™ |

Check for
updates

Research Article Vol. 27, No. 6 | 18 Mar 2019 | OPTICS EXPRESS 9258

Optics EXPRESS
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ALESSANDRO BoccoLINI,' ALESSANDRO FEDRIzzI,' AND DANIELE
Facciol:2”

! Scottish Universities Physics Alliance (SUPA), School of Engineering & Physical Sciences, Heriot-Watt
University, Edinburgh EHI14 4AS, UK
2School of Physics & Astronomy, University of Glasgow, Glasgow GI12 800, UK

“daniele.faccio @ glasgow.ac.uk

Abstract: Computational ghost imaging relies on the decomposition of an image into patterns
that are summed together with weights that measure the overlap of each pattern with the scene
being imaged. These tasks rely on a computer. Here we demonstrate that the computational
integration can be performed directly with the human eye. This builds upon the known persistence
time of the human eye and we use our ghost imaging approach as an alternative to evaluate
the temporal response of the eye. We verify that the image persistence time is of order 20 ms,
followed by a further 20 ms exponential decay. These persistence times are consistent with
previous studies but can now potentially be extended to include a more precise characterisation
of visual stimuli and provide a new experimental tool for the study of visual perception.
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1. Introduction

In ghost imaging, an object can be imaged despite never having interacted with the light recorded
by the camera [1]. The object is illuminated with a structured light field, and the transmitted
or reflected intensity is recorded with a “bucket" detector with no spatial resolution. A second,
spatially correlated light field is modulated with the recorded intensity pattern and projected
onto a spatially-resolved detector such as a CCD camera which integrates over many frames to
produce an image. Originally, ghost imaging was claimed to be a quantum effect, with spatial
light correlations obtained from momentum-correlated photon-pair sources [2]. However it was
soon realised that classical correlations, e.g. obtained from a laser beam split at a beamsplitter,
achieved the same effect [3]. In computational ghost imaging, only a single light field is required,
and spatial light correlations are generated algorithmically [4].

The simplest version of this approach involves raster scanning the scene point by point with a
small laser spot (i.e. smaller than the features that we wish to resolve) and collecting the reflected
intensity with a photodiode. The scene is then reconstructed one ‘spot’ at a time. Compressive
sensing approaches are however, the preferred option: structured patterns—typically Hadamard
patterns—of light are used to illuminate the scene [5]. The reflection or transmission intensities
A; recorded by the bucket detector are used as multiplicative weights for each Hadamard pattern
H;(x, y) before these are summed together to obtain an image of the object:

N
O(x,y) = > AiHi(x,y) (M
i=1

From Eq. (1) we see that this protocol projects the object or scene onto a given (e.g. Hadamard)
basis and finds the relative coefficients A; for each basis element H;. This widely used approach
can be extended to include full 3D information [6], or dynamic adjustment of the decomposition
basis for foveated imaging [7]. It has also been applied to the temporal domain [8, 9]. Ghost
imaging allows imaging in situations where diffusion or scattering (between the object and the
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Fig. 1. Experimental ghost imaging with the human eye. LED]1 illuminates the DMD which
projects Hadamard patterns at 20 kHz onto an object. The reflected light is collected by a
single-pixel detector. The output modulates the intensity of LED2 which also illuminates the
DMD and is subject to the same patterns as LED1. The intensity-weighted Hadamard patterns
are viewed on the DMD by eye or projected onto a screen. Human vision integrates over
the patterns when these are projected for much shorter durations than the eye’s persistence
time. As a result, although only black and white patterns are projected, the eye effectively
perceives a “ghost” image of the object.

bucket detector) would otherwise compromise visibility [8, 10-12] and provides the capability to
image objects at wavelengths for which single-photon cameras are not readily available [13].

Apart from finding inspiration in human vision mechanisms to improve single-pixel imaging
systems, one wonders if it is possible to implement ghost imaging directly in a biological system,
using the human eye to replace parts of the imaging system or perform the required computational
tasks. According to Eq. (1), once the coefficients A; have been measured, two computational
tasks are required: (i) multiplication of each pattern with A;; and (ii) integration over all weighted
patterns, A; H;(x, y).

In this work we confirm the capability of the human vision system to perform (ii), the integration
of the weighted patterns. Humans can thus visualise a computational ghost image without any
computer processing. We develop a macro-pixel approach to allow high resolution and detail
in the perceived ghost image. Finally, by projecting the weighted patterns at increasing frame
rates we can find a threshold below which a clear image is not distinguished. From this threshold
we estimate the temporal response function of the human visual system and we verify that the
retrieved persistence times are consistent with previously determined values.

2. Theory

The problem of temporal persistence of images has been studied for a long time, see e.g.
Ref. [14]. Image persistence is used for example in cinematography where a series of still images
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are projected. If the frame rate exceeds the visual persistence time, then continuous and smooth
movement is perceived: the transition between frames is blurred out by the convolution of the
eye’s response function and the projected image sequence.

Visual perception research has identified three mechanisms [15] that lead either individually
or collectively to image persistence, namely: neural persistence—activity in the visual system
for a limited time after the stimulus offset; visible persistence—a visual stimulus that continues
to be experienced for a limited time after its offset; and iconic memory—the lingering of visual
information that remains accessible for some time after the stimulus offset. More recently,
attention has shifted towards the role of iconic memory and, in particular, the relation between
attention and consciousness in perception [16, 17]. However, the overall process of visual
perception and its underlying neurological mechanisms are still an object of debate (see e.g.
Ref. [18]).

In the following we will focus on the second of the three mechanisms outlined above, the visible
persistence that allows us to perceive an image for a duration much longer than its projection time.
Several studies have investigated image persistence time, using different methods that therefore
also potentially measure different persistence mechanisms. One of the the main observations
is that for very short (<100 ms) image projection (stimulus) times, the total visible persistence
time of the image is of order 230 ms—regardless of the actual duration of the stimulus itself,
as long as this remains below ~ 100 ms [15, 19]. These results relied on the measurement of
synchronicity; the observers were asked to estimate the coincidence time between the offset
of a stimulus with the onset of a second stimulus. Another series of measurements relied on
asking observers to estimate the shape of forms that were broken into smaller parts that are then
projected sequentially with varying permanence times [14,20-22]. These studies led to the
conclusion that complete images were observed through sequential projection of image parts as
long as the temporal offsets where shorter than 50 ms, with a fast degradation and a breakdown
complete image perception once temporal asynchronicity was above 100 ms.

We now build upon these findings and assume that the perception of a series of very short
optical signals can be modelled as a temporal integration process with a specific response function,
R, that consists of a short period of visual stimulus with constant amplitude, followed by a quick
decay:

0ty = [ R =)ty ®

where O(x, y, ) now is a time sequence of images, whereas I(x, y,t’) is the actual sequence of
still images that are projected and R(¢ — t’) is the response function of the visual system. As
explained above, we do not in general expect this to be a square function, i.e. a response that
rapidly switches on and then, after a constant response level, suddenly switches off again (this is
e.g. how a camera shutter would be described). For the moment, we do not need to make any
specific estimate of the exact shape of R and will return to this aspect later.

If the N patterns in Eq. (1) are provided sequentially (as opposed to all N being available
simultaneously), then we have a time dependent I(x, y,1) = A(t)H(x, y,t) such that A(r) = A;
and H(x, y,t) = H;(x,y) for (i — 1)7 <t < it. If we detect this sequence of patterns with a true
integrator, i.e. a detector that effectively has an infinitely long response time, then the sequence
of N patterns will provide the ghost image

O(x,y) = /A(I)H(x, y, t)dt. 3)

If instead we have a detector with instant response, we obtain

O(x,y,t) = / 6(t—t")A()H(x, y, t")dt’, ()]
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Fig. 2. Macro-pixel method for increased spatial resolution. The image on the left shows a
computer simulation of the method with the original images divided in 64 macro-pixels,
each of which is sampled with the same 256 Hadamard patterns. On the right we show the
same image projected onto a screen and photographed with 50 ms exposure time.

and the detector will just see the pattern sequence, and no ghost image. Equation (2) constitutes
an intermediate regime where the outcome depends on the projection rate or the relation between
image persistence time 7 and persistence time o. For o > 7, a ghost image will be perceived,
since Eq. (3) well approximates Eq. (2). The visual system can perform the “summation” step in
ghost imaging as long as the weighted Hadamard (or any other) set of patterns is projected at
sufficient speed. Ideally, one will then cyclically repeat these projections to form a static image
that is perceived for as long as the projections continue.

3. Results

The experimental arrangement and procedure is show in Fig. 1. We performed a first set of
experiments using a DMD that projected Hadamard patterns onto some object, with the reflected
intensities detected by a bucket detector (a photodiode). The photodiode signal was fed into
a light-emitting diode (LED) that illuminated a second DMD, synchronous to the first, and
projecting the now intensity-weighted pattern onto a large screen. The test subjects viewed the
screen and could vary the projected pattern frame rate. The DMD reaches 20 kHz frame rates
and can thus project up to 200 Hadamard patterns within a 20 ms time window. At maximum
frame rate, a clear image of the object (e.g. a hand) could be perceived by the viewer directly on
the screen, without any intermediate computational processing. Slower projection rates quickly
degrade the image visibility, resulting in ‘flickering’ square patterns owing to the rapid succession
of Hadamard patterns. This result, i.e. the fact that the human visual system can correctly
reproduce a ghost image through summation of successive image frames was not a priori obvious
due to the still unclear visual perception mechanisms and the fact that previous image integration
studies used images with no overlapping areas of high luminosity [22].

The ghost images described above were limited to a resolution of 15 X 15 pixels, since the
patterns projected onto the screen are weighted by the photodetector reading and are therefore
grayscale Hadamard patterns. Grayscale images are obtained from a DMD by “dithering" the
micro mirrors, i.e. 1 bit (black and white) images can be projected at 20 kHz but 4-bit images are
limited to ~ 5 kHz and a maximum of ~ 250 grayscale patterns can be projected within a 50 ms
time window.

To increase the spatial resolution of the image we divided each image into a set of 8x8 “macro
pixels”. Each of these was sampled with 256 Hadamard patterns, effectively increasing the
resolution by a factor of 64. Figure 2 shows a 112 x 112 pixel image of Albert Einstein we
used to simulate this method in practice. Each of the 64 macro pixels is sampled with the same
256 Hadamard patterns the DMD can project simultaneously. The left-hand image shows the
computer-simulated process and reconstruction. The right-hand image shows the projected
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pattern on the viewing screen as photographed by a camera with 50 ms exposure time, providing
a faithful rendition of what was perceived by a human observer, i.e. with temporal integration
performed by the visual system. The system was tested by five different individuals and all agreed
that they could clearly perceive the image and the similarity with the image shown in Fig. 2. This
demonstrates that it is possible to view relatively high-resolution images in a ghost-imaging setup
using available projection technology and the human eye for image integration.

Evaluation of visual response times. A key point in the results above is the ability for
the DMD to project a sufficient number of frames within the persistence time so that these are
temporally integrated and perceived as an image rather than a succession of black-and-white
patterns. The DMD projection rate can be easily controlled and in doing so our test viewers
agreed on a regime in which the projected images transitioned from black-and-white patterns
to actual images. In the following we exploit this feature, in combination with the projection
methodology based on macro-pixels, to evaluate the human visual response time. Our procedure
is inspired by a classic motion persistence test, where a bright spot is moved quickly across a
dark screen and is perceived by the eye to form a “trail”.

Our approach is outlined in Fig. 3. At step (1) we consider each of the white pixels individually
and at step (2) we identify the Hadamard patterns required to reproduce that specific white
pixel on a black background. The advantage in this approach is that we identify a reduced set
of essential Hadamard patterns required to recreate each white pixel individually, minimising
the number of patterns sequentially projected on the DMD. In step (3) we project each set of
Hadamard patterns for each individual white pixel sequentially. Figure 4 shows an example
for a 3x3 pixel image of a “zero”. Figure 4(a) shows how a single pixel is decomposed into a
reduced Hadamard set (boxed in red). Figure 4(b) shows the complete set of reduced Hadamard
patterns for the full image: the red arrows indicate the order in which each subset of Hadamard
patterns (and hence also the relative white pixels from the image) are projected sequentially by
the DMD. Each of these patterns is projected for a time 7. The patterns are continuously looped
to give the test viewer sufficient time to observe the projection on the screen. The experiment
is then repeated, with a gradually decreasing 7. We transition from a situation where for long
7 individual Hadamard patterns are seen on the screen (and no image can be perceived), until
the individual patterns can no longer be distinguished and a clear image emerges. The aim is to
determine the “threshold” value for 7 for which the patterns disappear and the images start to
become partly visible. These tests were repeated with four test viewers and all reached the same
conclusion that for 7 ~ 20 ms, all of the projected patterns started to become visible.

Separately we simulate the experiment numerically, steps (5) and (6), by assuming that human
visual perception has an initially flat response followed by an exponential decay (see the function
in the Fig. 3 inset). We fixed the flat response time to the ‘threshold’ image value for 7 (20
ms). We therefore aim to determine the exponential decay time, o that is introduced to provide
a connection with studies that found visible persistence times to gradually decay in time [15].
This mathematical model is by no means unique. However, a constant response followed by an

(1) Divide image | (2) Reduced Hadamard
into pixels v basis for each pixel

I
DMD Computer
v v P
(3) Project Hadamard patterns (5) Simulate single-pixel
with persistence t imager with flat+exp response
v v

(4) tisincreased untileye Lyt —p| (6) Use experimental T, vary o

starts to distinguish image N obtain image seen on DMD
o
—

Fig. 3. Flow chart for estimating the response time of the human visual system.
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Fig. 4. (a) Decomposition of a single white pixel into a reduced set of Hadamard patterns
(boxed in red). (b) Example of reduced set of Hadamard patterns for a 3x3 pixel “zero”. The
red arrows indicate the sequence with which each subset of Hadamard patterns (and hence
the relative white pixels from the image) are projected by the DMD.

exponential decay is the simplest option consistent with observations and, for our purpose, ideal
to demonstrate the potential of ghost imaging for visual perception studies. We vary o in the
simulations until a good match is found between the simulated pattern and the observed image.

Figure 5 shows examples from the experiments where we used 6 X 6-pixel images of the
numbers “07, “4”, “6” and letters “L”, “P”, “T”. The top rows show the actual images used
together with the number of white pixels and total number of Hadamard patterns projected. The
successive rows show the simulated patterns for a range from o~ = O s (i.e. a square. step-like
response, similar to a camera) to o = 50 ms. All four subjects aimed to match simulations
and experiments for the case of image-formation threshold and found that the best match was
obtained with oo = 20 ms. For shorter o the image is hardly discernible (see e.g. second row,
o = 0 ms) and for longer times the images appear complete and clearly visible (bottom row,
o = 50 ms). Although the patterns were projected only for a fixed 7, simulating the ghost
image assuming a constant stimulus that lasts exactly T cannot explain the observed projected
images. An additional exponential decay time is required and using the concept of a ‘thresh-
old’ at which the images start to become discernible, can provide information about the decay rate.

4. Discussion

We have demonstrated ghost imaging with the human eye, such that no computational steps are
required for visualising an image that is obtained through the projection of weighted (based on a
proxy measurement) Hadamard patterns onto an observation screen. We proposed a macro-pixel
technique to increase the spatial resolution of the projected image beyond what would be otherwise
be possible with only ~ 400 Hadamard patterns (determined by the requirement that they must be
projected within the eye 20 ms persistence time and by the the DMD projector 20 kHz maximum
rate). Ghost-imaging with the eye opens up a number of completely novel applications such as
extending human vision into invisible wavelength regimes in real-time, bypassing intermediary
screens or computational steps.

Perhaps even more interesting are the opportunities that ghost imaging offers for exploring
neurological processes. Key to this approach is the substitution of computational steps with
equivalent processes performed by the eye or visual cortex. Further investigation is required of
how the perceived image depends on the specific shape of the visual response function together
with an analysis of which visual mechanism is being probed. The persistence times we measured
are closer to those obtained by performing ‘temporal integration’ tests [14,20-22] rather than
those based on estimates of synchronicity of multiple signals [15, 19]. In our test, by comparing
with a computer model we estimate the response time more precisely, splitting the response into
a constant and decaying part.
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Fig. 5. Examples of simulated images used to evaluate visible persistence times. The
top row shows the chose images (numbers and letters) together with the number of white
pixels and the total number of Hadamard patterns required to represent the images following
the recipe explained in Fig. 4. The following rows show the reconstructed images with
varying exponential decay times (o) of the function f(¢) used to weigh the projection of
each individual Hadamard pattern.

A future challenge could be to investigate if the visual system can perform the “multiplication”
step in ghost imaging, which we obtained by weighting projected patterns with the bucket-detector
intensities. This could be implemented using a VR system [23, 24] that simultaneously projects
the (unweighted) Hadamard patterns and uniform grayscale weight images either onto both eyes
separately or onto separate regions of the retina.
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