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SUMMARY

The general nature of solution of the autonomous equation
X+ (b+1x+mx) X+ cx+ czx2 w0
‘ 1
is considered (for c >0). It is shown that limit cycles cannot ocecur

for this system if b, (-1lc /cl) and (- lm/c ) all have the same sign.
Trajectories in the (x,x) phase plane are glven for various combinations

of sign of by, 1, m and ¢ « It is shown that self=-sustaining

3
osoillations occur if b = 0 and ¢ m + c2 = 0,
1

Limit cycles can occur for numerically small (non=-zero) values of
b/.\/ cx for a certain range of values of mb/1. Fxamples of these
9 %
cycles are shown for both G = 0 and e >0,
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1, Introduction

This report is one of a series on dynamical systems with non-
linear characteristics (Babister, 1973 and 1975). In the earlier

reports we considered the nature of solutions of the autonomous

equations ’
- s
%+ (bo+b X) X+cx +cx° =0 (1)
1 1 2
and ¥+bx+ux® +0x +0x° =0, : (2)
9] 1 2

These are particular cases of the generalized equation for relaxation

oscillations

X+ f (x,%) x+ glx) =0, (3)
or of the equivalent system

Xy '

i ; - (4)

y=~-f0y) vy - alx),

considered by Levinson and Smith (1942). If both f and g are
polynomials of the second degree (at most), the system (4) is said to

be gquadratic.

The general topological theory of two-dimensional systems of the
tpe
] 2 2 s
Xov= TR s e o Y + Q X e Xy + &
10 01 v 20 11 Oey (5)

¥=p x+ B % + 2
10 ‘Boly a0 Bllxy Pozy

has been discussed in a number of papers (Bautin, 1954, Petrovskii,
1958, Yan-Qian, 1963-4 and Coppel, 1966). Such equations occur in a
variety of physical problems, notably in the Imden-Fowler equation of

astrophysics and in the analysis of an oscillator with guadratic terms.

P i 4314

However, due to the large number of coefficients in (5), the

4

characteristics of many tyves of such systems still remain to be

Y

. . . ; : / 2\ :

investigated, As pointed out by Yan-jian (1963), it
4

nossible to state whether g given g

icientsy has limit cycles,



In this paper we shall consider solutions of the autonomous

equation

L ® ¢ i

X+ (b lx +mx)Xx +c¢cx + cx° =0, (6)

1 2

or of the eguivalent system

3

X =Y )

(7)

- (b + 1x + my)y =~ °x - czx2 3

¥y

where by, ¢ 4 ¢ 4 1, and m are veal coefficients. We shall consider
1 2

toth the global structure of the integral curves and the limit cycles

of (7), our aim being to get quantitative data on these matters. Ve

note that if m = C, (6) reduces to (1); if 1 = 0, (6) reduces to (2).

2 The general nature of the solutions

Consider first the general nature of the solutions of (7). The
systen has a singular point at the origin O, this point being a focus
(or node) if ¢ > 0 and a saddle point (or higher order singular point)
iffe. ®.0y Tie focus at O will be stable or unstable according as
b > ér < 0. As shown by Loud (1964), the origin becomes s centre if
both b =0and 1l (ecm+ ¢ ) = 0 with ¢ >0, This is considered
further ir1§4.and §15. 2The point (-c /cﬁ, 0) is another singular
point for the system. On putting x = ; -bc /b , we see that (6}
becomes b

e | [b - lc /e ] +1lz+mz) 2 ~cz+cz° =0 (8)
i 1 2

which is an equation of the same form as (6). More generally, any
equation of the form )

L) L Ll

% % (b + 1z +mnz) z % c, t CcZ+cC z2 =0, (9)

1 2
in vhich ¢ and ¢ are not both zero, can be put in the form of (6)
1 2 o

with real coefficients on letting x = z - vy, where y is a real constant,

provided that the equation

I
(@]

c_ +cy+ eyt
o 1 2

has a real root, that is, provided ¢ 2 4c c .



In (6) put x = aX, t = T , where a and B are constants,

Then
X . . ax . .
— (Ro+ollds am == ) aX 2 . (10)
. : ‘ dT = + B%c X + af®c X2 = 0,
i : dT P 1 B

Vi, 1f (5) has the solation x = ¥ (1), ith x = x

v = at t =0, (10) has tae solution X =a"* ¢ (p7),

/o and (/a7 = Byn/(x. at T = C, T particular ve nnte

that s variation in the value of au mercly affects the non-linear toerms
in (4}, and that, if 8 is replaced by - B, t is chonred to -t,  Thus,
if (6) has a periodic solution, (10) with any non-zero a and 2 will
also have a periodic solution, If o = =1 and § = 1, the coefficients
1, m and c, in (6) change sign, and the variation of X with T is
identical with that of (-x) with t. Again, if @ =1 and B = -1, the
coefficients b and 1 in (6) become =b and =1, and the variation of X
with T is identical with that of x with (-t).

Scaling factors were used in the numerical solutions given in tnis

report, many of which were cuzlculzted on las.cow lVitlversity's analoque

eo pites (ata) . e conputer calculations were carried out for the
equation

2125 r T
pigded . o (o,1b+0.21X+O.2n%%9 %% + Oulc X+ 0,2¢ X2 =0 (11)

with ¢ =1 and 1, m and ¢ each having the value 1,0, -1, As stated
1 2
above, the origin is then a focus (or node). Thus the solutions were

performed in real time (B = 1) with a scaling factor a = 2.

3e General theorems on limit cycles

For the system

X = Blxyy ),y }.’ = (x,y) ’

by Dulac's extension of Bendixson's theorem, we find that, if B(x,y) is
a continuous function such that, in a single connected region of the

(x,Y) plane,

A = [B(Bl’)/ax ¢ B(BQ)/By] (12)



is of_constant sisn, then no closed contours exist in that region for

the given system.

e apply the above theorem to the system (7). [firstly take

B = exp [?(x) 4 g(yl] (13)

where fx) = px + %qxg
and ?_’,‘(y) = I',Y.
Then

A =0 [P + {l+clr)x + ¢ rx® + (2m-p+br)y + (lr-q)xy + mry{]
2

rut l+c r = C, 2m=-p+br = 0 and lr-q = O,

-

o o r

1]

-1/c, p=2n-bl/c and q = -1%/c .
: 1

(R

: e B (D= 122_ B Eﬁh v2). (14)
c 1

°

°
~
]

How the reites. of (14) will be of constant sism over the whole (x,7)
plane provided that b, (-le/c ) and (-lm/c ) have the same sifm. Thus
2 1 1
limit cycles cannot occur for the system (7) if b, (=lc /¢ ) and (-1lm/c )
2 1 1

all have the same sign.

train, from (12), with B = exp (2mx),
k=3 (b + 1x) (15)
The ro.h.s. of (15) will be of constant sisn over the whole (x,y) plane
if 1 is zero; no limit cycles can then occur,. This case was dealt
with in Babister (1975). Fore senerally, from (15) we see that, if

1 4=0, any limit cycles of (7) must intersect the line x = - b/l.

#rom (14), if b = 0 and 1% 0, limit cycles cannot occur for the
system (7) if ¢ and m hive the same sim. +f both b and ¢ ‘are Zero,
(7) has no perigdic solution (if ImF 0)., Ty taking B8 = (yiax+§)Y expdx,
where a, B, ¥ and 8 can be suit: bly determined, Yan-ian (19€3) showed
that, for c mie F# 0 with 14 0, the system (7) with b = 0 nas no

veriodic solution, This is considered further in § 4.1,

Vit Fhase plane trajectories for c¢ =0
it

frajectories in the (x,x) phase plane were found by analosue computer
for

ee A 4
x4+ (b Ix + mx)x + o%=0 (16)
3

or the equivalent systen
°

X =Y (
y=-=(b+ 1x+ ny)y - ¢ x. } (17)

-



-5 =

For this system, as shown in § 3, no limit cycles occur if b and
(—lm/c ) have the same sign, How the origin will be a saddle point
1
it =0 Therefore in the subsequent discussion we shall take ¢ > O,
1 1

4.l Systems with b = O, ¢ = O,
2

As shown by Babister (1973 and 1975), if b = O the orizin becomes
a centre if, in addition, either 1 or m vanishesj; self-sustaining
oscillations can then occur (for sufficiently small amplitudes in x).
4g sho'm in § 3, if Im ¥ 0, the system (17), with © = 0, has ro
oeriodic solutions, Misure 1 shows the trajectories for 1 = =1,
m=1, ¢ =1; these were found by using the analosue computer, there

1

being no cxact first integsral, ‘e curves coaverce very slowly to the
origzin, the coefficient of the asmping ferm (lx+mi) being wreatest in
the second cuadrant for 1 < O and m > (G, TIutting

1 132 3 2
B =-5x? + 5C x? 5

1

we sue that (16) becomes (with b = 0),

ey 8
di/dt = = x

/ 2
Ix + mxj .

hence the damping, is very small,

“rajectories for 1 =+ 1, m=* 1, ¢ =1 can be obtained {rom
fimre 1 by applyins scalins factors a = = 1 and R = - 1, It can
readily be snhown in:t the trajectories converg;e to the orisin if l/m <0,
and diverge (to infinity) if l/m > (C, lore renerally, we find tnc
equations for the trajeciories for tne system (17), with b = &, can be

put in the Torm

442 Syutens with: bd 0= G,

if b > €, the systen (17) has positive dampineg in the neighbourhood
of the orisin, which is then a stable focus (or stable node)., Higure 2
shows the trajectories for b=1l, 1=1, m=1, c1=1, and figure 3 shows those
ford=l; de-t, n-1, c1=l. In both of these firures, with lx > 0 there
iz an appreciable increase in damping. Trajectories for m=<1 can be

determined by applying a scaling factor a = =1 to these curves. The



w1

increased damping with b > 0 is readily seen by comparing figures 1
;nd 3 In figure 2, trajectories only converge on the origin if

y > <1, the line y = -1 being a separatrix for the given values of the
parameters., More generally, we see that, if bl = me the system (16)

has a particular integral
;{="C/1o
i

Trajectories for b= 1,1 = + 1, m=+1, Bk 4 can be obtained
from figures 2 and 3 by applying scaling factors a = +41, g = 1.
For these values of b, 1, m and ¢ , all the trajectories diverge to

-

infinity as t <>+ ®,

Limit cycles can occur for small values of b/N[g:’ as sihowm in
start in the neighbourhoond of the origsin spiral out to the limit cycle,
which is stable, Migure 4 shows how the size of the limit cycle
increases as the numerical value of b increases; thus only part of the
limit cycle is shown for b = - 0,3, Ve note that all the limit cycles
in this figure lie below the line y =4. Now, for the system (17),

the slope of trajectories on the line y = = ¢ /1 is given by
1
dy/dx = = b + me /1

which is a constant. Thus (if b 4: me /l), as shown in figures 1 and 3,
1
no trajectory can cross this line more than once; in particular, as
shown in figure 4, no limit cycle can intersect this line. If b=mc /1,
1

as shown above, the line y = =-c /1 is a separatrix.
1
More generally we find the equations for the trajectories for the

system (17), with b % O, can be put in the form

my o 1x mb b

= f 9 1 9 ®
c ’
J_l - J?i c1

Thus, if 1 and m are both increased in the ratio a ¢ 1, the x and y

coordinates of the trajectories will be decreased in the same ratio.

For this system, the occurrence of limit cycles will therefore depend on
the values of the parameters mb/l and b/\/3:; this is illustrated in
figure 5, which shows the results of a number of runs on the analogue
computer for b/ﬁ1< 0, for mb/1 >0, If mb/1 <O and ¢ >0, b and
(-lm/cl) will have the same sign (as in figure 3) and, as stated above,

no limit cycles can occur,



...'Z-

Stable limit cycles occurred for - 0,3 <‘b/\[__ < 0 for a range
of values of mb/1lj by applying a scaling factor B = 41 (as indicated in
§ 2) it is readily seen that unstable limit cycles will occur for
0< b/N[Z.< 0.3 for the same range of values of mb/l. For given values
of my b a;d ¢c o the relative size of the limit cycle increases as 1
decreases in ;agnitude, until for mb/l > 0,3 no limit cycle occurs, the
trajectories diverging to infinity for b < O and converging to *he
origin for b > 0 ( as in fijure 2). Again, for given velues of b, 1
and m (with mh/ﬁ < C.B), the linit cycls ircreases in size (in the x
direction) as cl decreases in naguitude, eventually ceszing to exdst

for cufficiently lsrge values of | b [ /,{c (zs indicated in figure 5)e

The absence of linit cycles for these values of |b|A/c was shown
1

‘b i

o

Tan-jian and otiiers (1964), It can be demonstrated by using Dulac's
extension of Bendixson's theorm (§ 3) for the system (17) with B=1K1y+cl).
Then

>
]

s [B(BP)/ax +3(BQ)/5y]

L]

Iny® + 2mc y + be
1 1

(ly + cl)2

Now A will have the same sign over the whole of the (x,y) plane if

lmbc = mecz >0,
1

that is, if 1b/mec > 1. (18)
: _

We note that B changes sign as the line y = - ¢ /1 is crossed.

Therefore, if (18) is satisfied, any limit cyclé of the system must cross
the line y = -c’/l. 3ut, as zhown above, no limit cycle can intersect
this line, Thérefore the system (17) has no limit cycle if

(1b/mcl) > 1; that is, if b‘?/c1 > mb/1. (19)

The limiting condition b®/¢ = mb/1 is shown in fig. 5.
1

5. Phase plane trajectories for ¢ >0
2

Trajectories in the (x,i) phase plan were found by analogue computer
for

%+ (bwles mX)X + cx +cx2 =0 - (20)
1 2

or the equivalent system

J.( =Y (21)
-(b+lx+my)y ~cx - cax2
1

"



for ¢ and ¢ both positive, The system then has one singular point
1 2
at the origin O and another at the point (-c /Ca’O)’ the latter being
1

a saddle point,

for this system, as shown in § 3, no limit cycles occur if b,

(-lm/c ) and (-lc /¢ ) all have the same sign. Thus, with ¢ and c
i 2 1 1 2

both positive, no limit cycles occur if b and (—l) have the same sign

and mn > 0,

5.1 Systens with b =0, c¢c >0
2

4s shown by Loud (1964), if b = G, the orisin becnmes a centre if,
in addition, l(c m + c ) = Os The case 1 = C was consicered by
Babister '1)7 y) 3 splf—a@sthlnln: oscillations can then occur (for
sufficientlr small amplitudes in x). Ifb=0and ¢ = - clm, (20)

2
nas the particular integsral

= X mx -1) (22

)
with n® XQ + l\ -c =0, (25)

I

With ¢ > O, eq. (22) corresponds to a pair of straisht lines throu.::
1

the coi -o /c ,0) in ths phase plane. The #eneral first inte:ral
of (20), 1th c_ == cm, can be shown to be
1
(Xgmn + l)hng( -) (mx - 1)] - (>\ m® + 1) log [;c - (mx—‘l)}
1 1 2
+ (\2 SNk = & (24)
1
whema) and X are the roots of {23) and & is a ‘constant, 1£7172°0;
1 2 §

fronm (25), \ Vr_/m, and eq. (24) reduces to
loz [X < X (mx-i)] + lob X +) (mx-l)]+ onx = - '\/) i
that is, = (e /mg) (mx=1)? + ge =T : (25)

where C 1s a constant, in agreement with Babister (1975),

Figure 6 shows the trajectories for 1 = =1, m=-1,¢c =1, c =1,
1 2
The general configuration is very similar to that for 1 = 0, given in
3abister (1975). The lines y = -)(xwl) are the separatrices of the

system, where 'Xg -\ = 0, that is,,\: 0.5 + \/ 1425, Thus the
separatrices are the perpendicular lines y = 0.62(x+1) and y = - 1.62(x+1).



We see that the separatrices divide the phase plane into four regions,
-all the trajectories going to infinity unless they are within the
region to the right of PA and FB. In that region there are cyclic

trajectories enclosing the origin, which is a centre.

Pigure 7 shows the trajectories for 1 = -1, m =1, ¢ =1, c2=l
(there is no general {irst intezral in this case). Trajectories which
come sufficiently close to O spiral in very slowly to the origin
(which is a stable focus); all other trajectories go off to infinity,
apart from the two which converge on to the saddle point (-1,0).

There are no cyclic trajectories. The destabilising effect of the
saddle point (i.e, the effect of the non-linear stiffness term caxz)

can be seen by comparing figures 1 and 7,

Trajectories for 1 =1, m=+1, c =13, ¢ =1 can be obtained
from fi;ures 6 and 7 by applying the sciling faitor B =-1. Cyclic
trajectories occur for m = -1 (as above). A1l trajectories diverge
to infinity if 1 and m are both positive (apart from certain separatrices),
lHore senerally we find the equations for the trajectories for the system
(21) with b = O can be put in the form

¢]

my 2

1x 1
=f3 ’ ’
J?i JT% mj;; mcl

5.2 Systems with b#0, ¢ >0
2

Figures 8, 9, 10 and 11 show the trajectories for b =1, 1 = +1,
m=%1, c = 1, e 1. ‘he point (-1,0) is then a saddle point, If
b > 0, the origin is a stable focus (or stable node), and trajectories
which come sufficiently close to O spiral in to the origin., The nature
of the trajectories near the two singularities (0,0) and (-1,0) is
determined by the linear terms in €q., (21) There are no limit cycles
for these values of the parameters, Trajectories for
b=-1,1=%,mn=3, ¢c-1, ¢c =1 can be obtained from figures 8 = 11
by applying a scaling fac%or B Z -1. lor these values of the parameters,
all the trajectories go off to infinity, apart from the two separatrices
vhich cenverge on the saddle point (-1,0). e find the general equation

for the trajectories for the system (21) can be put in the form



c
- c > f.; 1}c{ ’ mlc ] }6’ ’ mc >
: 15 - 7ap ; ;
X C ;
or c ? . f5 c mJE; b i ) ’
i
¥ o vl

the second form being more useful in comparing trajectories of this
report with those of an earlier renort (Babister, 1973) in which m was

taken to be zero,

As:h1§4, we find that 1imit cycles can occur for numerically
emall (non-zero) values of b/,j"c—1 (and Bl/c_ >0). with
b=-0,1, 1 = -}, 01=1’ ca=1, figure 12 shows the limit cycle for m = O
and figure 13 that for m = 1, both limit cycles being stable. Limit
cycles were also obtained for small negative values of m, but none were

obtained for m < = 0,75 and the above values of the other parameters,

By applying the scaliﬁg factor B = -1, we see that an unstable
1limit cycle occurs for b = Ol, 1 =1,¢c =4, c=1 and n = 0 and 1,
nis is in agreement {(for m = 0, with t}é result: of Obi, which show
that a limit cycle of the system represented by eq. (20) will occur if
0< bcz/lc1 < T T

with one branch of tiie sevaratrix through the point (-c /c ,0).
1 2

For higher values of bc /1c (corresponding to an increase in the
2 1

strength of the focus at 0) the trajectories diverge to infinity if

b < 0, as showr in our earlier report. As |b| decreases to zero, the
amplitude of the lirdt crele also decreases to zero, there heing no
linit cyzle waem b = 0 (as ¢ ~1m above).

6, inse-nlane traiectories for ¢ < C
S b BTN

These can be obtained from those discussed in§-5 by applying a
scaling factor a = -1, As shown in§'2, this changes the signs of
iy, lym end c e The point (x,y) is transformed in‘o the point

(=xy=y)o fThus, with ¢ =1 and o= -1, there is a singular point

In the limiting condition, the limit cycle will merge

1
(saddle point) at (1,0). As in$ 5, limit cycles can occur for numerically

small (non-zero) values of b/'/cl(and bl/c > 0),
x 2
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