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SUMMARY

A vortex panel method has been developed to calculate the pot-en--tial

flow about an arbitrary two dimensional aerofoil �r axisymmetric shape

at fixed incidence in a steady; uni for� irrotational, incompressible

flow.

The procedure replaces the contour by a suitably inscribed polygon,

on which surface vorticity varies linearly and continuously along the

panel and is piecewise continuous at the panel corners.

The Neumann boundary condition is satisfied at control points

situated at the midpoint of each panel and the classical Kutta

condition is specified at the trailing edge by setting the net

vorticity there equal to zero.

This particular algorithm offers much flexibility in the treatment

of a greater range of aero foil geometries and at higher incidence than

other surface singularity methods.

Programme flow charts and FORTRAN code listings are given in the

User Guide (1) •
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NOMENCLATURE

A .. , 8 ..
lJ lJ

C ..
lJ

C

C
p

L

R

S

V

x,Y

d....

)(

Subscripts:

i

j

n

p,c

3

elements Qf the influence coeffici�nts

influence coefficient

the boundary contour

pressure coefficient

length of panel

region external to C

distance along panel

velocity

co-ordinates

angle of incidence

vortex sheet strength

refers to i th panel

refers to j th panel

normal component

arbitrary point

conditions in the free stream
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1. Introduction

The prediction of the Newtonian flow about an arbitrary two-

dimensional body and, in particular, an aerofoil, still poses great

difficulties for the aerodynamicist. The problem is complicated by

the wide variety of viscous phenomena and the indeterminacy of the

equations currently used to describe turbulent flows.

Although a general solution, including unsteady effects, is not

yet available, many useful procedures with certain limitations and

simplifications have been developed. Originally, viscous effects were

ignored and potential flow assumed, as in the method of Theodorsen(2).
This method was, of course, restricted to the treatment of the analytic

Joukouski aero foil profiles. The extension of the method by Theodorsen

and Garrick(3) to the analysis of arbitrary aerofoil shapes became a

significant advance. It was soon realised, however, that due to the

neglect of viscous effects, poor predictions of the pressure distribution

about the aerofoil at higher angles of incidence were obtained. Early

attempts to account for viscous effects by Pinkerton(4) allowed the

relaxation of the Kutta condition, with the specification of the

circulation about the aerofoil that followed from the measured lift

coefficient at that angle of incidence. This procedure gave improved

comparisons of theoretical and experimental pressure distributions in

the vicinity of the leading edge but allowed infinite velocities to

exist at the trailing edge.

Preston(5) took a different approach, and showed that the required

viscous effects on an unstalled aerofoil may be accounted for by

displacing the aero foil surface an amount equal to the local boundary

layer displacement thickness, repeating the potential flow calculation

using the new contour and iterating to convergence.
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The full treatment of the viscous flow about an aerafoil can, of

course, be accomplished using the complete Navier-Stokes equations.

The computational effort and storage requiremef1ts are at present

prohibitive. Generally then, an alternative approach must be made by

engineers who require aerodynamic predictions.

The advent of fast digital processors led to the active development

and use of "panel methods" which, in effect, replace the aero foil contour

by a suitably proportioned inscribed polygon on which is placed appropriate

singularity distributions. The strength of the distribution is chosen to

satisfy the condition of flow tangency on the contour and the classic

Kutta condition.

Popular methods.use some combination of source and vortex singularities

distributed in a prescribed manner on the surface of the panels. A method

which uses a uniform source distribution along each panel but which varies

in strength from panel to panel and a uniform vorticity distribution

around the contour is generally credited to A.M.O. Smith and his co-workers

(5,6) This method has been used for a wide variety of problems in both

two(6) and three(7) dimensions. One of the short-comings of the method,

however, is the mannet in which the Kutta condition is specified. This

is done by equating tangential v�locities at the mid points of the upper

and lower panels adjacent to the trailing edge. Hence, the specification

depends on the panel distribution and is not applied in a unique manner.

In contrast, a vortex panel method which uses some variation in vorticity

along the pariel, overcomes this non-unique specification by deducing

another property that is a direct consequence of finite velocities at the

trailing edge. This is done by equating vorticity values, in the opposite

sense, on the upper and lower panels at the trailing edge.
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It was because of the ability for this method to be extended to

multi-element aerofoils and in the modelling of separated trailing edge

own algorithm.

flows that the authors chose to use this technique and developed their

It is hoped that this algorithm will form the basis of

a series of computer programmes for predicting many of the observed

viscous flow phenomena. The Glasgow University implementation is

described herein and shown to be very satisfactory.

2. The algorithm

2.1 Mathematical description of the problem

The problem is to calculate the potential flow in a region R

exterior to a contour C.

R

Figure 2.1

The fluid velocity at any point is given by

..... __. --.

V - VtP � -v:

-+

where Vcu denotes the velocity of the uniform onset flow, i. e. ,

(2.1)

�

V� = I V.oI LOS � 7 (2.2)

ol is the flow onset angle relative to a fixed axis system.
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�

The vector'V is the perturbation velocity at that point due to the

contour C, which is assumed impermeable to the fluid.

For potential flow in region R, the following equations must hold

and

(203)

(Laplaces Equation) (2.4)

where p is some potential function.

Together with the Neumann boundary condition:

�
-+ �

� ::: �ro.J ¢ . -; = V· Y\ � 0
Or'l

(2.5)

on the contour C.

Equations (2.3), (2.4) and (2.5) constitute a well posed problem

which can be solved for the potential ¢ .

For the resulting flow, zero net force is found to act on the

surface C. Reality shows, however, that the surface C orientated at

some angle of incidence will experience both a lift and drag force.

Hence, it can be concluded that both lift and drag forces are ultimately

due to viscosity. As the objective is to mathematically model the flow

of a real viscous fluid about the contour C using a potential formulation,

an auxiliary conditon is specified to fix the value of lift generated

by the contour. In the case of an aerofoil shape, the auxiliary

condition used is that of a finite velocity at the trailing edge, the so

called Kutta condition.

Hence, the solution of equations (2.3) and (2.4) subject to (2.5)

and the Kutta condition, 'is the mathematical problem considered herein.
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The method chosen to satisfy the preceeding conditions was to

replace the contour C by a vortex sheet of unknown variable strength,

as shown in figure (2.2).

Figure 2.2

.....

The induced velocity ''\.r at p (x,�) due to the element �S is given

by

(2.6)

_,.
-+

where �. is the uni t normal vector to r at P. Hence the total induced

velocity at P due to the vortex pheet is

(2.7)

and the velocity is

___". --.

V : Veil + \
- ds

(2.8)

The normal velocity on the contour, at the arbitrary point 1, may

then be found from

't(s) "2 dsJ. �
1r"'1.2' I

l' I I .

(2.9)
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and by invoking the boundary condition (equation 5) the following

integral equation is obtained

:= 0 (2.10)

For exact solution, this equation must be satisfied at all points

on the contour. There is, howeve� no unique functionY(S) unless an

additional condition is imposed. This, of course, is the Kutta

condition and it may be implemented by setting the vortex sheet

strengths at the trailing edge to be of equal magnitude but opposite

sign

Le., '�a + � b = 0 (2.11)

Ifa(S) is obtainable, then the surface velocity may be simply

obtained from

(2.12)

2.2 Method of solution

Equation 10 is satisfied by a numerical technique where the
,

smooth vortex sheet on C is approximated by a suitable polygon whose

sides (panels) consist of vortex sheets with a linear variation of

strength, as shown in figure (2.3) below.
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, t

, ,

�lj�

Figure (2.3)

The boundary condition (i.e., equation 2.5) is satisfied only at

centrally located control points on each panel. Considering the

velocity induced at the i th control point due to the element ds. on
J

the j th panel, we have

= 'O� J��_
;t" Iri�'�

(2.13)

and hence

(2.14)

The- induced velocity normal to the surface at the i th control

point is given by

= J_ (:� 0:..
!H, L I fij I'J

lJ

"

(2.15)

and the total induced velocity �.) at i is
e
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IN �
Ld' /\

:= J_ ¥s (r:.!i· �") c:1 S j�H, . 0 \ r"\'l�:: I c�

which may be written in the form

(2.16)

(2.17)

where c. . are the influence coefficients.
lJ

the following must hold

Thus for each control point

- 0
(2.18)

This represents a set of nflinear simultaneous equations containing

IV" + 1 unknowns, i. e. , ((1-+ ¥ '" + 1. The necessary additional equation

is equation 2.11 which is the specification of the Kutta condition, i.e.,

(2.19)

3. Details of the numerical procedure

3.1 The vortex panel distribution

The efficiency of the algorithm for a given number of panels'is

independent of whether equal or unequal panel lengths are used. The

accuracy of the method is, however, very sensiti�� to the size of panel

since the resulting polygon must be an appropriate representation of

the original contour. It is, therefore, necessary to use small panels

in regions of large curvature and, for the sake of efficiency, larger

panels in regions of low curvature. The maximum size of the panels is,

of course, constrained by the appropriateness of the quasi-linear

approximation to the continuous vortex sheet strength.
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The procedure adopted was to analytically specify the distribution

of the panel size along the contour. For the case of an arbitrary
aero foil this was short panels at the leading edge and fairly long ones

towards the trailing edge. The typical arrangement was as shown in

figure (3.1).

••
10

Figure 3.1

3.2 Calculation of the influence coefficients

The influence coefficients C .. contained in equation 2.17 were. l.J
obtained as follows for i t j

The vorticity)(s is given by

)'� = (s". + ( ��-+\ �i ) Sj�
L..' (3.1)�

y� :- !i CL..� -Sj) + )(�"""\ � �.or
(3.2)L' l'1 �

Thus from equation 2.15 we have
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(3.3)

Considering figure 3.2

Figure 3.2

also

(3.4 )

(3.5)

(3.6 )

Furthermore we have

Substitution of equations 3.7 and 3.8 into 3.6 leads to

01
.

:. \ . 0 S J + b �J' .... c (3.9 )

'0 :
-

� t(\·-:ri >C";.. - �) "'(�'-'li>(�i" -�.)1 (3.10:

c. ::: C�" -)C� ')2. +- (':Jc' - �.i)2 (3.11)

where

and
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Further substitution of the above in equation 3.3 leads to

The above integrals are of a standard form given in Appendix I.

The influence coefficient c. . is obtained from
lJ

CJ' = I"'I"J' '"
0

','J'-I (.;1 6- J' �N) . c. C',:l, c, - Q
� rt t::... ,

) (I c, J (N+i Qc'""

(l�i�N)
(3.17)

3.3 Elements of the influence coefficient of a panel which contains

the considered control point

When the control point lies on the j th panel, the preceeding

analysis cannot be used and the following applies

From equation

(,3.18)

substituting
.....,
1.).. =

8J (3.19)
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now at the panel mid points �c. = L�' J �

(3.22)

(3.23)

and C. . for i = j follows from equation (3.17).
l.J

3.4 Solution of the equations

From the above analysis, the equation set to be solved is

rJ

tC'i �l
_,. ....

Ci= )� N+0.... V .V\ . =0 (3.24)� J
�':- I

plus: e, ",(1.tlON (2. ,� )

Thelil+\unknowns '0. are obtained, at present, via a Gauss-Jordan
J

elimination technique. This method, described in ref. (1), yields fast

stable solutions for up to 60 panels after which solution time is

significantly increased.

It will be seen from equation 3.24 that the influence coefficients

C .. are constant for all angles of attack of a given aero foil section and
lJ

hence numerous solutions for various 0( can be efficiently obtained.

The surface velocity is given directly by

v - t 'r I (3.25)

and, in particular, at the control points xi' Yi

v·
c (3.26)
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The surface pressure coefficient is then given by

(3.27)

4. A selection of typical results

As a test case, the algorithm was applied to that of the 2-D flow

about a circular cylinder, the analytic result being given by a simple

expression. As presented in Figs. (4.1) and (4.2) excellent agreement

is obtained for forty panels.

As another panel method was not available to the authors at the

time of writing, no direct comparisons with the present algorithm could

be made. Comparisons were, however, made with data refs. (3) and (9),

using the NACA 0012 aerofoil section. A selection of pressure plots

is presented in Figs. (4.3) to (4.7).

5. Discussion

As a potential flow analysis is usually the first step in an

aerodynamic design study, the computer programme in its present format

provides an extremely useful working tool for this purpose. The

resulting velocity distributions. on the aerofoil surface can be utilised

in a boundary layer program and thereby providing useful predict�ons on

the aerodynamic characteristics. Furthermore, it may be readily extended

to the treatment of multi-element aero foils and in the modelling of

separated trailing edge wakes such as in refs. (9) and (10).

One of the most pleasing aspects of the current algorithm is in

the treatment of the Kutta condition. The Kutta condition is used in

a potential formulation, such as presented, to fix the value of lift.
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For an aerofoil shape, the classic Kutta condition specifies that the

stagnation point must lie on the trailing edge in order that infinite

velocities do not exist. In other words, wee stipulate that the flow

leaves the trailing edge smoothly and there is no static pressure jump

at this point. It has been found that different workers have their

own interpretation of this condition in a numerical algorithm.

However, it is emphasised here that as the overall flow field is governed

by the Kutta condition, its specification must be accurate and unique

otherwise deviations would be expected to occur, especially at high angles

of incidence. More often than not, panel methods apply the Kutta

condition some small distance away from the trailing edge(6), and hence,

the resulting solution will be dependent on the number of panels and,more

importantly, their distribution. In the present algorithm the Kutta

condition is specified directly at the trailing edge in a unique manner

and there can be no ambiguity in the results. The algorithm is

considered superior in this respect.

The Kutta condition can only be applied to arbitrary aerofoil shapes

or axisymmetric bodies. The algorithm will not work in its present

format for an arbitrary body with a blunt/bluff trailing edge. If this

objective is required, it is recommended that the alternative programme

version AEROPF2 (see User Guide) be used, in which both the angle of

attack and circulation values c.an be speci fied by the user.
,

The FORTRAN

programme AEROPF2 has been formulated along the 'ideas presented by

Pinkerton(3) for use in experimental comparisons of aerofoil data.

It may be argued that the positioning of the control points on the

mid-points of the panels means, in fact, that the control points do not

lie on the contour of the actual aerofoil. Although this is so, the

error incurred in the solution will be negligible so long as a
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"reasonable" number of panels is taken. A value felt as "reasonable"

at the time of writing is about 40 to 60 panels. More elaborate

routines could be used to "smooth" the input data to give control

points approximately on the contour but it is doubtful as to the gain

in accuracy over the computational effort required.

The treatment of aerofoils with cusped or excessively thin trailing

edge regions has been found problematic, as under these circumstances,

the influence coefficient matrix tends to become singular. Generally,

however, these aero foils are encountered infrequently in practice, and

the user will be guided to the "non-applicability" of the aerofoil by

the erroneous results.

Aerofoils with a finite thickness at the trailing edge, such as the

NACA 0012, are treated by representing the contour by an open polygen,

the "open" part being at the trailing edge. The algorithm is applied

as before and no difficulties have been found with this approach.



19

CONCLUSIONS AND RECOMMENDATIONS

(a) A potential flow algorithm for calculati�g the velocity (or

pressure) distribution on a steady two-dimensional aerofoil or

axisymmetric shape has been developed. The algorithm replaces

the aero foil contour by an appropriately inscribed polygen on

each side of which is placed a linear variation of surface

vorticity.

(b) Satisfactory agreement has been obtained with results available

at the time of writing.

(c) The Kutta condition has been accurately satisfied in a unique

manner at the trailing edge by setting the net vorticity there

equal to zero.

(d) It is recommended that approximately 40 to 60 panels be used.

Very often, however, the user will be left to rely on existing

published aerofoil coordinates. (Refer to User Guide).

(e) The present algorithm is inappropriate to the analysis of "flat

plate" aerofoils and those with cusped or long, thin trailing

edge �egions.

(f) The velocity (or pressure) can be directly calculated at any

point on the contour when the surface vorticity is known.
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FIGURES

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

Flow about a circular cylinder usinq twenty panels.

Flow about a circular cylinder using forty panels.

Flow about a NACA 0012 aerofoil section at 00 angle
of incidence, using 30 panels concentrated about

the leading and trailing edges.

Flow about a NACA 0012 aerofoil section at 00 angle
of incidence, using 30 panels concentrated about

the leading edge only.

Flow about a NACA 0012 aero foil section at 100 angle
of incidence� using 30 panels concentrated about

the leading and trailing edges.

Flow about a NACA 0012 aerofoil section at 100 angle
of incidence, using 30 panels concentrated about

the leading edge only.

Flow about a NACA 0012 aerofoil section at 100 angle
of incidence, using the AEROPF 2 programme with zero

circulation.
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APPENDIX

Evaluation of relevant integrals

The evaluation of three standard integrals are required

1)
dx

I::: 1

xl! + bx + c

2)
xdx

12:::

X2 + bx + c

3)
x2 dx

Is=

xi! + bx + c

From ref. 11,

11
1

in
2x +b - Yb2 - 4c

=

_yb2-4c 2x +b + Vb2 - 4c

Note: b2 - 4c will always be > 0

III
1

in (x2 + bx + c)
b

11::: '2'
-

2

13
b

in (x2 + bx + c) +
b2 - 2c

11:= x --
22




