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Abstract

This paper examines the best turbulence model to use when using computa-

tional fluid dynamics to simulate an impinging jet type flow. The IDDES,

k-ω SST SAS, Smagorinsky and dynamic Smagorinsky models were used and

compared to data collected from a laboratory impinging jet, developed to sim-

ulate thunderstorm downburst flow fields. From this it was found the dynamic

Smagorinsky model performed best, especially at capturing the velocities and

pressures in the near inlet region. A mesh dependency study was then performed

for the dynamic Smagorinsky turbulence model. A small mesh dependency was

demonstrated for the mesh densities studied but had issues in capturing the

velocity height profile correctly in the near wall region. Despite this issue the

model still closely matched the laboratory pressures around a 60mm cube and

demonstrated the suitability of this modelling approach for investigating thun-

derstorm downbursts.
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1. Introduction

A thunderstorm downburst is a strong wind event characterised by winds

formed from a horizontally aligned vortex, itself formed from a strong down-

ward movement of air arising from falling precipitation, buoyancy effects and

intensified by other cloud processes such as the melting of ice and hail (Palmén,

1951; Roberts and Wilson, 1984; Fujita, 1985; Knupp, 1985). They are impor-

tant from a wind engineering perspective as they are strongly non-stationary

(Figure 1(a)) and also produce a different vertical velocity profile to the tra-

ditional logarithmic atmospheric boundary layer (ABL) profile used by wind

engineers (Figure 1(b)).

In order to investigate their effects wind engineers make use of a number of

modelling techniques, including both laboratory and numerical simulations. In

the laboratory the most common approach is to use an impinging jet simulator

(Holmes, 1992), where a jet of air is directed onto a plane perpendicular to

the jet. This generates a vortex similar to that of a downburst, although the

formation mechanisms are physically different.

There have also been numerically simulated impinging jet studies relating

to downburst flow. The first was by Selvam and Holmes (1992), using the

RANS k − ε turbulence model. Later work by Craft et al. (1993) found this

model unsuitable because the turbulent kinetic energy was significantly over

estimated. It was found that the rms turbulent velocity normal to the wall was

over predicted by up to four times experimental values, which resulted in low

level velocities being under predicted, high level velocities over predicted and as

a result the vertical velocity profile was not reproduced correctly. As highlighted

by Craft et al. (1993), this is primarily due to the use of the eddy-viscosity stress-

strain law for normal stresses leading to high turbulence energy generation close

the stagnation region. More recently Mason et al. (2007) evaluated six additional

turbulence models using the impinging jet simulator of Mason et al. (2005) to

validate results. Mason et al. (2007) found that of the five turbulence models it

was the k − ω SST model which most accurately reproduced the flow from an
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Figure 1: Comparison of typical wind profiles for downburst and conventional ABL flows

: (a) - a velocity time history comparison of a rural synoptic wind at 3m height (Sterling

et al., 2006) and the Andrew’s air force base (AAFB) downburst over rural terrain, 4.9m

height, Fujita (1985); (b) - a schematic illustration of the mean streamwise velocity profile

corresponding to a “typical” downburst and a typical boundary layer or “synoptic” wind (Lin

and Savory, 2006).
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impinging jet simulator. The only discrepancy being a slight over prediction of

velocity at higher levels.

Further work in this field was carried out by Sengupta and Sarkar (2008) who

used an LES based turbulence model, dynamic Smagorinsky-Lilly, to simulate a

translating impinging jet. The results were again validated using data collected

from a simulator also developed by Sengupta and Sarkar (2008). However, there

is a potential difficulty with LES based simulations and impinging jets. For the

boundary conditions to be stable a large domain is often required of around ten

jet diameters meaning a large number of cells is required for the Y + value to be

close to one with Y + defined as the non-dimensional wall distance:

Y + =
u∗y

ν
(1)

where u∗ is traditionally the wall shear stress velocity or “friction velocity” of

the near wall flow, y is the distance to the nearest wall and ν is the kinematic

viscosity of the fluid.

The Y + value used by Sengupta and Sarkar (2008) in their simulations was

not presented in their paper. However, they indicate that around 2 million cells

were used to simulate a domain extending to a width of ≈ 15 jet diameters.

Based on this information, it is estimated that it is unlikely that Y + values

approaching unity were used in their simulations, though this cannot be stated

with certainty with the information available. Assuming a relatively low peak

velocity of 10ms−1 such as the values recorded by Chay and Letchford (2002)

the cell size in the near wall would have to be 3× 10−5m to achieve Y + = 1.

However, the results presented in both Sengupta and Sarkar (2008) and

Chay and Letchford (2002) matched well to experimental data, suggesting that

satisfying the Y + criteria may not be essential for the simulation of impinging

jets and this has implications for the work presented herein. A possible reason

for the good performance of the LES models, despite the lack of wall resolution,

is that the most important flow feature in a downburst / pulsed impinging jet

flow is the primary vortex which is generated from shear layers in the free stream
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flow. The strong effect of the primary vortex on the flow, as illustrated in Figure

1, combined with the predicted results from Sengupta and Sarkar (2008) and

Chay and Letchford (2002) and those presented herein indicate turbulence which

is generated at the wall is not the primary turbulence formation mechanism as

is the case in channel flow.

The implication from this is the importance of producing the correct tur-

bulence at the inlet, in this case, to match the laboratory simulation and the

highly turbulent inlet of Jesson et al. (2015), (Figure 2). When comparing

with this experimental dataset, there is a complication with achieving an ex-

act comparison due to the nature of the “flaps” mechanism for the jet used

in the experiment. This is highlighted in more detail in the next section and

the approach taken in these simulations was to use the data measured 0.5m

from the jet inlet as the basis for obtaining the correct inlet turbulence char-

acteristics. CFD simulations often assume a laminar inlet or turbulent inlets

based on Reynolds averaging of the Navier-Stokes equations (RANS), which

will alter the development of the shear layer and therefore the rest of the flow.

For RANS approaches, inflow boundary conditions may be based on averaged

quantities, turbulence intensities and length scales, whereas for LES, much more

detailed information is required to provide temporally varying information for

velocities and pressures, often not directly available. Numerous approaches have

been used to generate the turbulent inflow conditions to give realistic wind flow

characteristics for ABL flows, for example Blocken et al. (2007), Parente et al.

(2011), Zheng et al. (2012) and Balogh et al. (2012). Similarly, LES approaches

using a synthetic turbulence approach to generate the inflow turbulence for

ABL’s have been applied to computational wind engineering investigations in

Bazdidi-Tehrani et al. (2016), Patruno and Ricci (2017), Lamberti et al. (2018)

and Yan and Li (2015). In particular Patruno and Ricci (2017) illustrates an

approach that provides good control and accuracy of turbulent integral length

scales and time spectra, with encouraging results for the turbulence intensities

and length scales typical of ABL flows. Lamberti et al. (2018) illustrate how an

automated approach is used to modify the input parameters for the turbulence
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generator to maintain the desired turbulence statistics at a downstream loca-

tion, in combination with a divergence free approach from Kim et al. (2013).

However, a different approach is necessary for non-synoptic flow fields, as indi-

cated by Kareem (2012). One approach is to generate the necessary information

is to use approaches based on a synthetic turbulent inlet in order to accurately

model the turbulence found at the inlet (di Mare et al., 2006). Furthermore, an

appropriate turbulence model then needs to be identified that can successfully

support fluctuations at the inlet that are being determined from the synthetic

turbulent inlet and additionally allow them to propagate correctly throughout

the domain (Kim et al. (2013) and Poletto et al. (2013)). Also important in

this regard is the mesh density, a suitable mesh must be found which is the best

balance between being accurate but not requiring excessive CPU time.

Usually an investigation of the mesh sensitivity would be the initial con-

sideration for a CFD analysis. However, for this research, it was felt more

appropriate to consider initially the implementation of the synthetic turbulent

inlet and the implication of this boundary condition on the choice of turbulence

model. Once the turbulence model was selected, a mesh sensitivity investiga-

tion was undertaken prior to analysis of the simulation results when compared

to laboratory data. Hence, the work presented herein first provides a brief

summary of the implementation of a synthetic turbulent inlet considering the

difficulties and challenges encountered for an impinging jet simulation. Then a

detailed investigation of a range of turbulence models is considered, highlight-

ing their performance alongside the synthetic turbulent inlet. Finally a mesh

sensitivity analysis is undertaken along with comparison of the results with ex-

perimental data. The outcome of the paper is the determination of appropriate

modelling schemes for the boundary conditions and turbulence model, along

with assessment of the mesh density (with particular consideration to the Y +

criteria highlighted above) to provide high quality simulations of downburst /

impinging jet flow fields. Further detailed analysis of the predicted flow field

and comparison with laboratory data is presented in Haines and Taylor (2018),

where the modelling approach determined from the results presented herein is
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used to provide detailed assessment of the downburst flow. Additionally, inves-

tigation of the effects of the downburst on “low rise” buildings are discussed in

Haines and Taylor (2018) where the simulations are used to assess and interpret

some flow features arising in the pressure and drag coefficient results presented

in the experiments of Jesson et al. (2015). Also a brief comparison of the flow

features arising from the downburst flows, both simulated and experimental,

with those from atmospheric boundary layer flows are discussed in Haines and

Taylor (2018).
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Figure 2: The velocity time history of the laboratory jet (Jesson et al., 2015) 0.5m from the

jet inlet. The locations where the signal drop to zero represent probe drop outs and are not

part of the turbulent component of the signal.

2. Numerical Setup

The coordinate system used in the simulations is illustrated in Figure 3, and

is based on the University of Birmingham simulator (Jesson et al. (2015). X

is the distance from the centre of the jet, running down the centreline of the

simulator, Y the spanwise position across the width of the simulator and Z the
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height from the floor of the simulator. These were normalised by the width of

the jet of the simulator D, which in the laboratory was 1m.

The numerical domain was created to ensure the measurement locations used

in Jesson et al. (2015) were covered and to allow data collection with sufficient

resolution and over a reasonable time-scale The key measurement locations from

the experiment were 0.5m below the jet inlet (in the centre of the jet) and

then at various locations along the centreline, X
D = 1.0, 1.5, 2.0 and 2.5. At

each X
D distance twenty five heights were measured between Z

D = 0.01 − 0.25.

At these points the three components of velocity were captured as well as the

pressure field. Additionally a cube model building was placed into the flow in the

laboratory case, located at X
D = 1.5, Y

D = 0.0. Full details of the measurement

techniques used in the laboratory experiments are provided in Jesson et al.

(2015).

The open source software, OpenFOAM 2 ((OpenFOAM, 2014)) was used

to create the domain and perform the CFD calculations, with custom solvers

and boundary conditions being implemented where necessary. The numerical

domain used is illustrated in Figure 4(a) and is a 10 × 10 × 2.5m box (Figure

3(b)), with a cylindrical inlet with a mesh consisting of 15, 338, 950 hexahedral

elements with every cell having an aspect ratio of 1. The building can be

seen on the right hand side of Figure 4(a) with the local mesh around the

building illustrated in Figure 4(b). In the near building region the mesh had

a cell size of 1.25mm and near the inlet and in the free stream a cell size of

20mm. The cell size of 1.25mm was used up to a distance 30mm from the

building, then a cell size of 2.5mm from 30mm − 60mm, cell size 5mm from

60mm− 120mm, cell size 10mm from 120mm− 180mm, and cell size 20mm

at distances greater than 180mm. 4 : 1 face transitions are used throughout

the mesh, and although such transitions lead to numerical and commutation

errors, the small and continuous change in cell sizes highlighted keep these

errors to a minimum. Results presented in Haines and Taylor (2018) show that

2Ver. 2.2.2 of OpenFOAM was used for these simulations, undertaken during 2015/16
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(a) Schematic diagram of the numerical domain for the simulations

(b) Dimensions of numerical domain for the simulations - jet inlet is 1.9m above the

ground plane.

Figure 3: Schematic diagram of the numerical domain for the simulations, based on the

University of Birmingham simulator. The labels X, Y and Z highlight the direction of the

coordinate system.
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the transitions have little effect on the overall results.

The cell size at the jet inlet measurement location (0.5m below the inlet) is

the same as the free stream cell size, also 20mm. At peak velocity (21ms−1) due

to the primary vortex, it was found that the Y + in the near building region was≈

100, far greater than the usual required value for wall resolved LES simulations

for turbulent fluctuations within the boundary layer. However, assessment of

the effect of this will be examined later. Two additional mesh densities were also

trialled to verify the solution demonstrated little or negligible mesh dependency,

a coarser 11, 054, 940 cell mesh and a finer 20, 154, 014 cell mesh. In these

two cases in the free stream region a cell size of 23mm and 17mm was found

respectively and in the near building region 1.4mm and 1.1mm and the results

of mesh sensitivity will be discussed after the assessment of the turbulence

modelling scheme.

(a) Numerical model domain and mesh

(b) Mesh detail around the cube building

Figure 4: Numerical model domain and mesh with detail around the cube building

The boundary conditions at the inlet were a jet of uniform profile, with a
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component of velocity in the z (downwards) direction of 13.4ms−1 (Jesson et al.,

2015), with synthetic turbulence added, as detailed further below and zero gra-

dient boundary condition for pressure. The OpenFOAM library PisoFoam 3 is

used as the basis for the flow solver in each case, with time step set to 5×10−7 s,

but with adjustable time step selected 4 using a maximum ∆T of 0.1 s and max-

imum Courant number of 0.5. The time derivative approximation “backward”

was used to avoid dissipation. The spatial approximations were set to the fol-

lowing: gradSchemes “Gauss Linear”; divSchemes “Gauss Linear”; laplacian-

Schemes “Gauss Linear Corrected” due to the non-orthogonal cells around the

cylindrical inlet; interpolationSchemes “linear”; snGradSchemes “corrected” as

it gives an explicit non-orthogonal correction to the surface normal gradient

calculation, necessary due to cells around the cylindrical inlet.

It should be noted that the jet generation mechanism between the CFD and

laboratory simulation differed. The laboratory simulation used a “flaps” mech-

anism, which is described in Jesson et al. (2015), whereas the CFD simulation

just used an open jet. The “flaps” mechanism probably introduced some differ-

ences to the inlet flow, firstly the jet was not an instantaneous 1m wide as it

was in the CFD, instead a narrow jet was formed initially as the flaps swung

open which then rapidly increased in width until 1m wide. Secondly the air

flow from the flaps may have interfered with the vortex formation, potentially

reducing its size or causing it to decay more rapidly than in the CFD simula-

tion. However, the exact effect of the flaps in the laboratory simulator is not

known and was not measured. Whilst the flaps mechanism could be simulated,

the computational cost would be high and with the available information, it is

unclear how much effect this will have on the accuracy of the simulation.

For downburst type flows, surface roughness is felt to affect the formation of

the secondary vortex (Mason et al., 2009), though does not affect the shape or

3Solvers used “GAMG” for pressure and “DILUPBiCG” for velocity.
4The iterative convergence criteria used “myCFLPISO” with the adjustable timestep de-

pending on Courant number. In all cases, the residuals were of the order 10−4 or lower.
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development of the main flow feature, the primary vortex (Vermeire et al., 2011).

For the experimental facility, the distance between the point of impingement of

the jet and the location of the peak wind speed is relatively small, “indicating

that surface roughness is not a governing factor” in the laboratory simulator

(Jesson et al., 2015). Based on this assumption and to reduce complexity of the

CFD models, surface roughness was not modelled or included in the simulations.

The sides of the domain and also the top (above the jet inlet), were treated

as outlets and a Neumann (zero gradient) boundary was used. These boundary

conditions are applied also to determine any inflow/outflow at the sides of the

domain, though typically the simulations are ended before the primary vortex

reaches the edge of the domain and hence before the effects of flow across the

boundaries become significant. The wall boundary conditions used no slip for

velocity and zero gradient for pressure. For post-processing of results, pressures

are presented as pressure coefficients rather than dimensioned properties, where

(2) is used to determine the pressure coefficient, Cp,

Cp =
p− pref
1
2ρU

2
(2)

where p is the pressure value from experiment or simulation, pref is a reference

pressure, in this case atmospheric pressure consistent with the approach used

in the experiments (Jesson et al., 2015) and U is the reference velocity. For the

results at the jet inlet, the reference velocity used in (2) is the inlet velocity

U = 13.4ms−1. However, for the impinging flow on the ground surface and

building surfaces, the peak velocity of the downburst flow of U = 21.0ms−1 is

used, consistent with Jesson et al. (2015) and Haines and Taylor (2018). At the

jet inlet, using the inlet velocity of 13.4ms−1 for the reference velocity when

calculating Cp is an obvious choice. However due to the transient nature of

the flow at the building location, and the effect of the primary vortex on the

flow (e.g. Figure 1b) using the jet velocity in this location is not as appropriate.

Using the peak velocity of the primary vortex was used a more relevant selection

for the reference velocity to determine Cp at the building location and to allow

comparison with previously published work, has also been used herein.

12



2.1. Synthetic turbulence at the impinging jet inlet

In order to accurately simulate the impinging jet simulator at the University

of Birmingham the turbulence at the inlet of the simulator must be correctly

modelled to ensure the correct development of the flow further downstream and

as discussed briefly above (di Mare et al., 2006), for LES a synthetic turbu-

lent inlet is required. There are a number of approaches to generate synthetic

turbulence including: superimposing random fluctuations; Fourier series based

approaches which generate frequencies of turbulence based on the power spec-

tral density (PSD) of a known experimental time series (Billson et al., 2003);

reconstructing an experimental data time series, for example the wavelet meth-

ods developed by Wang et al. (2013), then interpolating this field across a CFD

inlet; methods based upon digital filters and finding solutions for specific au-

tocorrelation functions (Kornev and Hassel, 2007); vorticity based approaches

which use Lagrangian based vortex methods to generate turbulence using a

“vortex in a box” approach (Poletto et al., 2013).

Initially the turbulence model of Billson et al. (2003), based on Fourier and

frequency techniques was chosen as the approach was similar to wind tunnel

analysis, by matching the PSD and turbulent length scales from full scale data

(Haines et al. (2015)). However, whilst capable of producing a velocity field

which closely matched the inlet data from the laboratory simulations (Figure

5(a)) it could not reproduce the pressure field, illustrated in Figure 5(b). The

reason for this discrepancy can be found in the incompressible Navier-Stokes

equations, the PISO algorithm and in the formulation of the synthetic turbulent

inlet of Billson et al. (2003).

Firstly the Navier-Stokes equations in incompressible form assume that the

net mass flux through each cell is zero, as shown by equation (3) (in incom-

pressible form) :

∇ ·V = 0 (3)

where V is the velocity vector of the flow.
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(a) Velocity fluctuations

(b) Pressure fluctuations

Figure 5: Results of CFD simulation of jet inlet flow compared to the laboratory experiment

at a distance 0.5m from the jet inlet. (a) - the turbulent velocity fluctuations produced 0.5m

from the inlet, CFD and experiment; (b) - the associated unphysical pressure fluctuations from

the CFD simulation compared to the pressure fluctuations from the laboratory simulator.
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Unfortunately this is not true of the turbulent inlet of Billson et al. (2003),

and the turbulence it produces is not divergence free, i.e. equation (3) is not

obeyed across the inlet. Hence the PISO algorithm itself has to make the flow

divergence free, which, in order to support such velocity fluctuations, requires

a rapidly fluctuating pressure field, hence giving the result in Figure 5(b).

An alternative divergence free approach based on the digital filter method

(often called the random spot method) developed by Kornev and Hassel (2007)

which was chosen as it was available pre-coded in OpenFOAM as part of the add

on LEMOS package (LEMOS, 2015). This method uses the Reynolds stress ten-

sor (equation (4)) and integral length scale (equation (5)) to produce synthetic

turbulence with a two point spatial correlation, one point temporal correlation

and a one point cross correlation. The Reynolds stress tensor, τij is given by

τij =


ρ u′u′ ρ u′v′ ρ u′w′

ρ v′u′ ρ v′v′ ρ v′w′

ρw′u′ ρw′v′ ρw′w′

 (4)

where u′, v′, w′ represent the fluctuating components of velocity in the u, v and

w directions respectively. Also, the integral length scale, Liik, is given at an

inlet plane by

Lii1 (x) =

∫ ∞
−∞

Rii (x,x + iη) dη, (5a)

where Rii (x,x + η) =
ui (x, t) ui (x + η, t)

ui (x, t)
2

(5b)

where Rii (x,x + η) is the autocorrelation of the signal, t is a timestep in

the signal and η is the shift in signal to the point in the signal for which the

autocorrelation is being calculated for position x (Kornev and Hassel, 2007).

Figure 6(a), illustrates that even this divergence free condition did not pro-

duce a satisfactory pressure field. It was noted that the finite size of the inlet

meant that the instantaneous mass flux entering the computational domain was

not equal to the mass flux expected from the mean field, which again resulted in
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the PISO algorithm producing unrealistic pressure fluctuations. To resolve this

a mass flux correction term from Kim et al. (2013) and Poletto et al. (2013),

given by equation (6) was applied to the flow field across the inlet, this reduced

the pressure fluctuations to slightly above the laboratory case, as illustrated in

Figure 6(b).

ui =
Ub
Ub,T

ui,T , where Ub,T =

∫
S
Un,T dS

S
(6)

where ui is the final instantaneous mass flux corrected turbulent velocity field

produced at the inlet, Ub is the bulk flow field prior to turbulent fluctuations

being superimposed, ui,T is the turbulent field at the inlet prior to mass flux

correction, Ub,T is the mass flux normalising coefficient, S is the surface area of

the inlet and Un,T is the velocity on one cell face on the inlet.

Despite this correction the pressure results were still not entirely accurate

and this would appear to be because of the initial interaction between the tur-

bulent fluctuations and the wall boundary condition in the jet impingement

region. The reason for this is not definitively known, though there are a number

of hypotheses. One such hypothesis is that it is possible a pressure wave is re-

flected back from the boundary to the inlet plane, where it then interacts with

the high pressure region around the inlet and then transports these additional

interactions downstream of the inlet.

The reason for this line of thought is that the first overestimation of the

pressure occurs at twice the time it would take the velocity to travel from the

inlet to the ground plane. Further evidence for this conjecture is that the same

modelling approach was used to simulate flow in an open channel with the same

mesh density and with no jet impingement region. In this case, the pressure

fluctuations are not observed to increase, as illustrated in Figure 7 and remain

low for the duration of the simulation with no evidence of the large pressure

fluctuations seen in the impinging jet case. This indicates that the synthetic tur-

bulence model and mass correction have no major errors in the computational

approach, but there is some aspect of the impinging jet case that influences

16



(a) Pressure fluctuations, divergence free

(b) Pressure fluctuations, divergence free, mass flux corrected

Figure 6: The divergence free and mass flux corrected pressure fields at a distance 0.5m from

the jet inlet. The simulation was only run to 0.4 s for the divergence free case as the large

pressure fluctuations caused an excessive run time and considering the obvious problem it was

unnecessary to run for longer.
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the model and for this reason, it was decided to continue with this approach.

Additionally, in the impinging jet cases, after the initial large pressure fluctua-

tions at inlet, the effect does not appear to be transported further downstream

of the impingement region (Figure 8). In the regions of the flow of interest in

this investigation, particularly the impinging flow and formation of the primary

vortex, along with its interaction with the building structure, it appears that

the dominant feature is the primary vortex, and as indicated above, the pres-

sure fluctuations seem to have minimal effect on the results. This is illustrated

in Figure 8 but also in a more extensive set of results presented in Haines and

Taylor (2018) where good agreement between simulations and the experimen-

tal results are demonstrated. A further potential solution to the problems has

been identified, which may be to apply the turbulent inlet developed by Yu and

Bai (2014). This is because the solution has been mathematically proved to be

completely divergence free regardless of the size of turbulent vortices produced

/ inlet size. However, this requires additional coding and testing and is outside

the scope of the current investigation.
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Figure 7: The pressure fluctuations in the centre of an open channel at X
D

= 0.5.
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Figure 8: The pressure fluctuations at X
D

= 1.0 at a height of Z
D

= 0.03.

2.2. Choice of turbulence models and details

Four turbulence models were used to investigate the impinging flow field :

the standard OpenFOAM Spalart Allmaras IDDES solver; the standard Open-

FOAM Smagorinsky LES model; the dynamic Smagorinsky-Lilly LES model;

and a custom k − ω SST SAS model based on the latest version of this tur-

bulence model by Egorov and Menter (2007). The wall boundary condition

for the subgrid-scale viscosity was set as the OpenFOAM wall function, nu-

tUWallFunction, for the IDDES and LES turbulence models as the Y + value

was greater than 1, so small scale turbulence features were not being correctly

resolved. For the k − ω SST SAS model a zero-gradient condition was used as

the LES model would only be initiated in the wall region if the Y + value was

low enough. For the turbulent kinetic energy k and specific dissipation, ω, a

wall function was used (the OpenFOAM wall function “kqRWallFunction”). In

all of the simulations the kinematic viscosity was set to that of air at 300K

(1.568× 10−5m2s−1).

The advantages of LES models over the existing RANS turbulence models of

impinging jet flow are that they resolve the turbulent features of the flow in both

space and time down to a specific length scale. Any turbulent features below
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this length scale are filtered out and need to be modelled because of the closure

problem, with the standard approach being the Smagorinsky turbulence model

proposed by Lilly et al. (1967). A more appropriate model for the impinging jet

flow is the dynamic Smagorinsky-Lilly model developed by Lilly (1992) based

on work by Germano et al. (1991) which allows the value of the Smagorinsky

coefficient, cs, (Lilly, 1992) to alter across the different resolved length scales

and be self consistent across the range of resolved and unresolved scales.

In addition to the pure LES simulations, the k − ω SST SAS and IDDES

models were used within two blended RANS-LES approaches (Gritskevich et al.,

2012). Firstly, an improved URANS approach that allows the LES simulation

to fall back on the RANS turbulence models in regions where the grid is too

coarse, in this case the k − ω SST SAS model is applied (Menter and Egorov,

2010) and was chosen as Mason et al. (2007) found it to be the best suited of the

RANS turbulence models to simulating impinging jets. Secondly the detached

eddy simulations (DES) where the switching mechanism is based on the local

grid spacing and turbulent length scale of the flow in that region and the Spalart

Almaras (Spalart et al., 1997) IDDES model of Shur et al. (2008).

The switching between the LES and RANS models in the k−ω SST RANS

model is governed by the von Karman length scale formula given in equation

(7).

Lvk =
κS

|u′′|
(7)

where Lvk is the von Karman length scale, based on the traditional version for

the atmospheric boundary layer (von Karman and Howarth, 1938), κ is the von

Karman constant and has the value 0.41, S is the scalar invariant of the strain

rate tensor, given by
√

2SijSij and u′′ is the derivative of the u component of

velocity in the X direction (Figure 3). (Note that the u and v components on

average may be considered symmetrical due to the radial outflow of the vortex.)

The IDDES approach is an improvement over the original DES model of

Spalart et al. (1997) and also the DDES model of Spalart et al. (2006) . It is

20



less likely to remain stuck in one of either LES or RANS modes if the wall region

mesh density is ambiguous and it is also able to switch regimes if unsteady flow

situations arise, such as from a turbulent inlet or obstacle in the flow like a wall

mounted cube. Both being key in the flow being studied in this investigation.

The switch between the RANS and turbulence model is governed by equation

(8).

FIDDES =
lRANS
lIDDES

(8)

where FIDDES is based on the RANS turbulent length scale and LES grid

length scale. RANS turbulent length scale, lRANS , is determined throughout

the computational domain (9) using local values of turbulent energy, k, and

specific turbulent dissipation rate, ω (10). At the jet inlet, initial values of

k = 0.19 and ω = 1.78 are applied.

ω =

√
k

lRANS
(9)

k =
3

2
(UI)

2
, ω = C−0.25µ

√
k

l
(10)

where U is the mean flow velocity, I is the turbulence intensity, l is the turbulent

length scale and Cµ is a turbulence model constant with a value of 0.09.

The LES integral length scale is determined using the approach presented

by Gritskevich et al. (2012), where the IDDES length scale is given by

lIDDES = f̃d (1 + fe) .lRANS +
(

1− f̃d
)
.lLES (11)

where

lLES = CDES∆ (12)

where f̃d is a blending function, and fe is an elevating function (Gritskevich

et al., 2012). Also, CDES and the LES length scale, ∆, are defined as

CDES = CDES1.F1 + CDES2 (1− F1) (13)

∆ = min {Cw max [dw , hmax] , hmax} (14)
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F1 is an SST blending function, dw is the distance to the nearest wall, hmax is

the maximum cell edge length inside the wall boundary layer, and the constants

are defined as Cw = 0.15, CDES1 = 0.78 and CDES2 = 0.61 (Gritskevich et al.,

2012).

2.3. Data analysis methodology

For each experimental dataset, ten individual runs were performed and post-

processed to provide an ensemble averaged dataset. However, there was signif-

icant run to run variation making the choice of which run to compare with

difficult. The turbulence properties for an individual run could be used for the

simulations, but due to the run to run variation, the question remained as to

which of the runs should be selected or was most appropriate for comparison.

Likewise, the ensemble average turbulence statistics could be used as input, but

this is also problematic as the averaging had the effect of smoothing out many

of the larger variations within the impinging flow field. Different experimental

runs were used to obtain the jet inlet data and the velocity and pressure results

at other locations and for the buildings. As a result, it is unlikely that the aver-

age turbulence statistics for the inlet will produce the same “averaged” results

at other locations, and due to the run to run variation of the experiment, is

not easy to check if this would be the case. Hence, turbulent statistics from

an individual run and the ensemble average were both used in separate simula-

tions, to investigate what effect the turbulence properties had on the flow. For

the simulations presented herein, the turbulence intensity at jet inlet for the

“ensemble average” case was 0.0884 and for the “individual” case was 0.225. At

the location 0.5m below the inlet, these gave turbulence intensities of respec-

tively 0.0533 and 0.155 which compare to the values measured in the laboratory

experiment of 0.0509 for the “ensemble average” and 0.163 for the “individual”

case.

Similarly, when comparing results with measured time histories of velocity

or pressure coefficient, the run to run variation in the experiment complicates

the choice of which dataset to compare to. Depending which individual dataset
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run was used, either good or poor agreement between the simulations and the

data could be demonstrated and comparing with the ensemble average data is

also not ideal due to the smoothing effect of the averaging process. As used in

Haines and Taylor (2018), for time histories, simulations were compared with

the ensemble average dataset and the upper and lower limits of the experimental

data were indicated to provide bounds for the results.

With the large amount of data being produced it was impractical to display

every graph to allow a comparison between the various turbulence models, mesh

densities and the laboratory data set. To provide a summary of the results, for

key measurement points a time series of differences between the laboratory and

CFD results at each location (equation (15)) was determined, and the mean

(equation (16)) and standard deviation (equation (17)) of the difference time

series was calculated. A low value of the mean meant the average of the signal

was close to the experimental value (although turbulent fluctuations may still

differ) and a low standard deviation indicated that the turbulent fluctuations

were similar. If both were low it indicated a good fit between the two signals.

diff(t) = Lab(t)− CFD(t) (15)

where Lab(t) is the time series of the laboratory data at a specific location and

CFD(t) is the time series of the CFD data at the corresponding location. The

time series can be for either velocity or pressure.

meandifference = |diff(t)| (16)

σdifference = σ(diff(t)) (17)

These results were then presented on a graph, displaying both the mean

and standard deviation, of which an example is given in Figure 12. The bars

represent the mean (equation (16)) of each turbulence model or mesh density

and the standard deviation (equation (17)) is represented by the markers on

the graph. For figures of this type labelled “velocity” the statistics presented
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are determined from the predicted velocity time history for the simulation in

question, and similarly the label “pressure coefficient” refers to statistics from

time histories of pressure coefficient.

3. Results and discussion

3.1. Turbulence model comparisons

As highlighted earlier, the comparison of the four turbulence models used a

mesh of ≈ 15.4 million cells with a freestream cell size of 20mm. A mesh sensi-

tivity investigation is later considered on the final selected turbulence scheme.

Inlet Flow.

Figure 9 illustrates the velocity time history 0.5m below the jet inlet for the

individual run turbulence levels for all CFD models compared to the ensemble

average from the simulator data. As indicated earlier and for clarity, the CFD

mesh cell size in this region is the same as the free stream cell size at 20mm.

From this it is immediately apparent that the two turbulence models which were

best at capturing the laboratory turbulence in the inlet region were the two LES

simulations, the dynamic Smagorinsky and Smagorinsky. While the differences

were smaller for the ensemble level of turbulence, illustrated in Figure 10 it

is still apparent that the two LES models outperform the others. The power

spectral density (Figure 11), shown for individual run turbulence levels only, also

indicate that the two LES simulations perform the best, although all models do

show slightly higher energy at the lower frequencies 5. These results are also

backed up by the mean and standard deviation differences for the inlet region,

Figure 12.

It would also appear from Figures 9-11 that the IDDES approach is not

operating as a pure LES simulation below the inlet, given the lack of fluctu-

ations and smooth transitions between velocities. The k − ω SST-SAS model

5For the power spectral density, the results were processed using standard fft functions in

Matlab2017b and filtered using a “rectangular” window.
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also exhibits similar behaviour and is much smoother than the two LES models,

perhaps suggesting it is not remaining in the LES regime at all times and is

switching between the schemes (with the switching parameter being the turbu-

lent length scale) depending on the velocity produced by the turbulent inlet.

However, this conjecture has not been determined explicitly.
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Figure 9: A velocity time history comparison between the laboratory simulator experimental

data and the CFD simulation 0.5m below the inlet region using individual run turbulence

levels.

In addition the k − ω SST-SAS model also had issues in supporting the

turbulent velocity fluctuations without also producing excessive pressure fluc-

tuations, which are illustrated in Figure 14. Reducing the turbulence at the

inlet to the ensemble levels resolved this issue, as illustrated in Figure 15. The

IDDES simulation had an alternative problem, with the simulation becoming

unstable more rapidly for the ensemble turbulence levels. For clarity, the range

of pressure coefficient variation (maximum and minimum values) are indicated

separately in Figure 13 rather than in the comparisons with the CFD results.

Impinging Jet Flow.

It was also interesting to examine how the turbulence models performed down-

stream of the inlet condition, especially considering two of the models had issues
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Figure 10: A velocity time history comparison between the laboratory simulator experimental

data and the CFD simulation 0.5m below the inlet region using ensemble average turbulence

levels.
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Figure 12: The performance of the turbulence models 0.5m below the inlet jet for the indi-

vidual and ensemble run turbulence levels at the inlet.
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Figure 13: Ensemble average of measured pressure coefficient time history along with minimum

and maximum values from individual runs at 0.5m below the inlet region.
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Figure 14: A pressure coefficient time history comparison between the laboratory simulator

and the CFD simulation 0.5m below the inlet region using individual run turbulence level.

28



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

P
re

s
s

u
re

 C
o

e
ff

ic
ie

n
t

k-  SST SAS

Pressure Coef. from Experiment

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

P
re

s
s

u
re

 C
o

e
ff

ic
ie

n
t

IDDES

Pressure Coef. from Experiment

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

P
re

s
s

u
re

 C
o

e
ff

ic
ie

n
t

Smagorinsky

Pressure Coef. from Experiment

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

P
re

s
s

u
re

 C
o

e
ff

ic
ie

n
t

Dynamic Smagorinsky

Pressure Coef. from Experiment

a) b)

c) d)

Figure 15: A pressure coefficient time history comparison between the laboratory simulator

and the CFD simulation 0.5m below the inlet region using ensemble average turbulence level.

in capturing the turbulence properties at the inlet. Four distances from the cen-

tre of impingement were examined, consistent with the measurement locations

used in Jesson et al. (2015) with all measurements being taken down the cen-

treline of the jet at a height of Z
D = 0.03 (the height at which the maximum

velocity occurred in the simulation): X
D = 1.0, X

D = 1.5, X
D = 2.0 and X

D = 2.5.

For each of these locations a velocity time, pressure time and velocity height

profile was produced and compared to the laboratory data.

The velocity time history at X
D = 1.5 (Figures 16 and 17) showed that the

two LES turbulence models gave the best fit, and in general the CFD tended

to overestimate the peak velocity. This is even when compared to the highest

velocities recorded from an individual run, which is illustrated on the figure by

the narrower blue lines6. The ensemble turbulence run had an even greater peak

velocity. This was because in the individual run turbulence case the primary

6The experimental results for an individual run are shown by the solid blue line. The

narrower blue lines either side of the experiment show the maximum and minimum results

from the set of 10 runs.
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vortex decayed more rapidly because of the presence of the turbulent fluctua-

tions. This assessment of the results at X
D = 1.5 was also confirmed by the mean

and standard deviation of differences given by Figure 18. However, these fits

also show that for the velocity time profiles results became worse further from

the inlet.
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Figure 16: A velocity time history for the four turbulence models at a location of X
D

= 1.5 for

the individual run turbulence level.

Also from Figure 16 there is a clear a difference in the duration of the pri-

mary peak, identifiable from the narrower / sharper peaks in the CFD results.

To investigate the cause of the poor fit further from the centre of impingement

and the sharper primary peak the flow was visualised, the vortex development

examined and vortex translation velocity was calculated. “Vortex translation

velocity” in this context refers to the velocity radially outwards from the jet cen-

tre along the ground plane, of the primary vortex in the vortex ring structure

formed when the jet impinges on the ground plane (Haines and Taylor, 2018).

The cause of the poor fit and sharper pressure / velocity primary peaks immedi-

ately becomes apparent from the vortex velocities illustrated in Figure 19. The

laboratory measured data for translation velocity is determined from analysis of

flow visualisation of the experimental rig by assessing the video footage of the
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Figure 17: A velocity time history for the four turbulence models at a location of X
D

= 1.5 for

the ensemble average turbulence level.

results (McConville et al., 2009; Haines, 2014). The calculation of the transla-

tion speed involved an assessment of the differences between the captured flow

fields on consecutive frames of videos of the flow visualisation and the upper

and lower bounds illustrated in Figure 19 are due to the errors arising from

the process (equivalent to approximately ±0.2m/s or ±6.5%). In Figure 19,

the vortex velocities are considerably higher than the laboratory simulations for

the LES turbulence models and IDDES, resulting in a shorter duration primary

peak as the vortex is travelling faster. The reason the k − ω SST SAS model

has the correct duration peak is because it has the closest vortex translation

velocity to the laboratory simulation. It is noted that the results of the IDDES

model become unstable towards the end of the simulation in Figure 17. From

investigating the results, it is most likely (though not conclusively shown) that

this is due to the switching from RANS to LES models used in the hybrid ap-

proach close to the wall (Section 2.2), and in some cases a similar feature was

exhibited in the k − ω SST-SAS model.

There are a number of possible reasons for the translation velocity difference

between the CFD and laboratory simulations. As indicated in Section 2, the
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Figure 18: The performance of the turbulence models for the individual turbulence inlet

condition in producing the correct velocity and pressure time histories at the four X
D

locations.
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Figure 19: The variation of vortex translation velocity with turbulence model and turbulent

settings at the inlet.

different jet generation mechanism in the experiment and the CFD simulations

may be a contributing factor. It was felt that the air flow from the flaps as

they dropped during opening may have affected the vortex formation in the

experiment, thus affecting the size of the primary vortex or affecting its rate of

decay which would explain the increased velocity in the CFD simulation. As

these aspects were not measured in the experiments, the exact effect of the flaps

on the flow field is not known. It was felt that the complexity of modelling

these flaps in the simulation would lead to excessive computational cost and

would not provide significant improvements to the simulations bearing in mind

the unknowns and the run to run variation from the experiment. Instead it was

more practicable to just note the differences between CFD and experiment and

account for these differences when analysing and interpreting the simulations.

The effect of the translation velocity difference on the flow field and how this

affects the velocity and pressure distribution on low rise structures is discussed

in more detail in Haines and Taylor (2018).

Despite these differences between experiment and CFD modelling, there are

also issues with the turbulence models. In the k − ω SST SAS the vortex

appeared to be travelling through a more viscous fluid (it hadn’t reached the

X
D = 2.5 location after 1 s as it had decayed), while the IDDES turbulence model
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had the opposite issue. The similar translation velocity between the individual

run inlet turbulence and ensemble inlet turbulence would also suggest that the

two hybrid RANS-LES models are not currently capturing the turbulence at

the inlet correctly.

The two LES models performed better in this regard, the higher inlet tur-

bulence caused the primary vortex to decay more rapidly than the ensemble

turbulence case, hence have a lower translation velocity. The primary vortex

also matched how the vortex developed in the laboratory, despite travelling more

rapidly. This might either be because of the physical differences between the

simulations or an issue in the turbulent mixing in the LES turbulence models,

which might be caused by the relatively coarse mesh used.

Velocity Height Profiles.

The vortex translation velocity also caused an issue with the velocity height pro-

files, illustrated at the X
D = 1.5 location in Figure 20 for both the individual run

and ensemble average turbulence levels. The data presented in Figure 20 is the

maximum velocity measured or predicted at this location, i.e. the maximum ve-

locity from the time histories. While the general shape of the profiles and height

of maximum velocity were correct, the maximum velocities were overestimated.

Figure 21 illustrates the mean and standard deviation of the differences between

simulations and experiment (Section 2.3), with the differences between results at

each height being considered in this case. The results indicate that the further

the measurement was taken from the centre of impingement the worse this issue

became, with the fit of the mean increasing with X
D for three of the turbulence

models,

Of all the turbulence models it was the k-ω SST SAS which performed

marginally better than the other three, which had similar performance levels.

Even the k-ω SST SAS overestimated the velocity height profile because of the

slightly higher vortex translation velocity and at a distance of XD = 2.5 it heavily

underestimated the velocity as the vortex had decayed by this location.
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Figure 20: A maximum velocity with height profile for the four turbulence models at a location

of X
D

= 1.5. (a) Individual run turbulence level; (b) Ensemble average turbulence level
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Figure 21: The performance of the turbulence models in capturing the correct velocity height

profile fit for the individual turbulence level .
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Pressure on Building Faces.

The final and perhaps most important region from a wind engineering point

of view and for this investigation was the performance of the CFD models in

capturing the pressures around the model cube building. As highlighted in

Section 2, a cube model building, side length 60mm, was included in the flow

on the ground plane at location X
D = 1.5, Y

D = 0.0 (Figure 3a). The pressure

results considered in this section is located at the centre of each face, and a

more detailed analysis and wider range of pressure data is considered in Jesson

et al. (2015) and Haines and Taylor (2018).

Firstly examining the pressures on the centre tap of the front face of the cube,

Figures 22 and 23 for the individual run and ensemble average turbulence model

respectively, revealed that the slightly excessive pressure fluctuations had mixed

out for all but the k-ω SST SAS turbulence model by the time they reached the

building. The IDDES model had a stability issue for both the turbulence levels

and also overestimated the pressure fluctuations after the primary vortex had

passed.

The Smagorinsky and dynamic Smagorinsky again performed well, although

the Smagorinsky was the more unstable model around the building region, with

evidence of instabilities beginning to appear towards the end of the pressure time

series for the individual run turbulence (Figure 22). Examining the mean and

standard deviation differences for the individual run and ensemble turbulence,

given by Figure 24, revealed that the fit across each building face was consistent

between turbulence models, with the dynamic Smagorinsky performing the best.

A much more detailed investigation of the effect of the downburst flow on the

pressure distribution and loading on low rise buildings from these simulations is

provided in Haines and Taylor (2018). The analysis presented in this previous

research includes a summary of particular flow features such as possible vortex

shedding, asymmetric flow and conical vortices on the roof, as identified in

Jesson et al. (2015). The CFD results are used to understand these features

and their effect on the forces on the building along with the implications for

wind engineering practitioners.
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Figure 22: The pressure coefficient time history for the four turbulence models on the front

face of the 60mm model cube building for the individual run turbulence level.
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Figure 23: The pressure coefficient time history for the four turbulence models on the front

face of the 60mm model cube building for the ensemble average turbulence level.
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Figure 24: The performance of the turbulence models in capturing the pressure coefficients

around the cube model building.

The reason for the improved performance for the dynamic Smagorinsky tur-

bulence model is demonstrated in Figure 25, which illustrates the left face pres-

sure tap for the individual run turbulence for the laboratory, dynamic Smagorin-

sky and Smagorinsky turbulence models. The Smagorinsky turbulence model

has not quite captured the flow separation around the cube, resulting in it un-

derestimating the side pressures on the building, hence giving a worse fit with

the data.

Summary.

From all of the above it is apparent that of the four turbulence models tested it

was the dynamic Smagorinsky which performed best and is selected to continue

the remainder of the analyses. This model provided best agreement for the

velocity and pressure time histories at the measurement location and generally

had the lowest mean and standard deviations of differences. However, it is also

worth noting that in order to get the blended LES-RANS approaches working

it is likely the mesh would need to be very carefully refined, as detailed in

Spalart (2001) and Spalart et al. (2006), to prevent them becoming stuck or
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Smagorinsky turbulence models on the left face of the 60mm model cube building for the

individual run turbulence level.

fluctuating between the RANS and LES models, which is what was happening

to the k−ω SST SAS model and to a certain extent the IDDES. However, given

the dynamic Smagorinsky is to be used for the remaining analyses, refining the

mesh of the blended LES-RANS models was deemed unnecessary at this stage.

For a complete and thorough investigation, a mesh sensitivity assessment would

be undertaken for all four turbulence models, but as the dynamic Smagorinsky

is being taken forward and used to assess the downburst effects on structures

(Haines and Taylor, 2018), only this model is considered in the following section.

3.2. Mesh density comparisons

Earlier, it was highlighted that the Y + values were significantly higher than

the usual recommended limits. Running a full LES simulation is not practical

for this investigation and this leaves the question as to whether the mesh density

is high enough to allow a reasonable LES simulation to be produced, given the

use of wall functions. To test this the dynamic Smagorinsky model was run

with three different mesh densities, with the same turbulence level at the inlet
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to see if the results demonstrated small mesh dependency.

For each of the three mesh densities the velocity time histories of the flow

0.5m below the inlet were compared to the laboratory simulation illustrated

in Figure 26. The mean and standard deviation differences are also given in

Figure 27. The turbulent inlet has not captured the turbulence properties in

exactly the same fashion for each of the mesh densities, but given the lower

than ideal cell size and difficulties in producing synthetic turbulence the match

is reasonable and comparable.
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Figure 26: The mesh dependency for the velocity time history of the individual run turbulence

0.5m below the inlet.

However, these results were complicated by the fact that a change in mesh

density altered the pressure fluctuations in the inlet region significantly, which

is illustrated in Figure 27 and Figure 28. The cause of these differences are

twofold, firstly the coarse mesh cell size does not provide reliable resolution of

the turbulent fluctuations. Secondly, the mesh changes also introduced cells of

varying aspect ratio at inlet, for both the coarse and fine meshes, that led to

numerical instabilities giving the large pressure fluctuations.

To address these two issues the mesh was refined in the inlet region so that

the coarse mesh was of sufficient resolution to give reliable modelling of the
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Figure 27: The mesh dependency of the dynamic Smagorinsky model, 0.5m below the inlet.
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Figure 28: The mesh dependency for the pressure coefficient time history of the individual

run turbulence 0.5,m below the inlet.

turbulent fluctuations, and also to as far as possible maintain cells of constant

aspect ratio. Similarly the mesh at inlet for the fine mesh was adjusted to ensure

constant aspect ratio cells. The nature of the OpenFOAM meshing software

meant the easiest way to achieve this yet still have a manageable mesh size was

to adjust the domain size from 10×10×2.5m to 9.8×9.8×2.4m. Refining the

mesh increased the number of cells in the mesh from 11, 054, 940 to 16, 010, 456

for the coarse mesh, from 15, 338, 950 to 23, 949, 473 for the standard mesh and

from 20, 154, 014 to 28, 370, 238 for the finer mesh. For the simulations to be

practical on the facilities available, the mesh refinement close to and around the

cube building was modified to reduce the number of cells, but the cells at the

cube surface were maintained at the same size as the original mesh.

Figures 29, 30 and 34 illustrate that these solutions have reduced the pressure

fluctuations but not completely matched them with the laboratory results. The

velocity fluctuations were also improved and are illustrated in Figures 31, 33 and

34. The power spectral density (Fig. 32), comparing results from the different

mesh densities with the experimental data, also show that the velocity frequency

content is still consistent with the measurements. Also, there is consistency with
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previous results, with the simulations indicating slightly higher energy at the

lower frequencies.
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Figure 29: The mesh dependency for the revised mesh for the pressure coefficient time history

of the individual run turbulence 0.5m below the inlet.

With the improvements in the pressure fluctuations in the inlet region the

fits were compared for the velocity time, pressure time and velocity height at

four locations, X
D = 1.0, X

D = 1.5, X
D = 2.0 and X

D = 2.5. Figures 35 and 36

illustrate that the differing mesh densities show no difference at X
D = 1.5 for

either of the turbulence levels in the peak region and only slight differences in

the positioning of fluctuations after the peak region. The mean and standard

deviation of differences illustrated in Figure 37 also showed that the fit in other

regions was improved over the older mesh which was used in the turbulence

model test as the fit in the X
D = 2.5 region now matches that of the closer

regions. This is because the CFD simulation is now able to support more small

scale vortices which appears to have improved the transfer of energy from the

larger to smaller scales, reducing the translation velocity of the primary vortex.

However, there are still some issues with the velocity height profiles (Figure

38), though these are consistent with the earlier results. While the mean and

standard deviation of differences given by Figure 39 were generally good and
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Figure 30: The mesh dependency for the revised mesh for the pressure coefficient time history

of the ensemble average turbulence 0.5m below the inlet.
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Figure 31: The mesh dependency for the revised mesh for the velocity time history of the

individual run turbulence 0.5m below the inlet.
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Figure 32: A comparison of the spectra of the experimentally measured and simulated velocity

0.5m below the inlet region : Effect of mesh density.
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Figure 33: The mesh dependency for the revised mesh for the velocity time history of the

ensemble average turbulence 0.5m below the inlet.
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Figure 34: The mesh dependency of the dynamic Smagorinsky model on the revised mesh

0.5m below the inlet.
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Figure 35: The mesh dependency for the individual run turbulence velocity time history at a

location of X
D

= 1.5.
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at a location of X
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= 1.5.
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Figure 37: The mesh dependency of the dynamic Smagorinsky model on the revised mesh.

Variation of velocity and pressure coefficient with location from centre of jet.
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there were very little difference between each of the locations and meshes, there

was still an issue with the maximum velocities, especially at low levels. This is

clearer in Figure 38 which illustrates the maximum velocity with height profiles

for the individual and ensemble average turbulence. Although it is acknowledged

that there is limited data at heights above 0.2m the velocity appears to be

coming close to the trend suggested by the laboratory data. However, below

this height the velocity is overestimated.

There are two likely causes for this issue. The first is that the surface rough-

ness was not modelled in the CFD simulation, which would result in a higher

velocity for the CFD. The second is that the wall modelling functions used close

to the ground plane are not capturing the velocities correctly. The only solu-

tion to this issue would be to run a wall resolved LES simulation, which is not

practical with current computing capabilities.
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Figure 38: The mesh dependency on the maximum velocity with height at a location of

X
D

= 1.5. (a) Individual run turbulence level; (b) Ensemble average turbulence level.

Following this the pressure around the model buildings were compared for

the meshes. Figures 40 and 41 illustrate that there is a slight difference for

the varying mesh densities. The standard mesh has a brief suction prior to the

primary vortex passing and the coarse mesh has a greater maximum pressure in
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Figure 39: The mesh dependency of the dynamic Smagorinsky model on the revised mesh.

Variation of maximum velocity with height.

the primary pressure peak region than the other two meshes. After the primary

pressure peak the agreement is similar between the turbulence models.

However, considering the tap is only 30mm(ZD = 0.03) from the floor, within

the region which has been shown to overestimate the peak velocities the actual

fit to the laboratory data is very good, especially for the standard and fine

meshes. The good fit is also continued for the other taps, as illustrated by

Figure 42.

It also became apparent from this entire investigation that it was the indi-

vidual run turbulence which was more closely matching the laboratory results.

The ensemble average turbulence at inlet gave a sharper pressure peak around

the building with a greater maximum pressure, a sharper velocity peak in the

velocity time histories with a greater maximum velocity and was also more

sensitive to changes in the mesh density than the individual run case.
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Figure 40: The mesh dependency of the pressure coefficient time history fit for the front face

tap of the 60mm cube, individual run turbulence.
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Figure 41: The mesh dependency of the pressure coefficient time history fit for the front face

tap of the 60mm cube, ensemble turbulence.
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Figure 42: The mesh dependency of the dynamic Smagorinsky model on the revised mesh.

Variation of pressure coefficient on surfaces of the 60mm cube building.

4. Conclusion

This paper sought to find most suitable turbulence model for modelling

impinging jet outflow. To achieve this four different turbulence models were

trialled and compared to the laboratory data collected by Jesson et al. (2015).

It was shown that the dynamic Smagorinsky LES turbulence model was most

suitable. It was able to capture the velocity and pressure fluctuations at the

inlet accurately, the velocity at pressure time histories at differing distances and

heights from the centre of impingement and the pressures around a 60mm cube

building.

There were some issues with the velocity time histories further from the

centre of impingement, with the velocities in the CFD exceeding the laboratory

data. This was found to be caused by the vortex translation velocity, which was

far greater in the CFD than the laboratory simulations.

These issues were resolved by refining the mesh further, although the velocity

height profile in the near wall region remained high when compared to the

laboratory data. This difference was hypothesised to be caused by the lack
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of surface roughness in the CFD simulation or an issue with the near wall

turbulence model which was used.

The pressure match around the 60mm cube was not as good as the match

found by Sengupta and Sarkar (2008) between their simulator and CFD sim-

ulation. This is likely to be because of some physical differences between the

laboratory simulator of Jesson et al. (2015) and the CFD simulations. The sim-

ulator of Jesson et al. (2015) was far more complex, with a flaps mechanism

which could not be modelled exactly without a large (and prohibitive) increase

in CPU runtime. The match, given these differences, is reasonable.

Future work will include using the CFD model to examine the flow field

around other model building types Jesson et al. (2015) examined, which includes

differing building heights and shapes.
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