1 < 0 and rn > Ci. Pu t t i.ns;

1

'.Te 0'.)': that (16) becOi"e[, (Hith b = -».
d �"",'//(1, t. -_ - x';- r i '

\ x + :CIXj.
•

I'hus trw total ener,,::r i'� of the sy s t om ':Ii 11 rtecrSflJ,e if Lx-rnx > o. "1

the I!ei",-hbourhood of 0, the effect of the nor -T'inear te:':'::lS i!i (17). and

n en c e the (:a'":1pinf�, is 'Ier;! smaI l ,

','rajectories for 1 = :t 1, m s � 1� c
1

fi�lre 1 by applyin7 sca1in� f�ctors a

1. can be obtained [rom

1 and f 1. It can

readi.ly be snown +,):j;,t the traj ectori res conv e r.re to the o rdrin if lim < Of
and di ve.rve (to .i.n f'Ln i t,y) if l/n > C. :.ore vene-rall,'y', He f'i.nd tno

+
. �

t>
'. '", t ( 1 -r ,

.: tl.-','
-

eqUavlr'lYl::; lor .,e t raj ec :,orles z o r
.

;:(; S,j'i,ten c. i I » '."_L r • o = ._, can oe

put in t:,<; ; orrn

mv

(� 1 )-"-

Fl f

�Fl1

4.? ,;./ ·terl3 with b :to, c C.
:]

If b > (I, the sy s t en (17) has: po s i ti ve dampinf� in the nei{ihb0urhood.
of the; orL;in, wh i ch is then a stable focus (or stable node). "'ir:ure 2

ShOHS the traj ectories for b=1., 1=1, m=l, c =1, and £,i�3Ure 3 ShO\,18 Lho ae
1

for b=l, 1=-1, m�l, c =1.
1

is an apprecd ab Lo increase in damping.

In both of these fi;)lres, ,..,i th Lx > () there

'rraj ectori es for m=-l. can be

deternined by applyi.n.r a sca.l ing factor a. = -1 to these curves. 'i'he
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increased damping with b > 0 is readily seen by comparing fi €-;ures 1
�

and 3. In figure 2, trajectories only converge on the origin if

y > -1, the line y = -1 being a separatrix for the given values of the

parameters. Nore generally, we see that, if bl = me , the system (16)
1

has a particular integral

x = - c /1.
1

�rajectories for b = -1, 1 = + 1, m = + 1, c = � can be obtained ,
-

1

from figures 2 and 3 by applying scaling factors � = �1, � = -1.

For these values of b , 1, m and c , all the traj ectories diverise to
1

infini ty a.s t � + CIO.

Limi t oycl es can occur for smal L values of bj Tc1' as slown in

fi,'jure 4. For b < 0, the oricin is an un s t.ab Le focus; traj ec tvr.i e s '.I>.:i.ch

s t.art in t�18 "'leicjlb:)Urh�od of the ()ri;�-in spiral out to the b�:!j +. c�rcle,
which is stable. '�igure 4 ShOVlS how the size of the limit cycle

increases as the numerical value of b increases; thus only part of the

limit cycle is shown for b = - 0.3. He note that all the limit cycles
in t-his figure lie below the line y = �. Now, for the system (17),
the slope of trajectories on the line y = c /1 is given by

1

dy/dx = - b + mc /1
1

which is a constant. 'rhus (if b =t= me /1), as shown in figures 1 and 3,
1

no trajectory can cross this line more than once; in particular, as

shown in figure 4, no limit cycle can intersect this line.

as shown above, the line y = -c /1 is a separatrix.
1

.

If b=mc /1,
1

Hore generally we find the equations for the trajectories for the

system (17), with b * 0, can be put in the form

•

Thus, if I and m are both increased in the ratio c, : 1, the x and y

coordinates of the trajectories will be decreased in the same ratio.

For this system, the occurrence of limit cycles will therefore depend on

the values of the parameters mb/l and b/ Fa, I this is illustrated in
1 .

figure 5, which shows the results of a number of runs on the analogue

computer for b/ r; « 0, for mb/l > 0. If mb/l « 0 and c > 0, b and�. V1 1

(-1m/c) will have the same sign (as in figure 3) and, as stated abOve,
1

no limit cycles can occur.
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stable limi t cycles occurred for - 0.3 <- b/Jc. -e 0 for a range
, 1

of values of mb/l; by applying a scaling factor � = -1 (as indicated in

§ 2) it is readily seen that unstable limit cycles will occur for

o < b/ ra. <: 0.3 for the same range of values of mb/I. For given values
1

of m , b and c , the relative size of the limit cycle increases as 1
1

decreases in magni tude, until for mb/l > 0.3 no linli t cycle occurs, the

trajectoriss diverging to j_nfiI1it:l for b < rand conveTgir.r; t(l t!:;e

orici:n fOT b > 0 ( as in fi 3"ur'� 2). ,:;Eain, for giv;:)1! V5.lUF)S of b , 1

and m (",ith nh/l � C .3), the li"lit cycLe Lr.o reaso s i10 size (in tho x

di.rec1jio:n) as c 0(�Creases Ln ;'�Eig'l�itude, e"'>lGY: +ual Iy ccr.,.�'�.i;:l�::� to e:\�ist
1

f'o r ,-:nfficiently la.T{�e values of I b I /F, (as indicated in figure 5).

The absence of Lar.u t cy cl e s rOT these values of Ibl/Jcl was shown

by Yan-,�ian and o tirer-s (1)64), It can be demonstrated by using Dulac's

extension of Bendixson' s theorm (f 3) for the sy s t em (17) with B=111y+c ).
1

'I'hen

- [O(BP)/OX +d(BQ)/OY]
Iny2 + 2mc y + bc
________� ___L

(ly + c ) 2

1

Now fl. will have the same sign over the wno l.e of the (x,y) plane if

=

1 1

that is, if Ib/mc > 1.
1

(18).

We note that B changes sign as the line y = - c /1 is crossed.
1

'I'heref'o r-e , if (18) is satisfied, any limit cycle of the eyat em nus t CT0SS

tLe Lin o y -c /1. Jut, as .:;i10'..ti: above, no Li.mi t cyc l e can Ln ter-sec't
1

this line. Therefore the system (17) has no limit cycle if

(lb/mc ) > 1; that is, if b2/c > mb/1. (19)
1 1

The limiting condition b2/c = mb/l
1

is shown in fig. 5.

Phase plane trajectories for C
2

>0

Trajectories in the (x,�) phase plan were found by analogue computer
for

�. + (b + lx + m�)� + c x + C x2 = 0
1 2'

(20)
or the equivalent system

•

x = y , (21)
y = - (b + Ix + my)y - C x - C x2

1 2
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for c
1

at the

and c both positive. 'I'he system then has one singular point
a

origin 0 and ano thar at the point (-c /c ,0), the latter being
1 a

a saddle point.

For th::'s system, as shown in f 3, no limit cycles occur if b ,

(-lra/c ) and (-lc /e ) all have tho same sign. 'i'hu s , with c and c

1 2 1 1 2

both po ai ti ve , no limi t cycles occur if b and (-1) have the SI'E�,e siV1

and rn > O.

0, c > 0
2

.is shown by Loud (1964), if b = 0, the orir>:in becorne s a centre if,
in addition, l(c m + c) = o. 'i'he case 1 C was considered by
T) � + ( 1 t.: �-�). l:':l -. � �_

. ', .

"'" . ..,.

I

Bab i s .er \-')7./ , st.lf-::>ust",Lll!C"" o sc i.Ll a t.i on s C"'';'1 then o c our (for

f'fi i cn t l 11GU i i ca en J:,r sma v)�- . If b = C) and c
:3

- c m,
1

(2(j)
has the particular intei7al

x = ). ,mx - 1) ()2)

(25)
1

'Ii t.h c > 0, eq. (?2) corresponds to a pair of s t rat zht lines throu '{1
1

the ooin t (-c Ic ,0) in the phase p l ane ,

1 2
The p_1'oneral first I n tee T'll

of (20), vri th c c m , can be shown to he
2 1

(\2 rn2 + 1)1,� - �
1

(rnx - 1)J - (\ rn2 + 1) Ion: [� -

2 (mx-1)]
+ (\ - � ) rn3 x A (24)

2 : 1

vlIlel'e � and'�' are the roots of (23) and A is a constant. If 1 = 0,
1 2

f'ron (2.5),). = -}. = rc 1m, and eq , (?4) reduces to
1 2 'II "1

10[; [� - �, (1:lx-1)] + 10g[� +� (mx-1il + 2nx = - A/� rn2
• , 1 1

that is, ia = (c 1m2) (mx-1)2 + C e
-.In.::, (25)

1

whe r'e C is a cor.s t.ant , in agreer:1ent Hi th Bab i s t e r (1975),

?igure 6 ahows the traj ectories for 1 = -1, m == -1, c = 1, c 1..
1 2

rj'he ge:1eral conf'Lgurat ion is ver'J similar to that for 1 = 0, given in

_3abister (1975). The lines 'JT = - � (x+1) are the separatrices of tt:.';

sy s t em , where 'A2 - '>.-1 = 0, that is, � = 0.5 .±. [1:25. 'rhus the

separatrices are the pe rpen d.i cul az- lines y = 0.62 (x+i) and y - 1. 62 (x+i).
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We see that the separatrices divide the phase plane into four regions,

all the trajectories going to infinity unless they are wi thin the

region to the right of PA and FE. In that region there are cyclic

trajectories enclosing the origin, which is a centre.

Figure 7 shows the trajectories for 1 = -1, m = 1, c =1, c =t
1 2

(there is no general first integral in this case). 'lrajectories whi ch

come sufficiently close to ° spiral in ver,y slowly to the orif:�n

(which is a stable focus); all other trajectories go off to infinity,

apart from the two whd ch converge on to the sartdle point (-1,0).
There are no cyc],ic trajectories. 'l'he destabilising effect of the

saddle point (i.e, the effect of the non-Hnear stiffness term c XZ)
2

can be seen by comparing figures 1 and 7.

'Jraj ectories for 1 = 1, m = + 1, c = 1., c := 1 can be obtained
-

1 2

from fi;�.lTes 6 and 7 by app12rini!. the scal ;ng factor f3 = -1. Cyclic

trajectories occur for �1 = -1 (as above). .u i traj ectories diverge
to infini ty if 1 anrJ. m are both positive (apart from certain separatrices) •

Hore £:enerally \'19 find the equat.i on s for the trajectories for the sys t em

( 21) \-lith b = ° can be put in the form

.!!ri = f3(�, 1 m:�- )401 'm�
, •

5.2 Systems with b=*,O, c > 0
2

Ji'i[,ures 8, 9, 10 and

m = � 1, c = 1, c = 1.
1 2

b > 0, the origin is a stable

11 show the trajectories for b = 1,1 = ±1,
'Phe point (-1,0) is then a saddle point. If

focus (or stable node), and trajectories
which come sufficiently close to ° spiral in to the origin. The nature

of the trajectories near the two sinb'Ulari ties (0,0) and (-1,0) is

de'termi.ned by the linear terms in eq. (21) • 'I'here are no limi t cycles
for these values of the par&�eters. �rajectories for

b = -1, 1 = +�, m = ±1, c =1, c = 1 can be obtained from fi6'Ures 8 - 11
1 <I

by applyinr, a scaling factor 13 = -1. For these values of the par-ame tez-a ,

all the trajectories go off to infinity, apart from the two separe tz-Lces

wh i.ch converge on the saddI e po in t (-1, 0) • \'/e find the general equation
for the trajectories for the system' (21) can be put in the form
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....!!SL f (h_ 1 b -=--)=
,

m� '�
,

c 4JC;. mc
1 1

or c y

ex � b � )-� = f __a__
,5

c 1 F,et� 1

the second form being more useful in comparing trajectories of this

report Hi th those of an earlier report (6abister, 1973) in wrri ch m was

taken to be zero.

As in § 4, we find that limit cycles can occur for numerically

small (non-zero) values of biro, (and bl/c > 0). \-lith
1 a

b = -0.1, 1 = -1, c =1, c =1, figure I? shaHS the limit cycle for m = 0
1 a

and figure 13 that for m = 1, both limit cycles being stable. Limit

cycles were also obtained for small negative values of m, but none were

obtained for m < - 0.75 and the above values of the other parameters.

By applying the scaling factor f3 = -1, we see that an unstable

lLTIiit cycle occurs for b = 0.1, 1 = 1, c 1, c ::: 1 and L = C a:lc1 1.
1 2

'�'i�i3 ::'.3 in ',-creerlent (for::1 = O� \rith I;:e results of Obi, which show

that a limit cycle of the system represented by eq. (20) will occur if

0< bc /lc «1/7. In the limi ting condition, the limit cycle vTill merge
2 1

wi th one branch of Ute s enar'at r ix through the point (-c /c ,0).
1 :3

For higher values of bc /lc (corresponding to an increase in the
2 1

strength of the focus at 0) the trajectories diverge to infinity if

b < 0, as shown in our earlier rO)Ol't. As Ibl decreases to zero, the

dI:1IJlitu1e of t:ie linit c:;rclG also (J_ecrp,JS<'�s to ,38:rO, 1:;;\p.1"e 1'(':i.nC 110

Ij_ni t cYGlf 1·'r�[(�1" b = () (8�3 [C': ('1m 8.�)Ove).

'These can be obtained from those discussed in f 5 by applying a

scaling factor CL = -1.. As shown inf 2, this changes the signs of

x, s; 1, m and c. The point (x,y) is transformed into the point
:3

( ..�,-y). 'i'hue , with c =1 and
1

(saddle point) at (1,0).
C
'2

As in f 5, limit cycles
small (non-zero) values of b/� (and bIIca> 0).

= -1, there is a singular point
can occur for numerically
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