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ABSTRACT  

The Atlantic Ocean coast region of southeast Brazil contains two coast-parallel 

mountain ranges (the Serra do Mar and Serra da Mantiqueira) generated by 

tectonic activity pulses tens of millions years after the main continental rift event 

occurred around 120 Ma. Although the short-term erosion rates for the region 

are established, the relative importance of the factors controlling erosion is 

poorly constrained.  We combine new and published catchment-averaged 

erosion rates (n=48) using in situ-produced 10Be concentrations in quartz from 

river sediments to establish the regional erosion pattern. The river catchments 

are (i) escarpment topography, (ii) high-altitude low-relief and (iii) mixed 

topography, which record how escarpment fronts are migrating inland. Ocean-

facing coastal escarpment catchments of the Serra do Mar ( = 18–53 m/Ma) 

can be eroded approximately twice as fast as continent-facing escarpment 

catchments in the Serra do Mar and Serra da Mantiqueira ( = 7–24 m/Ma). The 

correlation between the normalized channel steepness index (ksn) and slope 

angle indicates that river incision and hillslope erosion processes combine to 

maintain the high relief. The Serra do Mar catchments define a mean slope 

angle threshold indicating that landslides are the dominant erosional process 

when slope angles in excess of ~30°. Tectonic activity is low and plays no 

significant role in driving erosion. A first-order relationship between erosion rate 

and precipitation-temperature across the region implies that climate plays a key 

role in soil production, river incision and in triggering erosional processes. 

Although the high topographic relief is a pre-condition for the occurrence of 

significant erosion, the climatic condition is the outlining factor of the regional 

variation in erosion rates. 
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Keywords: Serra do Mar, Serra da Mantiqueira, escarpment retreat, passive 

margin.  

 

1. Introduction 

It has been debated for decades how high relief landscapes are 

maintained at mature passive margins (e.g., Summerfield, 1991). Flexural 

isostasy, where continent erosion and offshore basins sediment deposition 

produce constant uplift and subsidence after rifting ceases, has emerged as the 

prevailing hypothesis (Summerfield, 1991; Braun et al. 2014). The development 

of in situ cosmogenic nuclides has provided quantitative estimates of the 

denudational history of many passive margins and allowed this hypothesis to be 

tested. 

In situ-produced cosmogenic 10Be measured in bedrock and river 

catchments show that present day erosion rates are low, and they do not 

exceed few tens of meters per million years (e.g. Bierman and Caffee, 2001; 

Matmon et al. 2002). This is consistent with the long-term record derived from 

low temperature thermochronology (e.g. Persano et al., 2002).  Cosmogenic 

10Be-derived erosion rates of river catchments in Sri Lanka (Vanacker et al., 

2007), Australia, (Heimsath et al., 2009; Nichols et al., 2014), southeastern 

United States (Sullivan,  2007), southern India (Mandal et al., 2015) and 

western Brazil (Salgado et al., 2016; Gonzalez et al., 2016) are lower than 

during  the rift stages. However, there is significant variation in erosion rate 

between and within regions that reflects the role played by factors other than 

tectonics.   
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A global dataset presented by Portenga and Bierman (2011) has 

highlighted the influence of climate on erosion rates; polar and arid zones 

yielding the highest and lowest rates respectively. For passive margins, this 

reflects in the difference between arid zones, such as Namibia, where erosion 

rates are low (~10 m/Ma; Bierman and Caffee, 2001), and the humid zones, 

such as southern India, where the escarpment zones erode more rapidly (~50 

m/Ma; Mandal et al., 2015). Rock resistance (Scharf et al., 2013; Pupim et al., 

2015) and geological structure may control the escarpment evolution in places 

(Gunnell and Harbor, 2010), since they can define escarpment position and 

point of river captures that lead to the escarpment retreat. The previous 

topographic relief appears to have a feedback relationship with erosion rates, 

given the overall strong correlation between erosion rate and morphometric 

parameters in several scales (Portenga and Bierman, 2011). Numerical models 

of high-elevation passive margin evolution have demonstrated that incising 

bedrock channels and the high relief between the escarpment top and base 

level ensure that erosion and transport efficiency lead to the generation and 

maintenance of high-relief and the long-term escarpment retreat (Tucker and 

Slingerland, 1994). These studies suggest there is a complex interaction 

between the factors that control erosion. 

Several studies have reported 10Be-derived erosion rates in southern and 

southeastern Brazil (Salgado et al, 2008, 2014, 2016; Cherem et al., 2012; 

Rezende et al.; 2013; Barreto et al, 2014; Gonzales et al., 2016, Sordi et al., 

2018). Some have highlighted the local role of the lithology in controlling erosion 

(Salgado et al, 2008; Rezende et al, 2013). However, morphological 

characteristics measured by parameters such as mean local relief and mean 
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slope have shown to be the main control on the erosion rates in regional scale 

studies (Salgado et al, 2016; Gonzalez et al., 2016). The role of climate is 

largely ignored, although Gonzalez et al. (2016) demonstrated locally a good 

correlation between average catchment erosion rates and mean annual 

precipitation that is not borne out by the regional dataset. 

 In this paper, we focus on the central part of the continental margin of 

southeastern Brazil (Fig. 1). Reactivation of Precambrian shear zones in the 

Upper Cretaceous to Paleogene has created two coast-parallel mountain 

ranges, the Serra do Mar and Serra da Mantiqueira (Almeida and Carneiro, 

1998; Cobbold et al., 2001) (Fig.1A and 2). The mountains are prominent 

topographic barriers and generate significant precipitation and temperature 

variation over short distances (Sant’Anna Neto, 2005). The low intensity 

tectonism makes the region a useful natural laboratory for studying the inter-

relationship of relief, climate, geology and erosion. We report new 10Be-derived 

mean erosion rates from eighteen catchments from geomorphically-distinct 

regions. New erosion rate and nearby catchments data (Salgado et al., 2016) 

are combined with morphometric, climatic and geologic parameters in order to 

evaluate the main drivers of erosion and to determine their relative role in the 

escarpment evolution of an high-elevation passive margin landscape under 

humid tropical climate. Thus, we aim to constrain the potential climatic influence 

on erosion rates, considering the topographic relief variability as well as the 

interaction between river incision and hillslope processes. 
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2. Study region 

The river catchments studied here are in a region between São Paulo 

and Rio de Janeiro (Fig. 1B) in southeastern Brazil. The region is a mature 

passive margin that includes two coast-parallel mountain ranges (the Serra do 

Mar and Serra da Mantiqueira) separated by a 15–20 km wide rift valley. Serra 

do Mar rises steeply from the Atlantic Ocean coastal plain to reach a plateau at 

~1,500 m above sea level. It is separated from Serra da Mantiqueira (up to 

2,800 m) by NE-SW trending basins that are filled with up to 800 m of Tertiary 

clastic sediments through which Paraíba do Sul river flows (Ricommini et al., 

2004) (Fig. 1 and 2). The Atlantic Ocean facing slopes of both mountain ranges 

have prominent escarpments. The upland areas of both mountain belts are 

generally of low relief, except for the Itatiaia plateau in Serra da Mantiqueira 

(Fig. 2B) which is deeply dissected (Radam Brasil, 1983). Thick regolith (up to 

40 m, including saprolite and soil) mantles most of the upland landscape (e.g. 

Modenessi-Gautierri et al. 2011). Exposed bedrock is common on the 

escarpments where the regolith is typically thin (Furian et al., 1999). The 

regional bedrock is Precambrian gneiss and granites in Mantiqueira province 

(Fig. 1B) (Heilbron et al., 2004). Quartz-bearing rocks are uniformly distributed 

throughout these catchments. 

The topography is the result of tectonic reactivation of Precambrian shear 

zones that occurred several 10’s of millions of years after the rifting of the 

Gondwana supercontinent and Atlantic Ocean opening during late Jurassic to 

early Cretaceous (Zalán, 2004). The offshore sediment record suggests that the 

margin was subjected to a major pulse of rock uplift during the Late Cretaceous 

(Almeida and Carneiro, 1998; Zalán and Oliveira, 2005). This is consistent with 
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the cooling history of the continental margin determined by low temperature 

thermochronology (Gallagher et al., 1994; Hackspacher et al., 2004; Hiruma et 

al., 2010, Cogné et al. 2011). This fact coincided with the intrusion of several 

alkaline bodies, mainly along the WNW-ESE trending Poços de Caldas–Cabo 

Frio alignment (Thomaz-Filho et al. 2005) (Fig. 1B). The topography of the 

Serra do Mar and Serra da Mantiqueira was established during a phase of 

crustal extension in the Paleogene that led to the formation of the São Paulo, 

Taubaté and Resende basins that separate the two mountain ranges (Fig. 1B, 

2A and B) (Ricommini et al., 2004). The basin underwent a phase of 

deformation in the Neogene in response to a regional compressive stress 

regime (Riccomini and Assumpção, 1999; Ricommini et al., 2004).  Despite the 

relatively recent tectonic activity, the current earthquake frequency 

(Assumpção, 1998) and low peak ground acceleration below 1g (Gonzalez et 

al., 2016) indicate that the region is experiencing only low tectonic activity. 

 The regional topography has a direct influence on atmospheric 

circulation, defining the local climate. The easterly winds of Atlantic Tropical 

Mass in the Summer and South Polar Anticyclone in the Winter, change 

humidity and temperature when they meet the topographic barriers of the Serra 

do Mar and Serra da Mantiqueira (Sant’Anna Neto, 2005). Mean annual 

precipitation reaches 3,000 and 2,000 mm at Serra do Mar and Serra da 

Mantiqueira escarpments respectively, with no dry months, and mean annual 

temperatures below 15°C. The mean annual precipitation is around 1,500 mm 

and the mean annual temperature is 21°C in Paraíba do Sul Valley (Radam 

Brasil, 1983). 
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Montane Atlantic forests occur in regions of high precipitation; while the 

semi-deciduous seasonal vegetation prevails in the drier, low elevation Paraíba 

do Sul valley. Grasslands and araucaria forests are also common in high 

altitudes and low temperature regions (Radam Brasil, 1983). Species 

distribution models (Leite et al., 2016) suggest the persistence of the humidity 

and expansion of the forest to continental shelf during the last glacial cycle 

(Pessenda et al., 2009, Cruz et al., 2009, Pivel et al., 2010). Similar 

environmental conditions are likely to have persisted at least in the escarpment 

zones over the time recorded by the cosmogenic 10Be in this study. In the 

highlands, episodic erosional pulses are evident in colluvium deposits in 

Campos do Jordão, Itatiaia and Bocaina plateau (Hiruma et al., 2013). These 

may be related to millennial and orbital climatic oscillations and consequent 

local expansion and shrinkage of forests (Cruz et al., 2009). 

 

3. Methods    

 

3.1. 10Be-derived catchment erosion rates 

We have measured mean erosion rates from 10Be concentrations in 

quartz from catchments in three geomorphically-distinct regions of Serra do Mar 

(Fig. 1, 2 and 3): (i) the coastal escarpment of Serra do Mar (SM) (Fig. 2A and 

3A); (ii) the Serra do Quebra-Cangalha (SQC), a series of SW-NE trending hills 

at the northwest end of Serra do Mar (Fig. 2A and 3B); and (iii) Bocaina plateau 

(Boc), a tilted mountain block at the northeastern end of Serra do Mar (Fig. 2B 

and 3C). Catchments have been sampled from two regions in Serra da 

Mantiqueira: (i) the Campos do Jordão plateau (CJ), a low relief upland in the 
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southwest that is drained by rivers along Precambrian shear zones (e.g. 

Sapucaí river valley) (Fig. 2A, C and 3D); and (ii) Itatiaia plateau (Ita), an upland 

at the northeast end of the region that includes Late Cretaceous intrusive 

alkaline bodies (Fig. 2B, C and 3E), although all catchments in the Itatiaia 

plateau are completely in the Precambrian basement.  

The river catchments are classified into three types: those dominated by 

(i) escarpment topography, (ii) high-altitude catchments that are dominantly low-

relief (which we term highland) and (iii) catchments with mixed topography 

(Table 2).  Samples of sand were collected from the active channels in eighteen 

river catchments. The catchments range from 12 to 77 km2. Smaller catchments 

were not sampled in order to avoid the influence of recent mass movements. 

Naturally vegetated catchments, including conservation areas, were sampled in 

order to avoid anthropogenic influence. Wherever possible, samples were 

collected from paired catchments that shared a topographic divide; one river 

draining the escarpment to the ocean and another one draining the upland 

region.  

The sand samples were prepared in the Department of Petrology and 

Mineralogy, São Paulo State University, Rio Claro, Brazil. We sieved sediment 

samples and isolated the 250-500 µm fraction. After the removal of magnetic 

grains, each sample was etched with diluted hydrofluoric and nitric acids to 

remove minerals other than quartz. The quartz chemistry was performed at 

Scottish Universities Environmental Research Centre. The quartz fraction was 

digested three times with hydrofluoric acid to dissolve ~30% of the quartz. The 

purity of the fraction was tested by ICP-OES, and in all cases Al concentrations 

were lower than 150 ppm. This quartz fraction was dissolved in concentrated 
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hydrofluoric acid together with ~240 µg of 9Be spike carrier. The acid was 

evaporated and the residue re-dissolved in hydrochloric acid. Anion (2 ml AG-1 

X8 200-400# resin column) and cation (2 ml AG-50 X8 200-400# resin column) 

chromatography were used to isolate the beryllium, which was then precipitated 

as a hydroxide and transformed to oxide at 900ºC. Samples were mixed with 

niobium (BeO:Nb ~1:6) and mounted in copper AMS targets. 10Be/Be ratios 

were measured at SUERC with 5 MV Pelletron accelerator mass spectrometer 

(Xu et al. 2010). 10Be concentrations were calculated using 10Be/Be ratio of 2.79 

x 10-11 for the NIST SRM4325 standard. The processed blank ratios were 

between 0.1 and 7.1% of the sample 10Be/Be ratios. The uncertainty of this 

correction is included in the standard uncertainties. 

Production rates were calculated for each cell in the 30 m resolution 

digital elevation data from the Shuttle Radar Topography Mission (SRTM DEM) 

(Farr et al., 2007) using Stone (2000) scale factors, and then the production-

rate weighted average elevation for individual catchment was estimated.  

Shielding factors were calculated from the SRTM DEM using the formulation of 

Codilean (2006). The 10Be concentrations, shielding factor and production rates 

of the new samples are shown in Table 1. Catchment-averaged erosion rates  

(Table 2) were calculated with CRONUS-Earth online calculators MATLAB 

code (Balco et al., 2008, version 2.3, June, 2016) with time-independent 

Lal/Stone scheme. 10Be concentrations from an additional twenty-eight river 

sediment samples, reported by Salgado et al. (2016), from adjacent catchments 

were integrated in our analysis (Table S1 and Figure 4). Erosion rates for all 

catchments were calculated via the scheme developed for our samples (Table 

2). 
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3.2. Morphometric parameters  

All morphometric parameters were based on a 30 m resolution SRTM 

DEM (Farr et al., 2007; available at http://earthexplorer.usgs.gov/) and 

calculated by TopoToolbox 2 (Schwanghart and Scherler, 2014). Slope angles 

for each pixel in the DEM were computed as the dip of a plane fit to a 3x3 pixel 

array centered on the pixel of interest. For each catchment slope the values of 

all pixels were averaged. 

Local relief (LR) was calculated for each pixel in the DEM and averaged 

in each catchment. The LR of each pixel used the elevation range within a 

circular window with radii ranging from 100 m to 5 km (Montgomery and 

Brandon, 2002; DiBiase et al., 2010) (Table S2). This metric describes 

landscape steepness on different scales. In general terms, LR measured at 

smallest radii is a proxy for hillslope angle. As the radii increases, the LR 

records the relief of successively larger tributary catchments. Thus, the largest 

radius records the main channel relief of the catchment (Montgomery and 

Brandon, 2002; DiBiase et al., 2010). For small catchments and radii >3 km, the 

local relief calculations incorporate topography outside the catchment. At this 

scale the total catchment relief (CR), the simple catchment range height, is a 

better metric and is also considered in the analysis. 

The channel steepness index (ks) was used to determine the relationship 

between river relief and erosion rate. It describes a river longitudinal profile from 

the relation between local slope (S) and upstream area (A) (Flint, 1974):  

 

S = ks A
-Ɵ                    (1) 
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where Ɵ is the concavity index. Since variation of the best-fit for Ɵ is common 

and strongly correlated to ks, the channel steepness index was normalized (ksn) 

through a fixed reference concavity of Ɵref = 0.45 (Wobus et al., 2006; Ouimet 

et al., 2009). The ksn calculation with TopoToolbox 2 (Schwanghart and 

Scherler, 2014) is performed via the following steps: flow direction and flow 

accumulation definition in the DEM; drainage network definition; gradient 

calculation for the stream segments; and ksn calculation. ksn values in stream 

segment length of 300 meters have been calculated assuming that the channels 

occupy cells that have a minimum upslope area of 1.8 x 105 m². 

 

3.3. Climatic and rock resistance parameters  

Mean annual precipitation (MAP) from 1977 to 2006 (at 

http://www.cprm.gov.br/publique/Hidrologia/Mapas-e-Publicacoes/Atlas-

Pluviometrico-do-Brasil-1351.html) and mean annual temperature (MAT) from 

1960 to 2000 (Hijmans et al., 2005; Fick and Hijmans, 2017; 

http://www.worldclim.org/) were used as a proxy for modern climate (Figure S1). 

Weather stations are distributed along the entire study area, ensuring that the 

first order climatic variability across the region is recorded (Fig. S1A). However, 

as the stations are not evenly distributed across the study area, there is a 

degree of uncertainty between catchments within the same sector (highland or 

escarpment) in some geomorphic regions. ksn (section 3.2) has been calculated 

by replacing the drainage area with discharge (Bookhagen and Strecker, 2012), 

based on precipitation. This was done by a D8 routing scheme where it is 

assumed that all water flows down the steepest path (Bookhagen and Strecker, 
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2012). The resolution of the MAP data is insufficient for a detailed catchment-

scale analysis (and we do not account for evapo-transpiration and groundwater 

loss). Thus, the MAD is a simple proxy for the purpose of comparison and 

testing the potential climatic influence on incision. 

In order to determine the proportion of distinct rock types in the river 

catchments we have used the 1:100,000 geologic maps: Pouso Alto (Pedrosa 

Soares et al., 2003), Volta Redonda (Heilbron et al, 2007), Itajuba (Trouw et al., 

2008), Campos do Jordão (Peternel et al., 2014) and Pindamonhangaba 

(Trouw et al., 2014). Where maps at this scale are not available, we used 

Santos geologic map at 1:250.000 scale (Morais, 1999), Rio de Janeiro state 

geologic map at 1:400,000 (Heilbron et al, 2016) and São Paulo State geologic 

map at 1:750,000 scales (Perrota et al, 2005).  We measured all variables in the 

entire study area, including catchments sampled for 10Be analysis by Salgado et 

al. (2016).   

 

4. Results and data analysis 

4.1. Catchment-averaged erosion rates  

 Erosion rates range from 5.2 ± 0.5 to 53.3 ± 4 m/Ma (average = 16 ± 11 

m/Ma) and they are integrated over periods between 11 and 115 ka (Table 2). 

These new erosion rates are broadly consistent with the rates reported for 

nearby catchments presented by Salgado et al. (2016) (Fig. 4).  

 The highland catchments in this study have the lowest erosion rates, 

ranging from 5.2 ± 0.5 m/Ma to 15.6 ± 1.3 m/Ma (n=23). The highland 

catchments with the highest erosion rates (> 10 m/Ma, n=7) are mainly found in 

Itatiaia and Campos do Jordão plateau and are dominated by incised rivers 
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(e.g. catchments E3, E5, E7, E8 and P20). The ocean-facing escarpment and 

mixed topography catchments in Serra do Mar have the highest erosion rates in 

the region (18.7 ± 1.8 m/Ma to 53.3 ± 4 m/Ma, n=7). The average (34.7 ± 11.25 

m/Ma) is twice the average of escarpment catchments in the other regions (16.6 

± 4.9 m/Ma, n = 17). In Campos do Jordão plateau the escarpment and mixed 

catchments erode at between 7.1 ± 0.6 and 23.9 ± 1.9 m/Ma (n=3). This is 

similar to the erosion rates of Itatiaia plateau (11.1 ± 1 to 23.5 ± 2 m/Ma, n=7) 

and the continent-facing regions in Serra do Mar: Bocaina plateau and Quebra-

Cangalha (10.3 ± 0.9 to 22.9 ± 2.3 m/Ma, n=7)  (Table 2 and Fig.4). 

 

4.2. Inter-relationships between the topographic parameters 

The mean slope angles of the catchments are between 11° and 25°, and 

the normalized channel steepness index (ksn; considering drainage area) 

ranges from 18 m0.9 to 119 m0.9 (Table 2). There is a strong correlation between 

these two parameters (Fig 5A) that indicates a general correspondence 

between river incision and hillslopes erosion processes. 

Mean local relief measured at several scales (Table S2) allows a detailed 

evaluation of the hillslope and drainage network relief behavior. Local relief is 

strongly correlated with slope angle at radii up to 1 km (Fig. 5B), which implies 

that the relationship holds for tributary catchments that are less than 3 km2.  In 

contrast, ksn is well correlated with local relief at radii between 1 and 2.5 km. 

This difference distinguishes slope angle from the ksn behavior, although they 

correlate well with each other. This difference can be understood from the 

analysis of the relationship between LR radii and catchment type. There is a 

discontinuous increase in LR with radii in mixed catchments that are not 
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apparent in the other catchment types (Fig. 5C-F). That ksn matches LR at radii 

of 1–2.5 km likely reflects the effect of the mixed catchment topography. The 

mixed catchments tend to have higher ksn values, plotting below the best-fit line 

in Figure 5A.  

 

4.3. Correlation between erosion rate and topographic parameters 

4.3.1. Mean local relief 

A linear correlation between mean local relief and erosion rate exists until 

radii of 2.5 km (Fig. 5b), which implies a relation with both hillslope (slope angle) 

and river relief (ksn). Erosion rate is better correlated with total catchment relief 

(CR) than LR at radii higher than 3 km due the effect of outside catchment 

areas in the measurement. However, the correlation is weaker than with LR at 

radii < 2.5 km. At the scale of CR, the mixed catchments reach the maximum 

relief increase in relation to the other catchment types (Fig. 5F); thus, erosion 

rates are not readily sensitive to this relief increase. 

 

4.3.2. Mean slope angle 

Across the region catchment erosion rates below ~20 m/Ma appear to be 

positively correlated with slope angle (S) up to 25° (Fig. 6A). Slope angles of 

escarpment and mixed catchment in Serra do Mar do not exceed 25° while 

erosion rates in the high slope catchments can be up to 53 m/Ma, giving the 

correlation an asymptotic form. Assuming that the slope angle approaches the 

threshold (Montgomery, 2001), we have modeled the morphological transition 

from slope-dependent to threshold hillslopes, creating a proxy for erosion rate. 
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For that, we have based in soil transport laws that account for both creep-

related and landslide processes (Roering et al., 1999; DiBiasi et al., 2010): 



 = AS + BS / (1 – (S/Sc)
2)        (2) 

 

where S is slope, Sc is a critical slope at which soil flux approaches infinity, A is 

the linear correlation between S and  and B is a transitional coefficient 

between slope-dependent (A) to threshold (Sc). We have calculated coefficients 

by inverse modeling from the relation between erosion rates and slope angle. 

The best fit for the model yields Sc = 30° (Fig. 7A) (Supplementary data 2A).  

 

4.3.3. Normalized channel steepness 

 The correlation between erosion rate and normalized channel steepness 

(ksn) reveals a trend that reaches a threshold for ksn values that is more 

pronounced than slope angle (Fig. 6B). Although river erosion processes 

(abrasion and plucking) are unlike those of hillslope processes, they include a 

critical threshold that, when exceeded, strongly influences long-term erosion 

rates (Wipple, 2004). Consequently, equation (2) can be adapted to describe 

the transition to the threshold zone for river incision (Supplementary data 2B).  

The contributing area, which gives the river incision its advective nature, is 

already included in ksn index (equation 1): 

 

 = Aksn + Bksn / (1 – (ksn/ksnc)
2)                                                                  (3) 
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where ksnc is a critical ksn value, A is the linear correlation between ksn and , 

and B is a transition coefficient between ksn-dependent erosion rates to the 

threshold zone (ksnc). The threshold zone is largely defined by the Serra do Mar 

catchments and the transition is more abrupt than for slope angles (Fig. 6B), 

indicating that hillslopes are still adapting to incision. Replacing drainage area 

with discharge in the ksn calculation amplifies the importance of the high ksn 

Serra do Mar catchments. This is best adjusted with model (3) (Fig. 6C) 

(Supplementary data 2C) and indicates that the precipitation gradient across the 

region plays a key role in the river incision and, consequently, in the higher 

erosion rates of Serra do Mar catchments.  

  

4.4. Lithological and climatic influence on erosion rates  

There is no clear relationship between erosion rate and lithology (Fig. 7). 

For instance, where catchments have a range of lithologies, e.g. the low relief 

highland catchments, there is no apparent correlation with erosion. In the more 

rapidly eroding escarpment catchments, the gneiss- and schist-dominated 

catchments appear to erode slightly faster than the granite catchments (see 

Itatiaia and Bocaina catchments). However, the high erosion rates in Serra do 

Mar have no clear relation to lithology. 

Erosion rate is moderately correlated with the proxies for climate. For 

instance, the high erosion rates in the Serra do Mar catchments coincide with 

high mean annual precipitation (MAP; Fig. 8A) and mean annual temperature 

(MAT; Fig. 8B). However, this relationship is not observed throughout the 

region. For instance, the high MAP of the Itatiaia plateau and high MAT of the 

Bocaina plateau coincide with catchment-averaged erosion rates that are 
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significantly lower than those in the Serra do Mar catchments (Fig. 8A & B).  To 

evaluate the influence of climate factors on erosion rates we have integrated 

MAP and MAT with a least-square multiple linear regression between erosion 

rates, MAP and MAT. Least-square linear regressions yield R² = 0.65 and p-

values of 5.4 x 10-6 for MAP and 1.7 x 10-7 for MAT, attesting to the possibility 

that both could regulate erosion rates (Supplementary data 2E). In Figure 8C 

the measured erosion rates are plotted against those determined by the 

regression-derived model.  The generally good fit implies that climatic factors 

provide a first order control on erosion rate across the region. While it does not 

fully explain the erosion rate variation, it clearly influences the differences 

between the geomorphological regions.  

 

5. Discussion 

5.1. Escarpment evolution  

On the continental margin of southeastern Brazil, drainage channels and 

hillslopes are adjusted to each other in the low-relief highland and step 

escarpment catchments (Fig. 5A). Topographically mixed catchments are in a 

temporary imbalance and represent a transition from a highland area to an 

escarpment zone.  It starts from episodic capture of a highland catchment by an 

escarpment river, promoting the inland migration of the escarpment front.  This 

escarpment evolution pattern has been recognized in several passive margins 

(Gunnel and Harbor, 2010) including neighboring areas in south and 

southeastern Brazil (Cherem et al., 2012; Salgado et al., 2016; Sordi et al., 

2018). Figure 9 illustrates this process using the long-river profiles of three 

catchments at different stages of the evolution: P24, P30 and P27. The scatter 
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in the slope-area plots decreases from P24 to P27, demonstrating the temporal 

adjustment of the drainage segments towards the final state (Wobus et. al., 

2006). 

In the Campos do Jordão plateau, several recent river capture events 

have been identified (Modenesi-Gauttierri et al., 2002), for example the P24 

catchment (Fig. 3D and 9A). The capture promotes an instantaneous increase 

in the total catchment relief (see Fig. 5. C-F). However, the characteristics of the 

pre-existing catchment (channel steepness, hillslope angle and local relief) are 

preserved above and below the knickpoint. Small tributaries at the knickpoint 

seem to increase relief relative to the main river course (Fig. 9A). The preserved 

highland segment represents ~65% of the total area of the P24 catchment (Fig. 

3D and 9A). Given the high 10Be concentration in the sediments before the 

capture, the mean erosion rate of the catchment as a whole is reduced and 

stays close to typical value for highlands catchments (Fig. 4), confirming that 

the increase in catchment relief is not generally reflected in the erosion rate. 

This has been reported by Cherem et al. (2012) in Serra da Mantiqueira, 

northeast of the study area, and by Mandal et al. (2015) in southern India.    

In Serra do Mar, P30 is perhaps the most mature catchment of those 

studied (Fig. 3A and 9B). The river profile suggests that several capture events 

have occurred in the recent past. This is most evident in section P30d, subdued 

in P30a and not apparent in P30c.  Overall, incision is reaching almost the 

entire catchment leading to a local relief increase (Fig. 5 C-F). Consequently, 

the highland and escarpment parts are becoming less distinguishable; the 

differences between them can still be noted since segments above the 

knickpoint have a subtle lower relief than the ones below. The mean erosion 
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rate at this stage is closest than those of typical escarpment catchments (Fig. 

4). 

All the river courses in the escarpment catchment P27 have similar 

shape. A subtle knickpoint in the main course may record capture (Fig. 9C).  At 

this stage, incision is occurring throughout the catchment and the mean slope 

angle is approaching the threshold value (Table 2, Fig. 6), indicating that 

landslides are the dominant erosional process (Montgomery and Brandon, 

2002; Ouimet et al., 2009; DiBiase et al., 2010; Scherler et al., 2014). 

Translational landslides are frequent in Serra do Mar during the high-intensity 

rainfall events in the summer months (De Ploey and Cruz, 1979). They occur 

preferentially on hillslope segments where the angle is between 18° and 37° 

(Fernandes et al., 2004). This range encompasses the mean slope angles of 

most escarpment and mixed catchments of Serra do Mar and other regions 

(Table 2). The threshold defined by equation 2 (30°) is close to the average for 

the mountain range (Fig. 6A). When this stage is reached, a feedback is 

expected: the relief increase generated by river incision is balanced by 

landslides in segments of hillslope that reach the threshold angle (Montgomery, 

2001), such that the material mobilized by landslides provides abrasive power 

for river incision (Egholm et al., 2013). Römmer (2008) argued that the 

continuous balance between river incision and mass movement on hillslopes 

produces an “upper denudation level” in the Serra do Mar. Consequently, the 

local relief does not exceed a critical altitude, remaining in a steady state.  

Following the episodic capture events, the discontinuous retreat of local 

escarpments consumes the low relief plateau until it reaches the continental 

divide. This is best demonstrated in Itatiaia plateau. There seems to be two 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

distinct escarpment steps in the Itatiaia region (Figure 3E). Rio Preto river flows 

between these two steps into Paraiba do Sul Valley (Fig. 2B), a consequence of 

river capture in the Miocene (Rezende et al., 2013). The capture led to the 

dissection of the Itatiaia plateau and promoted the migration of the escarpment 

from the first step to the second, the more important regional divide (Figures 2B, 

C and 3E). The rivers on the other side of the regional divide are also strongly 

incised and the slope angles approach the threshold value (Fig. 6). This results 

in relatively high erosion rates for some of the highland catchments in this 

region (> 10 m/Ma, Table 2 and Figure 4) (Salgado et al. 2016). The similarity 

of erosion rates and topography on both sides of the regional divide suggests 

that the Itatiaia plateau is losing the classic passive margin morphology and is 

approaching topographic steady-state (Hack, 1975; Matmon et al., 2003). 

 

5.2. Long-term controls on erosion  

A litho-structural control has been invoked to explain escarpment 

evolution in southeastern Brazil (Almeida and Carneiro, 1998; Romër, 2008) 

and in passive margins more generally (Gunnel and Harbor, 2010; Scharf et al., 

2013).  The contrast between litho-types within the catchments leads to 

differential erosion. This, together with the structural pattern defines weakness 

lines where incision and captures took place (Gunnel and Harbor, 2010).  The 

lack of relation between erosion rates and lithology in the study area is probably 

due the gneiss-granite dominance in all analyzed catchments; differences 

between these two, although may exist (Fig. 7), is masked by stronger controls 

as climate and topographic relief. 
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 Neotectonic activity may also contribute with river captures and base 

level change. Based on morphotectonic landforms and tectonic displacement in 

Pleistocene/Holocene colluvium deposits Modenesi-Gauttierri et al. (2002) have 

proposed that river capture and base level changes in Campos do Jordão 

plateau may have been triggered by tectonics. However, the small fault 

displacement of Pleistocene/Holocene deposits (few cm) and the ubiquity of 

river capture across the region (Sordi et al. 2018) suggests that tectonics likely 

has only a limited effect on driving erosion. 

This study demonstrates that the prevailing climate has a first-order 

control on erosion rates across the region (Fig. 8). It is likely that the river 

incision is governed by precipitation (Fig. 7C) that increases local relief. The 

high intensity precipitation events trigger landslides in hillslope segments that 

are close threshold angle (De Ploey and Cruz, 1979). Finally, the availability of 

water on steep slopes ensures the hydrological conditions for transportation of 

the mobilized material. However, it is the coupling of high precipitation with high 

temperature that seems to distinguish the Serra do Mar from other regions. This 

climatic condition, interacting with a steep relief, results in a landscape with 

dynamic evolution, where the high erosion rates are likely coupled to fast soil 

production (Riebe et al., 2003; Heimsath et al., 2006). The high humidity and 

temperature of Serra do Mar accelerate chemical weathering, which produces 

friable material of contrasting permeability which favors the occurrence of slope 

wash and shallow mass movement (Furian et al., 1999; da Silva et al., 2016). 

Dixon et al. (2009) identified and detailed the relationship between erosion rate-

soil production and humidity-temperature in Sierra Nevada. 
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In the ocean-facing escarpment of Serra do Mar erosion rates are 

integrated over 11 to 22 ka (except A1) (Table 2). Moisture enough to maintain 

a variable extent of conifer forest is present in the last 30 ka (Pessenda et al., 

2009, Cruz et al., 2009, Pivel et al., 2010) and a discontinuous increase in the 

current Atlantic Montane forest started 15 ka, following warm and wet conditions 

(Pessenda et al., 2009). This suggests that the climate has not changed 

significantly on the time scale over which the erosional history was recorded 

and the dynamics above described prevail.  However, the most slowly eroding 

inland escarpments of Campos do Jordão, Itatiaia, Bocaina and Quebra-

Cangalha are integrated over between 25 and 58 ka (Table 2). The current 

humidity and temperature, conducive for Montane Atlantic forest, has been 

attained only in the last 3,000 years (Behling 1997). From the Last Glacial 

Maximum to the Holocene the climate was colder and dryer than today 

(Behling, 1997; Behling et al. 2007; Garcia et al., 2004). Under these conditions, 

erosional pulses (Modenesi-Gautierri, 2000) may have been triggered by 

millennial and orbital climatic oscillations that affected humidity (Cruz et al., 

2009). Since the current climate does not have the erosional power of the 

coastal Serra do Mar, these cyclical erosional pulses define the rates.  

Colluvium in the highland areas of Campos do Jordão, Itatiaia and Bocaina 

plateaus record these erosional pulses (Modenesi-Gautierri, 2000; Hiruma et 

al., 2013). The low relief of the highland regions ensures the long-term 

preservation of the colluvium, leading to the catchment-scale low erosion rates, 

within an integration time that reaches 116 ka. 

In the long-term, rock uplift is expected to maintain the elevation of the 

highland regions that sustain the fluvial dissection in the escarpments and to 
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balance the erosion in the regional divide, thus, maintaining a topographic 

steady-state. Modenesi-Gautierri et al. (2011) identified changes in pedogenetic 

processes in Campos do Jordão highlands, which they interpreted as the result 

of recent adaption to tropical high-altitude climate, reached from ongoing uplift. 

Post-breakup tectonic reactivation led to rock uplift and landscape rejuvenation 

during Upper Cretaceous, Paleogene and Miocene (Cobbold et al., 2001; 

Cogné et al., 2011). The present day erosion rates measured here are 

significantly lower than the erosion rates estimated during these reactivation 

phases (up 100 m/Ma; Cogné et al., 2012). Instead, the rates are typical of 

catchment-averaged erosion rates determined at the most of other stable 

passive margins, which rarely exceed 100 m/Ma (see Table 2 in Gonzalez et 

al., 2016).  This is consistent with attenuation on tectonic activity after at least 

the Middle Pleistocene (Salgado et al., 2016) and reinforces the current low 

stress regime of the continental margin of southeast Brazil (Assumpção, 1998; 

Gonzalez et al., 2016). Thus, we consider that the landscape evolution has 

been slow during the Quaternary. A feedback between erosional unloading and 

isostatically-driven passive uplift becomes an important evolutionary process of 

the landscape (Bishop and Brown, 1992; Baldwin et al., 2003). If erosion rate is 

related to rock uplift rates in mountain ranges characterized by hillslopes with 

threshold angle (Burbank et al., 1996; Montgomery, 2001), it is reasonable that 

the climatically defined erosion concentrated in the steep escarpments 

combined with the regional stress is responsible for the highland uplift, which 

sustains the incision of the rivers in the escarpment. 

These findings suggest that the interaction between climate and 

topographic relief plays a key role in controlling modern day erosion rates in 
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areas of low tectonic activity. The relevance of this interaction has been under-

estimated in other studies in passive margins (von Blanckenburg, 2005; 

Bierman et al., 2014; Mandal et al., 2015). We suggest that the robust 

correlation between topographic relief and erosion rates has masked the role of 

climate. A minimum topographic relief is a precondition for triggering erosive 

processes. Thus, the climatic influence in erosion becomes evident in hillslopes 

that are close to the threshold angle. von Blanckenburg (2005) reported low 

erosion rates of the low relief highlands of Sri Lanka and Namibia, around 10 

m/Ma (Bierman and Caffee, 2001), noting that they occurred despite the huge 

difference in precipitation rates. However, in the steep escarpments of Sri 

Lanka erosion rates approach 70 m/Ma (Vanacker et al., 2007). This differs 

considerably from similar regions in Namibia, which erode at lower than 20 

m/Ma. It is exactly the same in Southeast Brazil, whilst the Serra do Mar 

escarpment catchments erode twice as fast as the other escarpments, the low 

relief highland areas erode at similar rates to other highlands catchments in the 

region (Figure 4). Warm and wet tropical dynamics lead to the weathering 

mantle thickening and to the erosion rate reduction in the low-relief highland 

(von Blanckenburg et al. (2004); however, at high-relief such dynamics provides 

conditions to maintain active erosional processes and the inland migration of 

the escarpments. 

 

7. Conclusions  

We have presented 10Be-derived catchment mean erosion rates for the 

continental margin of southeastern Brazil. Their relationships with aspects of the 

topography, climate and geology lead to several conclusions:    
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1. Low relief highland catchments have the lowest erosion rates in the region 

( = 5–15 m/Ma). The ocean-facing escarpment catchments in Serra do Mar 

( = 18–53 m/Ma) erode twice as fast as those escarpment-dominated 

catchments inland ( = 7–24 m/Ma). 

2. A balance between river incision and hillslope processes are responsible for 

maintaining the high relief in the escarpments. Long-term uplift related to 

regional stress and isostatic response to erosion is expected to strengthen 

this mechanism. 

3. Episodic river captures as recorded in the mixed topography catchments 

result in the dissection of the highlands and the excavation and migration of 

escarpments inland. This proceeds discontinuously until it reaches the 

regional drainage divide.  

4. The ocean-facing escarpments of Serra do Mar have the high precipitation 

and temperature that differentiates them from the other regions. These 

generate fast chemical weathering and intense river incision and facilitating 

circumstances to slope wash and shallow mass movement in segments of 

hillslopes at threshold angle of stability.  

5. These climatic conditions have prevailed in the Serra do Mar over much of 

the time that the cosmogenic 10Be records erosion (~15 ka). 

6. Inland, the escarpment areas record a long-term erosion pattern marked 

cyclical climatic oscillations. 

Overall, the results reinforce the need to consider the climatic role in the 

evolution of a high-altitude passive margin landscapes. Wet and warm tropical 

climate, as southeaster Brazil, South India, Sri Lanka and others, impose a 
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specific dynamic, which keeps the escarpment fronts in movement even under 

relatively low tectonic activity. 
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Figure Captions 

 

Figure 1.  (A) Topographic map of the Atlantic Ocean coast of Brazil. The Serra 

da Mantiqueira is located to northwest of the Paraíba do Sul River. It is divided 

into two geomorphological regions: Campos do Jordão plateau (CJ) and Itatiaia 

plateau (Ita). The Serra do Mar is located to southeast of the Paraíba do Sul 

river and it is divided into three geomorphological regions: Serra do Mar (SM); 

Bocaina plateau (Boc); Serra do Quebra Cangalha (SQC). Profiles A-A’, B-B’ 

and C-C’ are shown in Figure 2.  (B) Simplified regional geologic map. The 

Poços de Caldas–Cabo Frio Alignment is the suite of alkaline bodies along 

WNW-ESE lineation: Poços de Caldas massif (PCM); Passa Quatro Massif 

(PQM) and Itatiaia Massif (IM). The Cenozoic Sedimentary Basins: São Paulo 

basin (SPB), Taubaté basin (TB) and Rezende basin (RB). The states: São 

Paulo (SP); Minas Gerais (MG) and Rio de Janeiro (RJ). (C) Is the location of 

the study area. 

 

Figure 2. Topographical profiles identified in Figure 1. Profile A-A’ is from the 

Campos do Jordão plateau to the Serra do Mar. The Sapucaí River is incised in 

an old shear zone. The Quebra-Cangalha are a mountain belt at the boundary 

of Serra do Mar and Paraíba do Sul Valley.  Profile B-B’ is from the Itatiaia 

plateau to the Bocaina plateau. In the Itatiaia plateau the rivers are strongly 

incised.  Profile C-C’ is from the Campos do Jordão plateau to the Itatiaia 

plateau. 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Figure 3. Delineation of the river catchments in this study; (A) Serra do Mar, (B) 

Serra do Quebra-Gangalha, (C) Bocaina plateau, (D) Campos do Jordão 

plateau and (E) Itatiaia plateau.  Arrows points to the escarpment.  Cosmogenic 

10Be concentrations from catchments A-E are from Salgado et al. (2016). 

 

Figure 4. Regional distribution of erosion rates plotted according to the 

catchment type (Highland, Escarpment and Mixed Topography).  

 

Figure 5. Inter-relationship between morphometric parameters. (A) shows the 

correlation between slope angle and channel steepness index (ksn); (B) shows 

how local relief (LR) is correlated with slope angle, ksn and erosion rates at all 

scales. The coefficient correlation (R²) was estimated by least-squares linear 

regression. R² is plotted according to the LR window radii. CR refers to total 

catchment relief. (C-F) shows local relief distribution according to catchment 

type at different windows radii. The colored symbols in (A, C-F) represent 

catchment types: Highland (H); Escarpment (E) and Mixed (M). 

 

Figure 6. Relationships between cosmogenic 10Be-derived erosion rates and 

morphometric parameters: (A) Average slope angle shows correlation with 

model (2); (B) Normalized channel steepness index (ksn) measured with 

drainage area, and with discharge (C). Both show correlation with model (3).  

See text for details of models.  

 

Figure 7. Cosmogenic 10Be-derived erosion rates related to litho-types. Arrows 

indicates the proportion of specific litho-types in catchments of mixed lithology; 
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granite (grt) and gneiss (gn).  * indicates a small content in quartzite. The data 

symbols are similar to those in Figure 6.  

 

Figure 8. Correlations between cosmogenic 10Be-derived erosion rates and 

climatic parameters: (A) mean annual precipitation (MAP); (B) mean annual 

temperature (MAT); and (C) erosion rates determined by a regression model 

derived from the multiple regression between erosion rates, MAP and MAT.  

The data symbols are those from Figures 6. 

 

Figure 9. Longitudinal river profiles and slope-area log-log plot of catchments at 

different evolutionary stage. (A) P24 catchment, Campos do Jordão plateau; (B) 

P30 catchment, Serra do Mar; and (C) P27 catchment – Serra do Mar. Arrows 

indicate knickpoints in the longitudinal profiles and their location for each 

channel in the slope-area plots. The slope-area plots are in the same scale in A, 

B and C, thus, the scatter can be compared. Locations of the catchments are in 

Figure 3. 
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Figure 1 (grey scale version) 
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Tables 

Table 1. Sample locations and 10Be concentrations 

Sample name 
Latitude

1 

(DD) 
Longitude¹ 

(DD) 
Elevation² 

(m) 
Shielding 

correction³ 

10
Be concentration

4
 

 (10
5
atoms g

-1
) 

Production rate
5 

(atoms g
-1

 a
-1

)
 

Muons Spallation 

Campos do Jordão Plateau  

P18 -22.4427 -45.3377 1536 0.985 6.24 ± 0.15 0.124 8.71 

P21 -22.5352 -45.4095 1303 0.984 4.74 ± 0.10 0.115 7.40 

P6 -22.6937 -45.4926 1719 0.991 11.7 ± 0.23 0.131 9.99 

P13 -22.5771 -45.3257 1752 0.989 11.57 ± 0.23 0.132 10.17 

P20 -22.5365 -45.2572 1528 0.986 3.66 ± 0.09 0.123 8.69 

P17 -22.7740 -45.4600 1432 0.973 3.07 ± 0.08 0.12 8.07 

P23 -22.6125 -45.1479 892 0.977 1.61 ± 0.05 0.101 5.48 

P24 -22.6650 -45.3061 1762 0.983 8.89 ± 0.21 0.133 10.20 

Serra do Quebra-Cangalha 

P35 -22.9691 -45.3085 993 0.983 2.83 ± 0.14 0.104 5.98 

P42 -22.8714 -45.1283 886 0.989 3.62 ± 0.09 0.101 5.55 

P37 -22.9448 -45.0832 1035 0.996 6.07 ± 0.16 0.106 6.24 

P38 -23.0138 -45.1567 1059 0.989 6.37 ± 0.18 0.107 6.32 

Serra do Mar 

P26 -23.3470 -45.1369 1017 0.995 4.57 ± 0.11 0.105 6.22 

P33 -23.1013 -44.8751 1424 0.988 6.28 ± 0.15 0.12 8.2 

P34 -23.2040 -44.9777 1264 0.989 4.85 ± 0.14 0.114 7.35 

P27 -23.3909 -45.1206 590 0.965 0.62 ± 0.02 0.092 4.41 

P29 -23.0885 -44.7252 955 0.953 1.08 ± 0.03 0.103 5.65 

P30 -23.2253 -44.7660 1011 0.972 1.58 ± 0.05 0.105 6.03 
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1
 Coordinates are from WGS84. 

2 
Altitude corresponding to the average production rate in the basin according to Stone (2000) scaling from DEM. 

3
 Average shielding factor in the basin calculated from DEM. 

4
 
10

Be concentrations are based on 
10

Be/Be ratio of 2.79·10
-11

 for NIST SRM4325. The processed blank ratios ranged between 0.4 and 7.1 % of the sample 

10
Be/Be ratios. Concentration uncertainties include AMS counting statistics and blank correction uncertainty. 

5
  Production rates according to time-independent Lal/Stone scheme in CRONUS-Earth online calculators version 2.3 (Balco et al., 2008). 

 Concentrations reported by Salgado et al. (2016) are in Table S1. 

 
 
Table 2. Catchments characteristics and 10Be-derivated erosion rates. 

Sample name 
Catchment 

type
1 

Erosion rate
2 

(m/Ma)
 

Apparent 
age

3
 (ka) 

Area 
(km²) 

Slope
4 

(°)
 

Local relief
 4, 5 

(m) 
      ksn (m

0.9
)
4 

Litho- type
7 MAP

8
 

(mm) 

 
MAT

9
 

(°C) 
 

Drainage Area
 

Discharge
6
 

Campos do Jordão Plateau 

P18 H 8.9 ± 0.8 67 42 17 390 66 80 gn, grt 1500 15 

P21 H 10.2 ± 0.8 59 27 18 386 55 68 gn, grt, sch 1600 16 

P6 H 5.2 ± 0.5 116 12 16 274 37 48 grt, gn 1700 13 

P13 H 5.4 ± 0.5 112 30 15 257 33 42 gn, grt 1700 14 

P20 H 15.6 ± 1.3 39 48 17 342 37 46 gn, qtzt 1600 15 

P17 M 17.5 ± 1.4 34 16 20 585 114 147 gn, sch, grt 1700 15 

P23 E 24.9 ± 1.9 25 26 19 401 46 58 gn, sch 1700 19 

P24 M 7.1 ± 0.6 84 35 16 336 77 98 grt, gn 1700 14 

Serra do Quebra-Cangalha 

P35 E 14.3 ± 1.3 42 31 19 395 60 70 grt, gn, sch  1400 17 

P42 E 10.3 ± 0.9 58 29 16 309 42 48 grt, gn, sch 1400 18 

P37 H 6.6 ± 0.6 91 29 11 185 15 18 grt, sch, gn 1400 17 
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P38 H 6.3 ± 0.6 95 23 15 255 28 32 sch, gn, grt 1400 17 

Serra do Mar 

P26 H 8.9 ± 0.7 67 25 12 186 10 14 gn, grt 2300 17 

P33 H 8.3 ± 0.7 72 24 17 278 35 45 gn, grt, qtzt 1700 15 

P34 H 9.8 ± 0.8 61 49 16 223 21 30 gn, qtzt 2300 15 

P27 E 53.3 ± 4.2 11 13 24 618 109 162 gn 2800 19 

P29 M 37.5 ± 3.0 16 31 24 631 115 157 gn, grt 2200 18 

P30 M 26.7 ± 2.2 22 77 22 549 103 155 grt 2500 17 

A1* M 18.7 ± 1.8 32 10 21 541 109 151 gn 2100 18 

A2* M 30.3 ± 2.6 20 21 22 637 116 155 gn 2100 18 

A3* E 33.6 ± 3.7 18 16 23 662 119 160 gn, grt 2100 19 

A4* M 42.6 ± 8.5 14 14 22 638 104 139 gn, grt 1900 19 

A5** M 34.8 ± 22.2 17 38 21 540 104 137 gn 1900 18 

Bocaina Plateau 

B1* H 6.5 ± 0.6 92 8 16 307 25 32 sch, gn, grt 1700 14 

B2* H 5.8 ± 0.5 104 9 16 323 26 33 sch, gn, grt 1700 14 

B3* H 10.5 ± 0.9 57 45 18 368 50 60 sch, gn, grt 1500 15 

B4* H 7.5 ± 0.7 80 200 17 316 43 53 sch, gn, grt 1700 15 

B5* H 9.2 ± 0.8 65 14 18 316 31 38 grt, sch, gn 1500 16 

C1* E 22.9 ± 2.3 26 17 23 654 101 129 sch, gn 1700 16 

C2* E 19 ± 1.9 31 21 24 669 115 148 sch, gn, grt 1700 17 

C3* E 19.4 ± 1.9 31 21 25 622 93 119 sch, gn, grt 1700 16 

C4* E 20.8 ± 2.8 29 17 22 570 98 124 sch, gn 1700 18 

C5* E 19.7 ± 1.8 30 9 21 516 79 102 sch, gn, grt 1700 18 

Itatiaia Plateau 

D1* E 23.5 ± 2.0 26 10 21 506 87 118 grt 2000 14 

D2* E 11 ± 1.0 54 9 22 566 93 125 grt 2000 14 

D3* E 15.2 ± 1.4 40 24 21 521 87 118 grt 2100 15 
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D4* E 15.7 ± 1.7 38 12 24 581 89 120 grt 2000 15 

D5* E 10.86 ± 0.9 55 23 22 504 72 95 grt 1900 16 

D6* E 16.9 ± 1.8 37 20 19 402 46 64 grt, gn 2200 16 

D7* E 15.5 ± 1.8 39 27 21 478 62 84 grt 2100 16 

E1* H 12.4 ± 1.1 49 10 17 395 57 74 grt 1800 13 

E2* H 6.5 ± 0.6 92 8 17 437 65 85 grt 1800 13 

E3* H 12.2 ± 1.1 49 22 18 407 65 85 grt 1800 14 

E4* H 8.6 ± 0.8 69 8 19 448 66 86 grt 1800 13 

E5* H 12.6 ± 1.1 47 25 21 508 75 98 grt 1800 14 

E6* H 8.5 ± 0.8 70 10 20 457 66 86 grt 1800 13 

E7* H 13.2 ± 1.2 45 28 21 511 74 96 grt 1800 14 

E8* H 12.7 ± 1.1 47 11 21 487 66 86 grt 1800 14 
 

1 
Catchment type: escarpment (E), highland (H) and mixed (M). 

2
 Erosion rates according to time-independent Lal/Stone scheme in CRONUS-Earth online calculators version 2.3 (Balco et al., 2008), 

10
Be concentrations 

and production rates in table 1. 

3
 Residence time in rock within one absorption depth scale according to von Blanckenburg (2005). 

4
 All morphometric parameters were extracted from 30 m DEM SRTM. 

5
 Circular moving window with 1 km radius, results for other radii are shown in Table S2. 

6 
 Ksn calculated by replacing in equation 1 drainage area with discharge, which was calculated from the MAP. 

7 
Nomenclature: (gn) gneiss; (grt) granite; (sch) schist; (qtz) quartzite. See Supplementary Data 2D. 

8 
(MAP) Mean annual precipitation 

9 
(MAT) Mean annual temperature

 

* Calculated from the 
10

Be concentrations published by Salgado et al. (2016), see Table S1. 

** We excluded the A5 of the analysis given its anomalous high analytical error.   
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HIGHLIGHTS 

10Be-derived catchments mean erosion rates in the ocean-facing coastal 

escarpment catchments of the Serra do Mar ( = 18–53 m/Ma) are 

approximately twice higher than continent-facing escarpment catchments ( = 

7–24 m/Ma). 

Geomorphic metrics for river incision and hillslope erosion processes are 

correlated each other and approach threshold values in the high-relief 

escarpment areas, mainly in Serra do Mar.  

Episodic river captures as recorded in the mixed topography catchments results 

in the dissection of the low-relief highlands and the excavation and migration of 

escarpments inland. 

Precipitation-temperature gradient is well correlated with erosion rates and 

explain the higher erosion rates in the coastal escarpment catchments of the 

Serra do Mar. 
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