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Abstract 

This paper reports a theoretical analysis of heat and mass transfer in the microchannels partially filled with 

porous materials and used in thermos-chemical microreactors. A first order catalytic chemical reaction is 

considered on the internal surfaces of a parallel-plates microchannel. The local thermal non-equilibrium 

approach along with two well-established porous-fluid interface models is employed to investigate the heat 

transfer within the porous section of the microreactor. The analysis further accounts for the finite thickness 

of the surrounding solid walls of the microchannel. The dispersion equations in both porous and clear 

sections of the microchannel are coupled with the fluid temperature through considering the thermal 

diffusion of mass. In addition, to enhance heat transfer in the partially-filled microchannel, the base fluid is 

replaced by a nanofluid. The results show that inclusion of the finite thickness of the walls in the thermal 

analysis can majorly affect the temperature fields and Nusselt number (Nu). In particular, the optimal 

thickness of the porous insert for achieving the maximum Nu is found to be strongly influenced by the wall 

thickness. It is also shown that the specific porous-fluid interface model, thicknesses of the porous section 

and that of the walls, and the volumetric concentration of the nanoparticles can all impart significant effects 

upon the concentration of chemical species and their distribution across the microchannel. More 

specifically, the concentration field within the porous region is found to be considerably dependent on the 

implemented porous-fluid interface model. 
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Nomenclature   

 𝑎𝑠𝑓 
interfacial area per unit volume of porous 

media, m−1 
 𝑆𝑛𝑓 

Volumetric internal heat generation rate for 

the nanofluid phase, W. m−3 

 𝐵𝑖 Biot number 𝑆𝑟1, 𝑆𝑟2 Soret Number 

𝐶0 Reference concentration, Kg . m−3  𝑇1 Temperature of the walls, K 

𝐶1, 𝐶2 
Concentration of the chemical products 

per unit volume, Kg . m−3 
 𝑇𝑛𝑓1, 𝑇𝑛𝑓2  Temperature of the nanofluid, K 

 𝑐𝑝,𝑛𝑓 
Specific heat of the fluid phase of the 

porous medium, J. kg−1. K−1 
 𝑇𝑠 

Temperature of the solid phase of the porous 

medium, K 

𝐷1, 𝐷2 Diffusion coefficient, m2. s−1 �̅� Average dimensionless velocity 

 𝐷𝑎 Darcy number  𝑢𝑝 
Velocity of the nanofluid in porous medium, 

m. s−1 

 𝐷𝑇1, 𝐷𝑇2  Thermodiffusion coefficient,m2. s−1. K−1  𝑈𝑝, 𝑈𝑛𝑓 Dimensionless velocity 

ℎ1 Half-thickness of the microchannel, m 𝑌0 
Dimensionless height of the inner boundary of 

the upper wall 

ℎ0 
Height of the inner boundary of the upper 

wall, m 
𝑌𝑝  

Dimensionless half-thickness of the porous 

insert 

ℎ𝑝 Half-thickness of the porous insert, m  Greek symbols  

ℎ𝑠𝑓  

Internal heat convection 

coefficient, W. m−2. K−1 
 𝜆 Damköhler number 

k 

Solid to fluid effective thermal 

conductivity ratio 
 𝜖 Porosity  

k1 
Thermal conductivity of solid walls, 

W. m−1. K−1 
 𝜃1  Dimensionless temperature of the solid walls 

𝑘1𝑠  

Ratio of the porous solid phase to solid 

wall thermal conductivities 
 𝜃𝑛𝑓1, 𝜃𝑛𝑓2  

Dimensionless temperature of the nanofluid 

phase 

𝑘𝑒,𝑓  

Effective thermal conductivity of the fluid 

phase of the porous medium, W. m−1. K−1 
 𝜃𝑚 

Dimensionless average temperature of the 

nanofluid phase 

𝑘𝑒,𝑠  

Effective thermal conductivity of the solid 

phase of the porous medium, W. m−1. K−1 
𝜃𝑠 

Dimensionless temperature of the solid phase 

of the porous medium 

kf 

Thermal conductivity of the base fluid, 

W. m−1. K−1 
𝜅 Permeability, m2 
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knf 

Thermal conductivity of the nanofluid, 

W. m−1. K−1 
𝜇𝑒,𝑛𝑓  

Dynamic viscosity of porous medium, 

Kg. s−1. m−1 

kp 

Thermal conductivity of the 

nanoparticles, W. m−1. K−1 
 𝜇𝑓 

Dynamic viscosity of the base fluid, 

Kg. s−1. m−1 

𝑘𝑑  Reaction kinetic constant, m. s−1  𝜇𝑛𝑓 
Dynamic viscosity of the nanofluid, 

Kg. s−1. m−1 

Nu Nusselt Number   𝜔𝑠 

Dimensionless volumetric internal heat 

generation rate for the solid phase of the 

porous medium 

p Pressure, Pa   𝜔𝑛𝑓 
Dimensionless volumetric internal heat 

generation rate for the nanofluid phase 

𝑄1 
Dimensionless volumetric internal heat 

generation rate for the solid walls 
𝜌𝑛𝑓 density of the nanofluid phase,kg. m−3  

𝑞1 
Volumetric internal heat generation rate 

for the solid wall, W. m−3 
Φ1, Φ2 Dimensionless concentration 

 𝑆𝑠 

Volumetric internal heat generation rate 

for the solid phase of the porous medium, 

W. m−3 

  

 

1. Introduction 

Recent advancements in manufacturing techniques have provided a great opportunity to minimize the 

scale of various systems. Hence, energy-related devices have been continuously shrinking during the recent 

past years [1][2]. The two important reasons behind miniaturization of these devices are i) less energy 

consumption and hence easier to find energy sources for portable devices and ii) lower volume, which 

ultimately means transportation and shipping cost reduction [2]. Accordingly, microreactors have recently 

gained considerable attention [3][4]. Use of microreactors, in lieu of conventional chemical reactors, in 

thermochemical systems offers various advantages such as smaller volume, higher surface-to-volume ratio, 

less material cost, safer reactions, and higher quality of the products to name a few [5]. Hence, they continue 

to grow in various industrial and scientific fields, including high throughput screening in microanalytical 

chemistry [6], reaction kinetics and mechanisms studies [7], and fast reactions [8]. Most importantly, 

thermochemical microreactors are now used for production of hydrogen and renewable fuels [1][9]. 
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 The fluid flow and heat transfer analyses of microchannels, which are the building blocks of 

microreactors, have been the focus of many investigations [10]. Some modifications need to be made on 

the design and modelling of a microchannel when used as an elementary unit of a microreactor. In practical 

microreactors the wall thickness and the height of the microchannel are very much comparable [11]. Thus, 

walls’ thicknesses should be included in the design and analyses. Moreover, a microchannel as a part of 

microreactor, can be filled with a porous material leading to the enhancement of the mixing process and/or 

catalytic reactions [12][13]. While local thermal equilibrium (LTE) approach has been extensively used to 

analyse the heat transfer aspect of porous structures, recently local thermal non-equilibrium (LTNE) 

approach has overtaken LTE for small scales [14]. In LTE method one mean temperature is considered for 

both solid and fluid phases of the porous section of the system. However, LTNE approach recognises the 

temperature difference between the solid and fluid phases of the porous medium, and correlates them via 

a heat transfer coefficient which couples energy equations of the solid and fluid phases of the porous 

material [15]. Although using LTNE method is more costly compared with LTE, it is more reliable and 

provides more accurate results prediction of the temperature fields inside the system [16]. Most 

importantly, it has been recently shown that the results of this approach are superior to those of LTE, 

particularly in the presence of heat generating/consuming chemical reactions [10][17]. This superiority 

also improves the mass transfer analysis when the dispersion and energy equations of the fluid phase are 

coupled by the thermal diffusion of mass [18][19]. Nonetheless, recent studies have shown that the LTNE 

analyses of porous channels are highly sensitive to the choice of porous interface model, and thus it is 

important to repeat the analysis under different interface models [20][32][20]. It should be, however, 

noted that comparable thermal conductivities of the solid and fluid phases of the porous medium, and 

similar heat generation/consumption in these phases result in comparable temperatures in the two phases. 

Thus, under these conditions the LTNE and LTE models converge and using LTE model within the porous 

medium of the system would give enough accuracy [21]. 

 Consideration of thick walls and porous inserts have been the focus of recent studies on microreactors 

[22][23]. However, all previous studies have been performed for either non-porous microreactors or fully-

filled porous microreactors. To increase the flow rate or decrease the pumping cost in a porous channel, 

partial filling of the channel with porous material is an effective method [24][25]. At the same time, it offers 

the advantages of porous structure in the system such as enhancing Nusselt number (Nu) and mixing [26]. 
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 A few points follow from the preceding review of literature. First, the general problem of partially filled 

porous channels and microchannels have already received significant attention, see for example 

[17][25][26][27]. As an essential commonality, all these investigations ignore the existence of the channel 

walls. Yet, there is now a growing body of evidence indicating that the finite thickness of the wall can 

significantly affect the thermal behaviour of microchannels [28][29][30]. Second, in general accurate 

calculation of the temperature is central to performance prediction of thermochemical microreactor 

[31][1]. Further, it is now well-demonstrated that exothermic and endothermic reactions can invalidate the 

LTE approach in porous microreactor [17][27]. Nonetheless, the bulk of existing theoretical and numerical 

studies have taken an LTE approach, e.g. [18][19]. Third, given the existence of sharp temperature 

gradients in thermochemical microreactors, thermal diffusion of mass is of significance, although this has 

been ignored in most investigation. The problem of microchannels and microreactors with relatively 

similar geometries have been considered in our previous investigations [24][17][32][20]. However, 

microreactors with thick walls, partially filled with porous materials and including surface reactions have 

remained unexplored. The proceeding analysis shows that consideration of LTNE in such configuration can 

highly affect the mass transfer process. 

 The current work aims to address these issues through a theoretical analysis of a catalytic 

microreactor. The present investigation provides an insight into the effects of partial porous filling on the 

transport of heat and mass in thick-wall microreactors. In particular, the influences of different porous-

fluid interface models upon the transport processes are analysed in detail. 

2. Theoretical methods 

2.1. Problem configuration and assumptions 

Microreactors usually consist of a series of microchannels partially filled with a porous insert, through 

which fluid can flow. The thermal conductivity of the fluid may be augmented with nanoparticles, and 

microreactor can feature internal heat generation or consumption with either physical or chemical natures 

[33][34][35]. The schematic view in Fig. 1 presents this arrangement. Within the microchannel there are a 

clear region, through which fluid can flow freely and a strip of porous material, inserted along the 

centreline. The thickness of the walls of the microchannel are taken into account and the external surface 

of each wall is subjected to a constant heat flux. The microchannel is deep enough about the z-axis, so that 

its 2D x-y planar model would be an accurate representation. Also, it is axisymmetric about y-axis and 

therefore only half of the configuration is investigated. The parameter ℎ𝑝 represents the distance from the 



6 

centreline to the edge of the porous insert, ℎ0  the distance to the inner surface of the wall, and ℎ1  the 

distance to the boundary of the configuration. The subsequent analysis relies on the following assumptions: 

- The porous material is homogeneous and isotropic and under local thermal non-equilibrium. 

- It is assumed that the flow on the microscopic scale within the porous microreactor is stokes flow 

and the microscale Reynolds number is negligible. Thus, the Darcy model for the porous media 

governs the momentum equation of the system [36]. 

- The flow is incompressible, steady and laminar, and is both thermally and hydrodynamically fully 

developed throughout the entire length of the microchannel. 

- The nanoparticles are distributed uniformly and the species mass transfer Peclet number is 

assumed to be small. 

- Internal heat generations occur uniformly in all components of the system according to the 

provided rates. This could be due to homogeneous chemical reactions, dissipation of electrical 

energy or absorption of electromagnetic waves. 

- All thermophysical properties of the system (i.e. porosity, density, thermal conductivity, 

nanoparticle concentration and specific heat) are invariant with respect to both temperature and 

concentration. 

- Thermal radiation and natural convection are ignored. 

- A first order chemical reaction occurs at the internal surfaces of the system walls, wherein chemical 

species are consumed [19][37]. The transportation of such species occurs through the mechanisms 

of Fickian and thermal diffusion of chemical species [38][39]. 

2.2. Governing equations 

Considering the assumptions stated in Section 2.1, the governing equations of the problem are as follows. 

The momentum equation in the clear flow region reduces to: 

−
∂𝑝
∂𝑥

+ 𝜇𝑛𝑓
𝜕2𝑢𝑓

∂𝑦2 = 0  for  ℎ𝑝 < 𝑦 < ℎ0. (1) 

 For the transport of momentum in the porous region of the microchannel, the Darcy-Brinkman flow 

model is utilised, which reads 

−
∂𝑝
∂𝑥

+ 𝜇𝑒,𝑛𝑓
𝜕2𝑢𝑝

∂𝑦2 −
𝜇𝑛𝑓

𝐾
𝑢𝑝 = 0  for  0 < 𝑦 < ℎ𝑝. (2) 
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 where 𝜇𝑒,𝑛𝑓 = 𝜇𝑛𝑓
𝜖

 . The following equations describe the transport of thermal energy throughout each 

of the system’s components. They correspond, respectively, to the wall, the clear region, and the nanofluid 

and solid phases of the porous region [40][25]: 

𝑘1
𝑑2𝑇1

𝑑𝑦2 + 𝑞1 = 0  for  ℎ0 < 𝑦 < ℎ1, (3) 

𝜌𝑛𝑓𝑐𝑛𝑓,𝑝𝑢𝑛𝑓
∂𝑇𝑛𝑓1

∂𝑥
= 𝑘𝑛𝑓

∂2𝑇𝑛𝑓1

∂𝑦2 + 𝑆𝑛𝑓   for  ℎ𝑝 < 𝑦 < ℎ0, (4) 

𝜌𝑛𝑓𝑐𝑛𝑓,𝑝𝑢𝑝
∂𝑇𝑛𝑓2

∂𝑥
= 𝑘𝑒,𝑛𝑓

∂2𝑇𝑛𝑓2

∂𝑦2 + 𝑎𝑠𝑓ℎ𝑠𝑓(𝑇𝑠 − 𝑇𝑛𝑓2) + 𝑆𝑛𝑓  for  0 < 𝑦 < ℎ𝑝, (5) 

0 = 𝑘𝑒,𝑠
∂2𝑇𝑠

∂𝑦2 − 𝑎𝑠𝑓ℎ𝑠𝑓(𝑇𝑠 − 𝑇𝑛𝑓2) + 𝑆𝑠  for  0 < 𝑦 < ℎ𝑝. (6) 

 The above equations are, respectively, govern the transport of energy in the solid wall, nanofluid in the 

open space, and nanofluid and solid phases of the porous section of the microreactor. Moreover, Eq. (3) 

assumes an internal heat generation within the solid walls of the microreactor. This, for instance, can be 

the result of absorption of microwave in the solid walls [41][42]. Considering the Fickian diffusion of 

species and contributions of the Soret effect, the dispersion equations for both sections of the microchannel 

are given as follows [39]: 

𝐷1
∂2𝐶1

∂𝑦2 + 𝐷𝑇1

∂2𝑇𝑛𝑓1

∂𝑦2 = 0  for  ℎ𝑝 < 𝑦 < ℎ0, (7) 

𝐷2
∂2𝐶2

∂𝑦2 + 𝐷𝑇2

∂2𝑇𝑛𝑓2

∂𝑦2 = 0  for  0 < 𝑦 < ℎ𝑝. (8) 

It is noted that the values of 𝐷𝑇1  and 𝐷𝑇2  can be either positive or negative [28] and thus the thermal 

diffusion term can be also subtracted from the Fickian diffusion term. 

 It is worth noting that the momentum, energy and dispersion governing equations of the problem can 

be written in vector form, and hence simplified to three set of equations [43][44]. However, to keep with 

the previous studies [23][32][22], and make it easier for the readers to follow the analytical procedure, 

expanded formats of the governing equations have been given. 

2.3. Boundary equations 

The boundary conditions applied to the momentum equations are as follows. 

∂𝑢𝑝

∂𝑦
= 0  at  𝑦 = 0, (9a) 
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𝑢𝑛𝑓 = 𝑢𝑝,     𝜇𝑛𝑓
∂𝑢𝑛𝑓

∂𝑦
= 𝜇𝑒,𝑛𝑓

∂𝑢𝑝

∂𝑦
  at  𝑦 = ℎ𝑝, 

(9b) 

𝑢𝑛𝑓 = 0  at  𝑦 = ℎ0. (9c) 

Those related to the energy equations are: 

∂𝑇𝑛𝑓2

∂𝑦
=

∂𝑇𝑠

∂𝑦
= 0  at  𝑦 = 0, (10a) 

𝑇𝑛𝑓1 = 𝑇𝑛𝑓2  at  𝑦 = ℎ𝑝, (10b) 

𝑇1 = 𝑇𝑛𝑓1, 𝑘𝑛𝑓
∂𝑇𝑛𝑓1

∂𝑦
= 𝑘1

∂𝑇1

∂𝑦
= 𝑞|𝑦=ℎ0    at    𝑦 = ℎ0, 

(10c) 

𝑘1
∂𝑇1

∂𝑦
= 𝑞𝑤   at  𝑦 = ℎ1, 

(10d) 

while the boundary conditions for the dispersion equations are given by: 

∂𝐶2

∂𝑦
= 0  at  𝑦 = 0, (11a) 

𝐶1 = 𝐶2, 𝐷1
∂𝐶1

∂𝑦
= 𝐷2

∂𝐶2

∂𝑦
    at    𝑦 = ℎ𝑝, 

(11b) 

𝐷1
∂𝐶1

∂𝑦
= 𝑘𝑑𝐶1  at  𝑦 = ℎ0. 

(11c) 

 There are two well-established models that describe the heat flux over a porous-fluid interface: Models 

1A and 2A of Alazmi and Vafai [45], or models A and B of Yang and Vafai [46]. According to Model A, the 

total heat flux at the interface of the porous insert is the sum of heat fluxes of the individual phases; defined 

by their effective thermal conductivities and temperature gradient, respectively. That is 

𝑞𝑖𝑛𝑡 = 𝑘𝑒,𝑛𝑓
∂𝑇𝑛𝑓2

∂𝑦
|

𝑦=ℎ𝑝

+ 𝑘𝑒,𝑠
∂𝑇𝑠

∂𝑦
|

𝑦=ℎ𝑝

= 𝑘𝑛𝑓
∂𝑇𝑛𝑓1

∂𝑦
|

𝑦=ℎ𝑝  
at  𝑦 = ℎ𝑝, (12a) 

𝑇𝑛𝑓1 = 𝑇𝑛𝑓2 = 𝑇𝑠   at  𝑦 = ℎ𝑝. (12b) 

 Alternatively, Model B assumes that both solid and fluid phases receive equal heat flux at the interface: 

𝑞𝑖𝑛𝑡 = 𝑘𝑒,𝑛𝑓
∂𝑇𝑛𝑓2

∂𝑦
|

𝑦=ℎ𝑝

= 𝑘𝑒,𝑠
∂𝑇𝑠

∂𝑦
|

𝑦=ℎ𝑝

= 𝑘𝑛𝑓
∂𝑇𝑛𝑓1

∂𝑦
|

𝑦=ℎ𝑝  
at  𝑦 = ℎ𝑝. (13) 

Taking the average fluid velocity for the entire microchannel, defined as 

𝑢 =
1
ℎ0

[∫ 𝑢𝑝𝑑𝑦
ℎ𝑝

0
+ ∫ 𝑢𝑓𝑑𝑦

ℎ0

ℎ𝑝

], (14) 
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and recalling that for a fully developed flow, incorporating the assumptions stated in Section 2.1, ∂𝑇𝑛𝑓1
∂𝑥

=

∂𝑇𝑛𝑓2
∂𝑥

= ∂𝑇𝑠
∂𝑥

= ∂𝑇1
∂𝑥

= ∂𝑇
∂𝑥

, the following derivations can be carried out. Firstly, Eq. (3) can be integrated from 

ℎ0 to ℎ1 to yield 

𝑞𝑤 − 𝑞|𝑦=ℎ0 + 𝑞1(ℎ1 − ℎ0) = 0. (15) 

Similarly, Eq. (4) can be integrated from ℎ𝑝 to ℎ0: 

𝜌𝑛𝑓𝑐𝑛𝑓,𝑝
∂𝑇
∂𝑥

∫ 𝑢𝑛𝑓𝑑𝑦
ℎ0

ℎ𝑝

= 𝑞|𝑦=ℎ0 − 𝑞|𝑦=ℎ𝑝 + 𝑆𝑛𝑓(ℎ0 − ℎ𝑝). (16) 

Combining Eqs. (5) and (6) gives, 

𝜌𝑛𝑓𝑐𝑛𝑓,𝑝𝑢𝑝
∂𝑇
∂𝑥

= 𝑘𝑒,𝑠
∂2𝑇𝑠

∂𝑦2 + 𝑘𝑒,𝑛𝑓
∂2𝑇𝑛𝑓2

∂𝑦2 + 𝑆𝑠 + 𝑆𝑛𝑓, (17) 

and integrating the result over the porous region, while applying Eq. (12), the Model A boundary condition 

provides 

𝜌𝑛𝑓𝑐𝑛𝑓,𝑝
∂𝑇
∂𝑥

∫ 𝑢𝑝𝑑𝑦
ℎ𝑝

0
= 𝑞|𝑦=ℎ𝑝 + ℎ𝑝(𝑆𝑠 + 𝑆𝑛𝑓). (18) 

 Combining Eqs. (15), (16) and (18), and using Eq. (14) reveals 

𝜌𝑛𝑓𝑐𝑛𝑓,𝑝
∂𝑇
∂𝑥

=
𝑞𝑤

ℎ0𝑢
+

𝑞1(ℎ1 − ℎ0)
ℎ0𝑢

+
𝑆𝑛𝑓ℎ0 + 𝑆𝑠ℎ𝑝

ℎ0𝑢
, (19) 

and by means of substituting Eq. (19) into Eq. (18), a prediction of the heat flux at the porous-fluid interface 

under model A conditions can be derived as 

𝑞|𝑦=ℎ𝑝

𝑞𝑤
|

𝑀𝑜𝑑𝑒𝑙 𝐴
=

1
ℎ𝑜𝑢

∫ 𝑢𝑝𝑑𝑦
ℎ𝑝

0

+
1

𝑞𝑤
[

1
ℎ𝑜𝑢

(𝑞1(ℎ1 − ℎ0) ∫ 𝑢𝑝𝑑𝑦
ℎ𝑝

0
+ (𝑆𝑛𝑓ℎ0 + 𝑆𝑠ℎ𝑝) ∫ 𝑢𝑝𝑑𝑦

ℎ𝑝

0
) − ℎ𝑝(𝑆𝑠

+ 𝑆𝑛𝑓)]. 

(20) 

 Similarly, integrating Eq. (17) over the porous region and applying Eq. (13), model B boundary 

condition, yields 

𝜌𝑛𝑓𝑐𝑛𝑓,𝑝
∂𝑇
∂𝑥

∫ 𝑢𝑝𝑑𝑦
ℎ𝑝

0
= 2𝑞|𝑦=ℎ𝑝 + ℎ𝑝(𝑆𝑠 + 𝑆𝑛𝑓), (21) 

and combining Eqs. (15), (16) and (21) renders 

𝜌𝑛𝑓𝑐𝑛𝑓,𝑝
∂𝑇
∂𝑥

=
𝑞𝑤

ℎ0𝑢
+

𝑞|𝑦=ℎ𝑝

ℎ0𝑢
+

𝑞1(ℎ1 − ℎ0)
ℎ0𝑢

+
𝑆𝑛𝑓ℎ0 + 𝑆𝑠ℎ𝑝

ℎ0𝑢
, (22) 
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which, through substitution into Eq. (21), provides the model B prediction of the heat flux at the porous-

fluid interface. This reads, 

𝑞|𝑦=ℎ𝑝

𝑞𝑤
|

𝑀𝑜𝑑𝑒𝑙 𝐵
=

∫ 𝑢𝑝𝑑𝑦
ℎ𝑝

0

2ℎ0𝑢−∫ 𝑢𝑝𝑑𝑦
ℎ𝑝

0

+ 1

2ℎ0𝑢−∫ 𝑢𝑝𝑑𝑦
ℎ𝑝

0

[ 1
𝑞𝑤

(ℎ𝑝(𝑆𝑠 + 𝑆𝑛𝑓) −
∫ 𝑢𝑝𝑑𝑦

ℎ𝑝
0

ℎ𝑜𝑢
(𝑞1(ℎ1 − ℎ0) +

𝑆𝑛𝑓ℎ0 + 𝑆𝑠ℎ𝑝))].  

(23) 

 Lastly, by rearranging the terms in Eq. (15), an expression for the heat flux at the fluid-wall interface is 

developed, valid for both Models A and B: 

𝑞|𝑦=ℎ0

𝑞𝑤
= 1 +

𝑞1(ℎ1 − ℎ0)
𝑞𝑤

. (24) 

2.4. Normalisations and velocity profiles 

 In order to normalise the previously discussed governing equations and boundary conditions, the 

following dimensionless variables are introduced, 

𝜃|𝑀𝑜𝑑𝑒𝑙 𝐴 =
𝑘𝑒,𝑠(𝑇 − 𝑇𝑖𝑛𝑡)

𝑞𝑤ℎ1
,   𝜃|𝑀𝑜𝑑𝑒𝑙 𝐵 =

𝑘𝑒,𝑠(𝑇 − 𝑇𝑠,𝑖𝑛𝑡)
𝑞𝑤ℎ1

, 𝛾𝑝 =
𝑞|𝑦=ℎ𝑝

𝑞𝑤
, 

(25) 

𝛾𝑠 =
𝑞|𝑦=ℎ0

𝑞𝑤
, 𝑘 =

𝑘𝑒,𝑠

𝑘𝑒,𝑓
, 𝑘1𝑠 =

𝑘1

𝑘𝑒,𝑠
, 

𝐵𝑖 =
𝑎𝑠𝑓ℎ𝑠𝑓ℎ0

2

𝑘𝑒,𝑠
, 𝑌 =

𝑦
ℎ1

, 𝑌𝑝 =
ℎ𝑝

ℎ1
, 

𝑌0 =
ℎ0

ℎ1
, 𝑈 =

𝑢
𝑢𝑟

, 𝑄1 =
𝑞1ℎ1

𝑞𝑤
, 

𝜔𝑛𝑓 =
𝑆𝑛𝑓ℎ1

𝑞𝑤
, 𝜔𝑠 =

𝑆𝑠ℎ1

𝑞𝑤
, 𝐷𝑎 =

𝜅
ℎ1

2, 

𝐷21 =
𝐷2

𝐷1
, 𝜆 =

𝑘𝑑ℎ1

𝐷1
, 𝑆𝑟1 =

𝐷𝑇1𝑞𝑤ℎ1

𝐷1𝐶0𝑘𝑒,𝑠
, 

𝑆𝑟2 =
𝐷𝑇2𝑞𝑤ℎ1

𝐷2𝐶0𝑘𝑒,𝑠
, 𝛷1 =

𝐶1

𝐶0
, 𝛷2 =

𝐶2

𝐶0
, 

𝐶𝑘 =
𝑘𝑛𝑓

𝑘𝑓
= 1 +

3𝜙(
𝑘𝑝
𝑘𝑓

− 1)

(
𝑘𝑝
𝑘𝑓

+ 2) − 𝜙(
𝑘𝑝
𝑘𝑓

− 1)
, 𝐶𝜇 =

𝜇𝑛𝑓

𝜇𝑓
=

1
1 − 𝜙2.5. 

 Darcy number 𝐷𝑎  describes the permeability of the porous medium relative to the size of the 

microchannel, while Biot number (𝐵𝑖) represents the strength of the internal heat exchange between fluid 

and solid phases in the porous region. Soret number (𝑆𝑟)  describes the relationship between the 
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temperature gradient inside the system and the concentration flux of chemical species in the flow; while 

the Damköhler number 𝜆 relates the chemical reaction rate to the rate of mass diffusion in the system. The 

nanofluid property ratios 𝐶𝑘  and 𝐶𝜇  indicate the relationship between the base fluid and the equivalent 

nanofluid, in terms of thermal conductivity and viscosity, respectively [24]. The mathematical models used 

to represent these ratios were developed by Maxwell-Garnetts and Brinkman and are widely used in the 

theoretical modelling of nanofluids, see for example [47][48]. The characteristic velocity of the flow 𝑢𝑟 is 

defined as 𝑢𝑟 = − ℎ0
2

𝜇𝑒

𝜕𝑃
𝜕𝑥

. 

2.5. Solid and fluid temperature fields 

By using dimensionless parameters given in Eq. (25) and incorporating boundary conditions related to 

each model, the set of momentum, energy and dispersion equations is redefined. Some algebraic 

manipulations reveal the following temperature distributions for each scenario. The detailed procedure 

has been provided in Appendix A.  

2.5.1. Model A prediction of the temperature fields 

By solving non-dimensionalized decoupled energy equations for Model A and applying relevant boundary 

conditions, the temperature fields across the microchannel can be obtained. Firstly, for the solid wall: 

𝜃1(𝑌) = −
𝑄1𝑌2

2𝑘1𝑠
+ 𝐴1 + 𝐴2𝑌, (26) 

and the temperature field for the clear region is given by 

𝜃𝑛𝑓1(𝑌) = 𝑌3𝑏
𝑘𝜀𝜒𝐴

6𝐶𝑘𝑈𝑌0
− 𝑌4 𝑘𝜀𝜒𝐴

24𝐶𝑘𝐶𝜇𝑈𝑌0
+ 𝑌2 (−

𝑘𝜔𝑛𝑓𝜀
2𝐶𝑘

+ 𝑎
𝑘𝜀𝜒𝐴

2𝐶𝑘𝑈𝑌0
) + 𝐴3 + 𝐴4𝑌. (27) 

 Further, the temperature fields for the nanofluid and solid phases of the porous region are respectively 

resolved to the following forms, 

𝜃𝑛𝑓2(𝑌) = −
𝑘𝑌2(𝐶𝜇𝑈𝜔𝑠 + 𝐶𝜇𝑈𝜔𝑛𝑓𝑌0 − 𝐷𝑎𝑌0𝜒𝐴)

2𝐶𝜇𝑈(𝑘 + 𝐶𝑘𝑌0)
+ 𝐴5

𝐶𝑘𝑌0
2

𝐵𝑖(𝑘 + 𝐶𝑘𝑌0) cosh(𝛼𝑌) + 𝐴6

+ 𝑐
𝑘(−𝐵𝑖 + 𝑌0𝑍2)𝜒𝐴

𝑈𝑍2(−𝑘𝐵𝑖 − 𝐵𝑖𝐶𝑘𝑌0 + 𝐶𝑘𝑌0
2𝑍2)

cosh(𝑍𝑌), 

(28) 

𝜃𝑠(𝑌) = −
𝑘𝑌2(𝐶𝜇𝑈𝜔𝑠 + 𝐶𝜇𝑈𝜔𝑛𝑓𝑌0 − 𝐷𝑎𝑌0𝜒𝐴)

2𝐶𝜇𝑈(𝑘 + 𝐶𝑘𝑌0)
+ 𝐴7

𝐶𝑘𝑌0
2

𝐵𝑖(𝑘 + 𝐶𝑘𝑌0) cosh(𝛼𝑌) + 𝐴8

+ 𝑐
𝑘𝐵𝑖𝜒𝐴

𝑈𝑍2(𝑘𝐵𝑖 + 𝐵𝑖𝐶𝑘𝑌0 − 𝐶𝑘𝑌0
2𝑍2)

cosh(𝑍𝑌), 

(29) 
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where 𝜒𝐴 = (1 + 𝑄1(1 − 𝑌0) + 𝜔𝑛𝑓𝑌0 + 𝜔𝑠𝑌𝑝) , 𝛼 = √𝐵𝑖√𝑘+𝐶𝑘𝑌0

√𝐶𝑘𝑌0
 and constants 𝑎 , 𝑏  and 𝑐  are provided in 

Appendix A. 

2.5.2. Model B predictions of the temperature fields 

By solving the non-dimensionalized energy equation ODEs related to Model B and suitable boundary 

conditions, a full representation of the temperature field at each point across the system is established. For 

the solid wall: 

𝜃1(𝑌) = −
𝑄1𝑌2

2𝑘1𝑠
+ 𝐵1 + 𝐵2𝑌, (30) 

and for the nanofluid in the clear region: 

𝜃𝑛𝑓1(𝑌) = 𝑌3𝑏
𝑘𝜀𝜒𝐵

6𝐶𝑘𝑈𝑌0
− 𝑌4 𝑘𝜀𝜒𝐵

24𝐶𝑘𝐶𝜇𝑈𝑌0
+ 𝑌2 (−

𝑘𝜔𝑛𝑓𝜀
2𝐶𝑘

+ 𝑎
𝑘𝜀𝜒𝐵

2𝐶𝑘𝑈𝑌0
) + 𝐵3 + 𝐵4𝑌. (31) 

The temperature fields of the nanofluid and solid phases of the porous region are given by 

𝜃𝑛𝑓2(𝑌) = −
𝑘𝑌2(𝐶𝜇𝑈𝜔𝑠 + 𝐶𝜇𝑈𝜔𝑛𝑓𝑌0 − 𝐷𝑎𝑌0𝜒𝐵)

2𝐶𝜇𝑈(𝑘 + 𝐶𝑘𝑌0)
+ 𝐵5

𝐶𝑘𝑌0
2

𝐵𝑖(𝑘 + 𝐶𝑘𝑌0) cosh(𝛼𝑌) + 𝐵6

+ 𝑐
𝑘(−𝐵𝑖 + 𝑌0𝑍2)𝜒𝐵

𝑈𝑍2(−𝑘𝐵𝑖 − 𝐵𝑖𝐶𝑘𝑌0 + 𝐶𝑘𝑌0
2𝑍2)

cosh(𝑍𝑌), 

(32) 

𝜃𝑠(𝑌) = −
𝑘𝑌2(𝐶𝜇𝑈𝜔𝑠 + 𝐶𝜇𝑈𝜔𝑛𝑓𝑌0 − 𝐷𝑎𝑌0𝜒𝐵)

2𝐶𝜇𝑈(𝑘 + 𝐶𝑘𝑌0)
+ 𝐵7

𝐶𝑘𝑌0
2

𝐵𝑖(𝑘 + 𝐶𝑘𝑌0) cosh(𝛼𝑌) + 𝐵8

+ 𝑐
𝑘𝐵𝑖𝜒𝐵

𝑈𝑍2(𝑘𝐵𝑖 + 𝐵𝑖𝐶𝑘𝑌0 − 𝐶𝑘𝑌0
2𝑍2)

cosh(𝑍𝑌), 

(33) 

where 𝜒𝐵 = (1 + 𝛾𝑝|𝑀𝑜𝑑𝑒𝑙 𝐵 + 𝑄1(1 − 𝑌0) + 𝜔𝑛𝑓𝑌0 + 𝜔𝑠𝑌𝑝) , 𝛼 = √𝐵𝑖√𝑘+𝐶𝑘𝑌0

√𝐶𝑘𝑌0
 and constants 𝑎 , 𝑏  and 𝑐  are 

provided in Appendix A. 

2.5.3. LTE solution 

Adding the two energy equations in the porous section of the microchannel results in the LTE temperature 

field. This reads, 

𝜃𝐿𝑇𝐸(𝑌) = 𝐶𝐿𝑇𝐸 +
𝑘 (− 1

2 𝐶𝜇𝑈𝑌2(𝜔𝑛𝑓𝑌0 + 𝜔𝑠) + 𝜒 [1
2 𝐷𝑎𝑌0𝑌2 + 𝑐

𝑍2 𝐶𝜇 cosh(𝑍𝑌)])

𝐶𝜇𝑈(𝑘 + 𝐶𝜇𝑌0)
, (34) 

where 𝜒 = (1 + 𝑄1(1 − 𝑌0) + 𝜔𝑛𝑓𝑌0 + 𝜔𝑠𝑌𝑝) and coefficient 𝐶𝐿𝑇𝐸  consists of lengthy long-form algebra not 

provided here. 

2.6. Nusselt Number 
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The Nu at the inside of the microchannel wall for the partial-filling conditions and fully developed flow, 

where 𝑌𝑝 < 𝑌0, can be found by referring to Rohsenow et al. [49]: 

𝑁𝑢 =
𝑞|𝑦=ℎ0𝐷ℎ

𝑘𝑒,𝑛𝑓(𝑇|𝑦=ℎ0 − 𝑇𝑚)
, (35) 

where 𝐷ℎ  is the hydraulic diameter of the microchannel and equates to 4ℎ0. Normalisation of Eq. (35), using 

the dimensionless parameters defined by Eq. (25), results in 

𝑁𝑢 =
4𝜀𝑘𝛾𝑠

𝜃𝑤 − 𝜃𝑚
  for  𝑌𝑝 < 𝑌0, (36) 

𝑁𝑢 =
4𝜀𝛾𝑠

𝜃𝑤 − 𝜃𝑚
  for  𝑌𝑝 = 𝑌0. (37) 

where 𝜃𝑤 = 𝜃𝑛𝑓1|𝑌=𝑌0  and 𝜃𝑚 represent the mean temperature in the microchannel, defined as: 

𝜃𝑚 =
∫ 𝑈𝑝𝜃𝑛𝑓2𝑑𝑦

𝑌𝑝

0
+ ∫ 𝑈𝑛𝑓𝜃𝑛𝑓1𝑑𝑦

𝑌0

𝑌𝑝

𝑈
. (38) 

2.6. Mass transfer and concentration profiles 

Returning to the normalised quantities provided in Eq. (25), dimensionless versions of Eqs. (7) and (8) can 

be derived. The transport of mass within the system is therefore given by 

Φ1
′′ + 𝑆𝑟1𝜃𝑛𝑓1

′′ = 0  for  𝑌𝑝 < 𝑌 < 𝑌0, (39) 

Φ2
′′ + 𝑆𝑟2𝜃𝑛𝑓2

′′ = 0  for  0 < 𝑌 < 𝑌𝑝. (40) 

with the following boundary conditions, 

Φ2
′ = 0  at  𝑌 = 0, (41a) 

Φ1 = Φ2, Φ1
′ = 𝐷21Φ2

′   at  𝑌 = 𝑌𝑝, (41b) 

Φ1
′ = 𝜆Φ1  at  𝑌 = 𝑌0. (41c) 

 By applying the boundary equations given in Eq. (41) to mass transfer Eqs. (39) and (40), the following 

expressions describing the species concentration profile across the microchannel are obtained, 

Φ1(𝑌) = 𝑀1 + 𝑀2𝑌 − 𝑆𝑟1𝜃𝑛𝑓1(𝑌), (42) 

Φ2(𝑌) = 𝑀3 − 𝑆𝑟2𝜃𝑛𝑓2(𝑌). (43) 

As previously stated, the analytical expressions for coefficients 𝑀1  to 𝑀3  were evaluated using a 

mathematical analysis tool due to their high complexity. 

3. Results and discussion 

3.1. Validation 
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To validate the model, the parameters were set such that the problem resembled those already investigated 

in the literature. In particular, the wall thickness was made negligible (𝑌0 ≈ 1), the catalytic layer and hence 

mass transfer were discarded, and the concentration of nanoparticles was reduced to zero. Hence, the 

temperature fields could be compared with the work of Karimi et al. [27] and the predictions for Nu could 

be compared to those presented in Ref. [50]. Figure 2 shows that graphs identical to those presented in the 

aforementioned works were successfully produced, thereby validating the analytical model developed in 

Section 2. Also, although not shown here, it was observed that in the limit of fully-filled microchannel and 

high Bi (thus LTE dominated), the observed trends in concentration profile were found to follow those 

documented in the work of Matin and Pop [19]. 

3.2. Temperature fields 

In the subsequent case studies, the value of porosity has been set to 0.5. Figures 3a and 3b illustrate the 

influences of microchannel wall thickness upon the temperature profiles. Complexity of the temperature 

profiles is clearly depicted by these figures. In Fig. 3a, thickening the wall (that is decreasing the value of 

𝑌0) has led to a significant increase in the dimensionless temperature of the external surface of the wall. 

The changes in the wall temperature through variation in the wall thickness can be explained by noting 

that the wall is transferring a constant heat flux and its thermal resistance is proportional to its thickness. 

Thus, thickening the wall increases the overall thermal resistance against transferring the heat flux to the 

microchannel and causes a general increase in the temperature of the system. Given the temperature 

sensitivity of most thermochemical reactions [1], such variation in the temperature fields is of practical 

significance and clearly demonstrates the necessity of including the microreactor walls in the thermal 

analysis of these systems. Further, the temperature changes imposed by the changes in the wall thickness 

have significantly affected the temperature profiles of the nanofluid and porous solid phases. A comparison 

between Figs. 3a and 3b reveals that the extent of these modifications is heavily dependent upon the 

interface model in use. Nonetheless, under both interface models, changes in the wall thickness can result 

in heat flux bifurcation [17][25][27]. This observation is of high importance in the design of microreactors 

as the direction of heat transfer in the porous region can influence the progress of homogenous chemical 

reactions. 

 Figures 3c and 3d show that by varying the thickness of the porous insert, a wealth of behaviours in 

the temperature fields can be observed. By comparing these two figures, it is seen that the thickness of the 

porous insert may play a more complex role on the temperature of different parts of the system under 
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Model A than Model B. In Model A, by increasing the value of porous thickness from 0.2 to 0.8, the 

temperature of the wall first decrease (for 𝑌𝑝<0.8) and then increases. However, this behaviour for Model 

B is uniform and always decreasing. Reduction of the wall temperature for thicker porous inserts can be 

explained by noting that Nu generally increases by thickening the porous insert. Hence, the resultant 

enhancement of heat transfer rate leads to the reduction of the wall temperature. This behaviour has an 

important relation with the choice of the optimum thickness of the porous insert in the microchannel, 

which will be later discussed in further depth in relation to Nu. 

 Figure 4 shows the impact of the concentration of nanoparticles on the profiles of dimensionless 

temperatures across the microchannel. It is clearly seen that, for both cases, adding nanoparticles to the 

base fluid decreases the dimensionless temperature within the system and makes the temperature fields 

more uniform. This is to be expected, since by enhancing the concentration of nanoparticles the overall 

thermal conductivity of the fluid phase increases. Thus, the thermal energy can be more conveniently 

transferred to the microchannel with smaller temperature gradients, resulting in an overall reduction of 

the temperature. Interestingly, for both interface models, the concentration of the nanoparticles noticeably 

affects the dimensionless temperatures of the nanofluid phase and the wall. Yet, they hardly have any effect 

upon the temperature of the porous solid phase. This is, in part, due to the fact that the porous medium is 

located at the centre of the microreactor where, compared with the areas close to the walls, there is less 

heat to be extracted. Hence, adding nanoparticles to the base fluid does not have substantial impact on the 

temperature of the solid phase of the porous medium. Also, since Biot number has been kept constant in 

the analysis, the influences of increases in the concentration of nanoparticles upon the internal heat 

exchanges between the solid and nanofluid phases have been effectively ignored here. In keeping with that 

observed in Fig. 3, in Fig. 4 the predicted dimensionless temperatures under Model B are generally lower 

than those predicted by Model A. Once again, this has practical implications for the development tools to 

design and analyse of thermochemical microreactors. 

3.3. Nusselt number 

Figures 5-7 depict the variations of Nu versus thickness of the porous insert for different values of the 

pertinent parameters including the walls’ thickness, nanoparticles concentration, volumetric internal heat 

generation of nanofluid within the microchannel, and the volumetric internal heat generation of solid phase 

of the porous section. As it can be seen from all of these figures, depending on the parametric values of the 

system, there is a certain value for 𝑌𝑝 which provides the maximum Nu within the microchannel. This is the 
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reason behind the changing behaviour of the temperature field while increasing 𝑌𝑝 from 0.6 to 0.8 in Figs. 

3c and 3d. Also, by comparing parts a and b of each figure, two important conclusions can be drawn. The 

first one is that always Model B predicts a higher heat transfer rate than Model A (explaining why Model B 

temperature predictions in Fig. 3 are lower than those of Model A). This is a peculiarity of these two 

interface heat flux boundary conditions, and is consistent with Nu results reported in the partially-filled 

porous channel with zero wall thickness [24][20]. The second generic point is that for all cases, the 

optimum value of porous thickness for Model B is slightly larger than that under Model A. 

 Figure 5 shows that increasing the thickness of the walls increases the maximum value of Nu 

encountered in the microchannel quite significantly. This is such that by reducing 𝑌0  from 1 to 0.6, the 

maximum value of Nu is almost doubled. The physical reason for this behaviour can be explained by noting 

that the wall features internal heat generation and hence by thickening the wall the transported heat by 

the nanofluid flow within the microchannel has to be enhanced, which requires an increase in Nu. Figure 6 

shows that increasing the nanoparticles concentration increases the Nu for both interface models and 

slightly shifts the optimum thickness of the porous insert towards larger values. Hence, by increasing the 

nanoparticles concentration, within the set of parametric values used in this figure, the thickness of the 

porous insert should slightly increase to achieve the maximum Nu. This is an important finding as 

establishes a link between the optimum thickness of the porous insert and the volumetric concentration of 

the nanoparticles. 

 Figure 7 depicts some interesting behaviours of Nu versus internal heat generations in the nanofluid 

and porous solid phases of the microchannel. Positive and negative values of 𝜔𝑛𝑓 representing exothermic 

and endothermic chemical reactions in the nanofluid phase have been shown in Figs. 7a and 7b [51], while 

positive internal heat generations in the solid phase are shown in Figs. 7c and 7d. This figure shows that 

the maximum value of Nu is a very strong function of the internal heat generations in which exothermicity 

can substantially boost the Nu. Addition of heat to the system by the exothermicity of reactions increases 

the system temperature and consequently magnifies the temperature gradients, which are proportional to 

Nu [52]. In general, this sensitivity appears to be stronger under Model B. Yet, for both models the optimal 

thickness of the porous insert is only marginally affected by the variations in the heat generation. Further, 

under Model A there seems to be an inflection point for the dimensionless thickness of the porous insert at 

which the general behaviour of Nu changes. Figures 7a and 7c show that for 𝑌𝑝 > 0.7  increasing the 
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exothermicity of the nanofluid and porous solid phase reduces Nu. However, the existence of this inflection 

point is much less noticeable under Model B. 

3.4. Concentration fields 

Figures 8 to 12 have been devoted to the effects of different specifications of the microreactor on the 

concentration fields by implementing both porous-fluid interface models. It should be clarified that in this 

subsection, the concentration of the chemical species (consumed on the surface of the catalysts) is under 

investigation and the volumetric concentration of the nanoparticles is a parameter of the problem. One of 

the most apparent findings obtained through comparing Models A and B in Figs. 8 to 12 is that, with the 

used parametric values, Model B almost always predicts a lower concentration field than its companion. 

The reason for this can be attributed to the fact that in Model B the predicted temperature gradients are 

generally smaller than those predicted by Model A, and hence Soret effect is less influential on the 

concentration field. It is also clear that within the porous section of the microchannel the concentration 

profile is almost flat and significant homogenisation has been achieved compared with the open section of 

the microchannel. 

 Figure 8 shows that through decreasing the permeability of the porous medium the magnitude of the 

dimensionless concentration has decreases considerably. This is a clear manifestation of the thermal effects 

upon the diffusion of chemical species. It has been already demonstrated that in partially filled channels by 

reducing the permeability of the porous insert, the Nu increases [24], which reduces the temperature of the 

nanofluid phase and in turn weakens the thermal diffusion of mass. The net result is a smaller value of the 

dimensionless concentration through the Soret effect combined with the effects of first order chemical 

kinetics on the surface of the catalyst (see Eq. (11c)). 

 Figure 9 illustrates the effects of thicknesses of the walls and porous insert on the concentration field 

of the microchannel for both models. Figures 9a and 9b show that by increasing the walls’ thickness, the 

value of dimensionless concentration increases over the entire cross section of the microchannel. Once 

again, this is closely related to the thermal behaviour of the system. Figure 3 showed that by thickening the 

microchannel walls, the dimensionless temperatures and the temperature gradients within the system 

increase significantly. These changes intensify the thermal diffusion of mass at higher wall thicknesses, and 

therefore cause and boost in the dimensionless concentration. It is interesting to note that increasing the 

walls’ thickness from 0 to 0.2 increases the value of dimensionless concentration by almost 0.1 unit. 

However, further enlargement of the walls thickness (for the same amount) from 0.2 to 0.4 increases the 



18 

concentration field by around 0.4 unit. Figures 9c and 9d depict the effects of thickness of the porous insert 

upon the concertation field, while keeping the thickness of the walls constant. These figures indicate that 

increasing this thickness, magnifies the value of dimensionless concentration for both Models A and B. The 

most interesting observation here is the increment of concentration value for Model B by changing the 

porous thickness to 0.8. At this thickness of the porous insert the value of dimensionless concentration for 

Model B increases significantly and makes this case the only one with higher concentration compared to 

Model A for the same parametric values. This behaviour can be attributed to the temperature field for 

Model B at 𝑌𝑝 = 0.8, which has been illustrated in Fig. 3d. 

 Figure 10 depicts the effects of Soret numbers in the open and porous sections of the microchannel on 

the dimensionless concentration profiles for both Models A and B. The 𝑆𝑟1 and 𝑆𝑟2 are responsible for the 

thermal diffusion of mass in these regions and hence reflect the influences of the temperature field upon 

the concentration field in the open and porous sections of the microchannel, respectively. As expected, 

increasing the positive values of Soret number in the open and porous sections of the microchannel leads 

to larger values of dimensionless concentration. Physically, this implies that as the positive value of Soret 

number increases a lesser amount of chemical species is delivered to the catalyst and thus smaller amount 

of species are consumed. Consequently, at a given cross-section of the microchannel the concentration of 

species is higher for larger values of Sr. Comparison of the top sub-figures to the bottom ones in Fig. 10 

reveals that the effect of Sr in the clear section on the concentration profiles is more pronounced. This can 

be readily explained by noting that the catalytic surface is in contact with the clear section of the 

microchannel. 

 Figure 11 is devoted to the effects of reaction rate on the concentration field and shows that reducing 

the negative value of Damköhler number the dimensionless concentration decreases under both models. 

This is due to the intensification of the catalytic reaction, which consumes more species and leads to the 

reduction of the concentration of species across the microchannel. Figure 11 also indicates that both 

models provide almost the same prediction for the influences of Damköhler number. Finally, Fig. 12 shows 

the effects of nanoparticles concentration on the concentration of chemical species, calculated for both 

interface models. The contents of this figure are totally consistent with those of Fig. 4 and show that the 

concentration of nanoparticles have a considerable influence upon the mass transfer. Augmenting the 

nanoparticle concentration leads to smaller values of dimensionless temperature and thus diminishes the 

Soret effect and results in smaller values of dimensionless concentration. Along with other figures 
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presented in this sub-section, Fig. 12 clearly demonstrates that modest manipulations of the thermal field 

in the microreactor can result in considerable changes in the mass transfer problem. 

4. Conclusions 

This paper puts forward a theoretical analysis of the double-diffusive forced convection in a microreactor 

partially filled with porous materials. The primary aim was to explore the influences of porous-fluid 

interface models, wall thickness and nanofluids upon the dispersion of mass, which was coupled with 

thermal fields through considering the Soret effect. A first order catalytic chemical reaction was considered 

on the walls and the wall thickness was included in the mathematical model. To augment heat transfer, 

nanoparticles were included in the base fluid. The momentum, energy and dispersion equations were 

analytically solved by taking an LTNE approach, and the temperature profiles, Nu and concentration 

profiles were illustrated. It was shown that the wall thickness has substantial impacts on all the 

aforementioned characteristics of the microreactor. It was also shown that the magnitude and the 

corresponding optimal thickness of the porous insert are strongly dependent upon the wall thickness. Most 

importantly, it was also observed that the thicknesses of the wall and porous insert have major influences 

on the uniformity and magnitude of the concentration profile, while the quantitative predictions are highly 

affected by the choice of the porous-fluid interface models. Further, the internal heat generations appeared 

to be of high significance in predicting the Nu of the system. As expected, the use of nanofluid led to an 

increase in the heat transfer within the microreactor, while it reduced the dimensionless concentration. 

Amongst other findings, this investigation revealed that by incorporating a centrally located porous insert 

and nanofluid in microreactors, the temperature and concentration profiles become more controllable. 

 

Appendix A. Detailed solution procedure 

A.1. Velocity distribution 

Applying the dimensionless parameters defined in Eq. (25) to the momentum equations provides the 

following normalised relations for the velocity fields, 

0 = 1 + 𝐶𝜇
∂2𝑈𝑛𝑓

∂𝑌2   for  𝑌𝑝 < 𝑌 < 𝑌0, (A1) 

0 = 1 +
∂2𝑈𝑝

∂𝑌2 −
𝐶𝜇

𝑌0𝐷𝑎
𝑈𝑝   for  0 < 𝑌 < 𝑌𝑝, (A2) 

with the following associated boundary conditions, 
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∂𝑈𝑝

∂𝑌
= 0  at  𝑌 = 0, (A3a) 

𝑈𝑛𝑓 = 𝑈𝑝, 𝐶𝜇
∂𝑈𝑛𝑓

∂𝑌
=

∂𝑈𝑝

∂𝑌
  at  𝑌 = 𝑌𝑝, (A3b) 

𝑈𝑛𝑓 = 0  at  𝑌 = 𝑌0. (A3c) 

 The resultant expressions for the dimensionless velocity in the clear and porous regions respectively 

are: 

𝑈𝑛𝑓(𝑌) = −
𝑌2

2𝐶𝜇
+ 𝑎 + 𝑏𝑌,  (A4) 

𝑈𝑝(𝑌) =
𝐷𝑎 𝑌0

𝐶𝜇
+ 𝑐 cosh(𝑍𝑌), (A5) 

while the dimensionless average velocity for the flow is given by 

𝑈 =
𝐷𝑎𝑌0𝑌𝑝

𝐶𝜇
+

𝑐
𝑍

sinh(𝑍𝑌𝑝) −
1

6𝐶𝜇
(𝑌0

3 − 𝑌𝑝
3) +

1
2

𝑏(𝑌0
2 − 𝑌𝑝

2) + 𝑎(𝑌0 − 𝑌𝑝), (A6) 

where 𝑍 = √𝐶𝜇/(𝐷𝑎 𝑌0) and constants 𝑎, 𝑏 and 𝑐 are provided by: 

𝑎 = −
(−𝐶𝜇𝑌0

2 + 2𝐶𝜇𝑌0𝑌𝑝) cosh(𝑍𝑌𝑝) + (𝑍𝑌0
2𝑌𝑝 − 2𝐷𝑎𝑍𝑌0

2 − 𝑍𝑌0𝑌𝑝
2) sinh(𝑍𝑌𝑝)

2𝐶𝜇(𝐶𝜇 cosh(𝑍𝑌𝑝) + (𝑍𝑌0 − 𝑍𝑌𝑝) sinh(𝑍𝑌𝑝))
, (A7a) 

𝑏 = −
−2𝐶𝜇𝑌𝑝 cosh(𝑍𝑌𝑝) + (2𝐷𝑎𝑍𝑌0 − 𝑍𝑌0

2 + 𝑍𝑌𝑝
2) sinh(𝑍𝑌𝑝)

2𝐶𝜇(𝐶𝜇cosh (𝑍𝑌𝑝) + (𝑍𝑌0 − 𝑍𝑌𝑝)sinh (𝑍𝑌𝑝)])
, (A7b) 

𝑐 = −
(2𝐷𝑎𝑌0 − 𝑌0

2 + 2𝑌0𝑌𝑝 − 𝑌𝑝
2) csch (𝑍𝑌𝑝)

2(𝑍𝑌0 − 𝑍𝑌𝑝 + 𝐶𝜇 coth(𝑍𝑌𝑝))
. (A7c) 

 These velocity fields are hereafter used in the solution of the normalised equations for the heat flux at 

the porous-fluid interface, as well as the dimensionless energy equations. 

 By normalising Eq. (20) a dimensionless expression for Model A heat flux at the porous-fluid interface 

is produced. That is 

𝛾𝑝|
𝑀𝑜𝑑𝑒𝑙 𝐴

=
∫ 𝑈𝑝𝑑𝑌

𝑌𝑝

0

𝑈
(1 + 𝑄1(1 − 𝑌0) + 𝜔𝑠𝑌𝑝 + 𝜔𝑛𝑓𝑌0) − (𝜔𝑠 + 𝜔𝑛𝑓)𝑌𝑝, (A8) 

and the substitution of Eqs. (A5) and (A6) reveals 

𝛾𝑝|
𝑀𝑜𝑑𝑒𝑙 𝐴

=

𝐷𝑎
𝐶𝜇

𝑌0𝑌𝑝 + 𝑐
𝑍 sinh(𝑍𝑌𝑝)

𝑎 (𝑌0 − 𝑌𝑝) + 𝐷𝑎
𝐶𝜇

𝑌0𝑌𝑝 + 1
2  b (𝑌0

2 − 𝑌𝑝
2) − 1

6 𝐶𝜇
(𝑌0

3 − 𝑌𝑝
3) + 𝑐

𝑍 sinh(𝑍𝑌𝑝)

× (1 + 𝑄1(1 − 𝑌0) + 𝜔𝑠𝑌𝑝 + 𝜔𝑛𝑓𝑌0) − (𝜔𝑠 + 𝜔𝑛𝑓)𝑌𝑝. 

(A9) 
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 Similarly, normalising Eq. (23) provides an expression for the dimensionless form of Model B heat flux 

at the porous-fluid interface: 

𝛾𝑝|
𝑀𝑜𝑑𝑒𝑙 𝐵

=
∫ 𝑈𝑝𝑑𝑌

𝑌𝑝
0

2𝑈−∫ 𝑈𝑝𝑑𝑌
𝑌𝑝

0

− 𝑈

2𝑈−∫ 𝑈𝑝𝑑𝑌
𝑌𝑝

0

× [(𝜔𝑠 + 𝜔𝑛𝑓)𝑌𝑝 −
∫ 𝑈𝑝𝑑𝑌

𝑌𝑝
0

𝑈
(𝑄1(1 − 𝑌0) + 𝜔𝑛𝑓𝑌0 +

𝜔𝑠𝑌𝑝)],  

(A10) 

and through substitution of Eqs. (A5) and (A6) this expands to: 

𝛾𝑝|
𝑀𝑜𝑑𝑒𝑙 𝐵

=

𝐷𝑎𝑌0
𝐶𝜇

𝑌𝑝 + 𝑐
𝑍 sinh (𝑍𝑌𝑝)

2(𝑎(𝑌0 − 𝑌𝑝) + 𝐷𝑎
𝐶𝜇

𝑌0𝑌𝑝 + 1
2 𝑏(𝑌0

2 − 𝑌𝑝
2) − 1

6𝐶𝜇
(𝑌0

3 − 𝑌𝑝
3) + 𝑐

𝑍 sinh (𝑍𝑌𝑝)) − 𝐷𝑎
𝐶𝜇

𝑌0𝑌𝑝 − 𝑐
𝑍 sinh (𝑍𝑌𝑝)

−
𝑎(𝑌0 − 𝑌𝑝) + 𝐷𝑎

𝐶𝜇
𝑌0𝑌𝑝 + 1

2 𝑏(𝑌0
2 − 𝑌𝑝

2) − 1
6𝐶𝜇

(𝑌0
3 − 𝑌𝑝

3) + 𝑐
𝑍 sinh(𝑍𝑌𝑝)

2 (𝑎(𝑌0 − 𝑌𝑝) + 𝐷𝑎
𝐶𝜇

𝑌0𝑌𝑝 + 1
2 𝑏(𝑌0

2 − 𝑌𝑝
2) − 1

6𝐶𝜇
(𝑌0

3 − 𝑌𝑝
3) + 𝑐

𝑍 sinh(𝑍𝑌𝑝)) − 𝐷𝑎
𝐶𝜇

𝑌0𝑌𝑝 − 𝑐
𝑍 sinh(𝑍𝑌𝑝)

× [(𝜔𝑛𝑓 + 𝜔𝑠)𝑌𝑝 −
(𝑄1(1 − 𝑌0) + 𝜔𝑛𝑓𝑌0 + 𝜔𝑠𝑌𝑝) (𝐷𝑎𝑌0

𝐶𝜇
𝑌𝑝 + 𝑐

𝑍 sinh(𝑍𝑌𝑝))

𝑎(𝑌0 − 𝑌𝑝) + 𝐷𝑎
𝐶𝜇

𝑌0𝑌𝑝 + 1
2 𝑏(𝑌0

2 − 𝑌𝑝
2) − 1

6𝐶𝜇
(𝑌0

3 − 𝑌𝑝
3) + 𝑐

𝑍 sinh(𝑍𝑌𝑝)
]. 

(A11) 

 Finally, the dimensionless form of the fluid-wall heat flux is given by 

𝛾𝑠 = 1 + (𝑄1 − 𝑌0). (A12) 

A.2. Model A prediction of the temperature fields 

Through substitution of the normalised quantities presented in Eq. (25), dimensionless versions of Eqs. 

(3)-(6) can be produced for the Model A predictions of the temperature fields. Thus, the transport of 

thermal energy for the solid wall, open region, and nanofluid and solid phases of the porous region, 

respectively become, 

𝜃1
″(𝑌) +

𝑄1

𝑘1𝑠
= 0, (A13) 

𝑈𝑛𝑓(𝑌)
𝑈

(1 + 𝑄1(1 − 𝑌0) + 𝜔𝑛𝑓𝑌0 + 𝜔𝑠𝑌𝑝) =
𝐶𝑘𝑌0

𝑘𝜀
𝜃𝑛𝑓1

″ (𝑌) + 𝜔𝑛𝑓𝑌0, (A14) 

𝑈𝑝(𝑌)
𝑈

(1 + 𝑄1(1 − 𝑌0) + 𝜔𝑛𝑓𝑌0 + 𝜔𝑠𝑌𝑝)

=
𝐶𝑘𝑌0

𝑘
𝜃𝑛𝑓2

″ (𝑌) +
𝐵𝑖
𝑌0

(𝜃𝑠(𝑌) − 𝜃𝑛𝑓2(𝑌)) + 𝜔𝑛𝑓𝑌0, 

(A15) 
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0 = 𝜃𝑠
″(𝑌) −

𝐵𝑖
𝑌0

(𝜃𝑠(𝑌) − 𝜃𝑛𝑓2(𝑌)) + 𝜔𝑠. (A16) 

 Furthermore, the associated dimensionless boundary conditions under Model A assumption are as 

follows, 

𝜃𝑛𝑓2
′ (0) = 𝜃𝑠

′(0) = 0, (A17a) 

𝜃𝑛𝑓1(𝑌𝑝) = 𝜃𝑛𝑓2(𝑌𝑝) = 𝜃𝑠(𝑌𝑝) = 0, (A17b) 

𝜃𝑛𝑓1(𝑌0) = 𝜃1(𝑌0)
𝐶𝑘

𝑘𝜀
, (A17c) 

𝜃𝑛𝑓1
′ (𝑌0) = 𝜃1

′ (𝑌0), (A17d) 

𝑘1𝑠𝜃1
′(1) =

1
𝑘1𝑠

. (A17e) 

 By taking the second derivative with respect to Y, coupled Eqs. (A15) and (A16) can be decoupled and 

turned into fourth order ODE's of the following forms, 

𝜃𝑛𝑓2
⁗ (𝑌) −

𝐵𝑖
𝑌0

(1 +
𝑘

𝐶𝑘𝑌0
) 𝜃𝑛𝑓2

″ (𝑌)

=
𝑘

𝐶𝑘𝑌0
(1 + 𝑄1(1 − 𝑌0) + 𝜔𝑛𝑓𝑌0 + 𝜔𝑠𝑌𝑝) × [

𝑈𝑝
″(𝑌)
𝑈

−
𝐵𝑖
𝑌0

𝑈𝑝(𝑌)
𝑈

]      

+
𝑘𝐵𝑖

𝐶𝑘𝑌0
2 (𝜔𝑛𝑓𝑌0 + 𝜔𝑠), 

(A18) 

𝜃𝑠
⁗(𝑌) −

𝐵𝑖
𝑌0

(1 +
𝑘

𝐶𝑘𝑌0
) 𝜃𝑠

″(𝑌)

=
𝐵𝑖𝑘

𝐶𝑘𝑌0
2 [

𝑈𝑝(𝑌)
𝑈

(1 + 𝑄1(1 − 𝑌0) + 𝜔𝑛𝑓𝑌0 + 𝜔𝑠𝑌𝑝) − (𝜔𝑛𝑓𝑌0 + 𝜔𝑠)]. 

(A19) 

 Evaluating the second and third derivatives of 𝜃𝑠  and 𝜃𝑛𝑓2  at 𝑌 = 𝑌𝑝  and 𝑌 = 0,  respectively, the 

following boundary conditions are revealed, 

𝜃𝑛𝑓2
‴ (0) = 𝜃𝑠

‴(0) = 0, (A20a) 

𝜃𝑛𝑓2
″ (𝑌𝑝) =

𝑘
𝐶𝑘𝑌0

[
𝑈𝑝(𝑌𝑝)

𝑈
(1 + 𝑄1(1 − 𝑌0) + 𝜔𝑛𝑓𝑌0 + 𝜔𝑠𝑌𝑝) − 𝜔𝑛𝑓𝑌0], (A20b) 

𝜃𝑠
″(𝑌𝑝) = −𝜔𝑠. (A20c) 

 By solving decoupled energy Eqs. (A13), (A14), (A18) and (A19) and applying the boundary conditions 

given by Eqs. (A17) and (A20), expressions for the Model A temperature fields across the microchannel can 

be obtained. Firstly, for the solid wall: 



23 

𝜃1(𝑌) = −
𝑄1𝑌2

2𝑘1𝑠
+ 𝐴1 + 𝐴2𝑌, (A21) 

and the temperature field for the clear region is given by 

𝜃𝑛𝑓1(𝑌) = 𝑌3𝑏
𝑘𝜀𝜒𝐴

6𝐶𝑘𝑈𝑌0
− 𝑌4 𝑘𝜀𝜒𝐴

24𝐶𝑘𝐶𝜇𝑈𝑌0
+ 𝑌2 (−

𝑘𝜔𝑛𝑓𝜀
2𝐶𝑘

+ 𝑎
𝑘𝜀𝜒𝐴

2𝐶𝑘𝑈𝑌0
) + 𝐴3 + 𝐴4𝑌. (A22) 

 Further, the temperature fields for the nanofluid and solid phases of the porous region are respectively 

resolved to the following forms, 

𝜃𝑛𝑓2(𝑌) = −
𝑘𝑌2(𝐶𝜇𝑈𝜔𝑠 + 𝐶𝜇𝑈𝜔𝑛𝑓𝑌0 − 𝐷𝑎𝑌0𝜒𝐴)

2𝐶𝜇𝑈(𝑘 + 𝐶𝑘𝑌0)
+ 𝐴5

𝐶𝑘𝑌0
2

𝐵𝑖(𝑘 + 𝐶𝑘𝑌0) cosh(𝛼𝑌) + 𝐴6

+ 𝑐
𝑘(−𝐵𝑖 + 𝑌0𝑍2)𝜒𝐴

𝑈𝑍2(−𝑘𝐵𝑖 − 𝐵𝑖𝐶𝑘𝑌0 + 𝐶𝑘𝑌0
2𝑍2)

cosh(𝑍𝑌), 

(A23) 

𝜃𝑠(𝑌) = −
𝑘𝑌2(𝐶𝜇𝑈𝜔𝑠 + 𝐶𝜇𝑈𝜔𝑛𝑓𝑌0 − 𝐷𝑎𝑌0𝜒𝐴)

2𝐶𝜇𝑈(𝑘 + 𝐶𝑘𝑌0)
+ 𝐴7

𝐶𝑘𝑌0
2

𝐵𝑖(𝑘 + 𝐶𝑘𝑌0) cosh(𝛼𝑌) + 𝐴8

+ 𝑐
𝑘𝐵𝑖𝜒𝐴

𝑈𝑍2(𝑘𝐵𝑖 + 𝐵𝑖𝐶𝑘𝑌0 − 𝐶𝑘𝑌0
2𝑍2)

cosh(𝑍𝑌), 

(A24) 

where 𝜒𝐴 = (1 + 𝑄1(1 − 𝑌0) + 𝜔𝑛𝑓𝑌0 + 𝜔𝑠𝑌𝑝), 𝛼 = √𝐵𝑖√𝑘+𝐶𝑘𝑌0

√𝐶𝑘𝑌0
 and constants 𝑎, 𝑏 and 𝑐 are provided by Eq. 

(A7). Coefficients 𝐴1  to 𝐴8  are lengthy algebraic expressions, which do not specifically reveal any 

information of interest and hence, in the interest of conciseness, are not provided here. 

A.3. Model B predictions of the temperature fields 

Under the conditions for Model B, the transport of energy for the solid wall and the solid phase of the porous 

region are unchanged from their form under Model A, and thus are already provided by Eqs. (A13) and 

(A14). Normalised versions of Eqs. (4) and (5) under Model B are generated by applying the relevant 

dimensionless variables introduced in Eq. (25). The transport of energy for the nanofluid in the clear region 

under Model B reduces to  

𝑈𝑛𝑓(𝑌)
𝑈

(1 + 𝛾𝑝|𝑀𝑜𝑑𝑒𝑙 𝐵 + 𝑄1(1 − 𝑌0) + 𝜔𝑛𝑓𝑌0 + 𝜔𝑠𝑌𝑝) =
𝐶𝑘𝑌0

𝑘𝜀
𝜃𝑛𝑓1

″ (𝑌) + 𝜔𝑛𝑓𝑌0, (A25) 

and for the nanofluid phase inside the porous region, it becomes: 

𝑈𝑝(𝑌)
𝑈

(1 + 𝛾𝑝|𝑀𝑜𝑑𝑒𝑙𝐵 + 𝑄1(1 − 𝑌0) + 𝜔𝑛𝑓𝑌0 + 𝜔𝑠𝑌𝑝)

=
𝐶𝑘𝑌0

𝑘
𝜃𝑛𝑓2

″ (𝑌) +
𝐵𝑖
𝑌0

(𝜃𝑠(𝑌) − 𝜃𝑛𝑓2(𝑌)) + 𝜔𝑛𝑓𝑌0. 

(A26) 

 The corresponding boundary conditions for Model B are as follows 
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𝜃𝑛𝑓2
′ (0) = 𝜃𝑠

′(0) = 0, (A27a) 

𝜃𝑛𝑓1(𝑌𝑝) = 𝜃𝑛𝑓2(𝑌𝑝), (A27b) 

𝜃𝑠(𝑌𝑝) = 0, (A27c) 

𝐶𝑘

𝑘
𝜃𝑛𝑓2

′ (𝑌𝑝) = 𝜃𝑠
′(𝑌𝑝) = 𝛾𝑝|𝑀𝑜𝑑𝑒𝑙 𝐵, (A27d) 

𝜃𝑠
″(𝑌𝑝) +

𝐵𝑖
𝑌0

𝜃𝑛𝑓2(𝑌𝑝) + 𝜔𝑠 = 0, (A27e) 

𝜃𝑛𝑓1(𝑌0) = 𝜃1(𝑌0), (A27f) 

𝐶𝑘

𝑘𝜀
 𝜃𝑛𝑓1

′ (𝑌0) = 𝜃1
′ (𝑌0) 𝑘1𝑠, (A27g) 

𝜃1
′(1) =

1
𝑘1𝑠

. (A27h) 

 In order to decouple energy equations of the porous region, given by Eqs. (A15) and (A16), the second 

derivative is taken with respect to Y. Some algebraic manipulations result in 

𝜃𝑛𝑓2
⁗ (𝑌) −

𝐵𝑖
𝑌0

(1 +
𝑘

𝐶𝑘𝑌0
) 𝜃𝑛𝑓2

″ (𝑌)

=
𝑘

𝐶𝑘𝑌0
(1 + 𝛾𝑝|𝑀𝑜𝑑𝑒𝑙 𝐵 + 𝑄1(1 − 𝑌0) + 𝜔𝑛𝑓𝑌0 + 𝜔𝑠𝑌𝑝)

× [
𝑈𝑝

″(𝑌)
𝑈

−
𝐵𝑖
𝑌0

𝑈𝑝(𝑌)
𝑈

] +
𝑘𝐵𝑖

𝐶𝑘𝑌0
2 (𝜔𝑛𝑓𝑌0 + 𝜔𝑠), 

(A28) 

𝜃𝑠
⁗(𝑌) −

𝐵𝑖
𝑌0

(1 +
𝑘

𝐶𝑘𝑌0
) 𝜃𝑠

″(𝑌)

=
𝐵𝑖 𝑘
𝐶𝑘𝑌0

2 [
𝑈𝑝(𝑌)

𝑈
(1 + 𝛾𝑝|𝑀𝑜𝑑𝑒𝑙 𝐵 + 𝑄1(1 − 𝑌0) + 𝜔𝑛𝑓𝑌0 + 𝜔𝑠𝑌𝑝)

− (𝜔𝑛𝑓𝑌0 + 𝜔𝑠)]. 

(A29) 

 Evaluating the second and third derivatives of 𝜃𝑠 and 𝜃𝑛𝑓2 at 𝑌 = 0 reveals 

𝜃𝑛𝑓2
‴ (0) = 𝜃𝑠

‴(0) = 0. (A30) 

 By solving the ODE's presented in Eqs. (A13), (A25), (A28) and (A29), which represent the transport 

of energy across each section of the microchannel, a full representation of the temperature field at each 

point across the system is established. For the solid wall: 

𝜃1(𝑌) = −
𝑄1𝑌2

2𝑘1𝑠
+ 𝐵1 + 𝐵2𝑌, (A31) 

and for the nanofluid in the clear region: 
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𝜃𝑛𝑓1(𝑌) = 𝑌3𝑏
𝑘𝜀𝜒𝐵

6𝐶𝑘𝑈𝑌0
− 𝑌4 𝑘𝜀𝜒𝐵

24𝐶𝑘𝐶𝜇𝑈𝑌0
+ 𝑌2 (−

𝑘𝜔𝑛𝑓𝜀
2𝐶𝑘

+ 𝑎
𝑘𝜀𝜒𝐵

2𝐶𝑘𝑈𝑌0
) + 𝐵3 + 𝐵4𝑌. (A32) 

 The temperature fields of the nanofluid and solid phases of the porous region are given by 

𝜃𝑛𝑓2(𝑌) = −
𝑘𝑌2(𝐶𝜇𝑈𝜔𝑠 + 𝐶𝜇𝑈𝜔𝑛𝑓𝑌0 − 𝐷𝑎𝑌0𝜒𝐵)

2𝐶𝜇𝑈(𝑘 + 𝐶𝑘𝑌0)
+ 𝐵5

𝐶𝑘𝑌0
2

𝐵𝑖(𝑘 + 𝐶𝑘𝑌0) cosh(𝛼𝑌) + 𝐵6

+ 𝑐
𝑘(−𝐵𝑖 + 𝑌0𝑍2)𝜒𝐵

𝑈𝑍2(−𝑘𝐵𝑖 − 𝐵𝑖𝐶𝑘𝑌0 + 𝐶𝑘𝑌0
2𝑍2)

cosh(𝑍𝑌), 

(A33) 

𝜃𝑠(𝑌) = −
𝑘𝑌2(𝐶𝜇𝑈𝜔𝑠 + 𝐶𝜇𝑈𝜔𝑛𝑓𝑌0 − 𝐷𝑎𝑌0𝜒𝐵)

2𝐶𝜇𝑈(𝑘 + 𝐶𝑘𝑌0)
+ 𝐵7

𝐶𝑘𝑌0
2

𝐵𝑖(𝑘 + 𝐶𝑘𝑌0) cosh(𝛼𝑌) + 𝐵8

+ 𝑐
𝑘𝐵𝑖𝜒𝐵

𝑈𝑍2(𝑘𝐵𝑖 + 𝐵𝑖𝐶𝑘𝑌0 − 𝐶𝑘𝑌0
2𝑍2)

cosh(𝑍𝑌), 

(A34) 

where 𝜒𝐵 = (1 + 𝛾𝑝|𝑀𝑜𝑑𝑒𝑙 𝐵 + 𝑄1(1 − 𝑌0) + 𝜔𝑛𝑓𝑌0 + 𝜔𝑠𝑌𝑝) , 𝛼 = √𝐵𝑖√𝑘+𝐶𝑘𝑌0

√𝐶𝑘𝑌0
 and constants 𝑎 , 𝑏  and 𝑐  are 

provided by Eq. (A7). Once again, coefficients 𝐵1 to 𝐵8 are very long algebraic expressions and thus are not 

given in here. 

A.4. LTE solution 

The local thermal equilibrium state in the porous region can be derived by adding Eqs. (A15) and (A16) to 

produce, 

𝑈𝑝(𝑌)
𝑈

(1 + 𝑄1(1 − 𝑌0) + 𝜔𝑛𝑓𝑌0 + 𝜔𝑠𝑌𝑝) =
𝐶𝑘𝑌0

𝑘
𝜃𝑛𝑓2

″ (𝑌) + 𝜃𝑠
″(𝑌) + 𝜔𝑛𝑓𝑌0 + 𝜔𝑠, (A35) 

and by applying the LTE condition of 𝜃𝑛𝑓2 = 𝜃𝑠 = 𝜃𝐿𝑇𝐸  the following one-equation model is developed: 

𝑈𝑝(𝑌)
𝑈

(1 + 𝑄1(1 − 𝑌0) + 𝜔𝑛𝑓𝑌0 + 𝜔𝑠𝑌𝑝) = (
𝐶𝑘𝑌0

𝑘
+ 1) 𝜃𝐿𝑇𝐸

″ (𝑌). (A36) 

 The related boundary conditions for the LTE model reduce to 

𝜃𝐿𝑇𝐸
′ (0) = 0, (A37a) 

𝜃𝐿𝑇𝐸(𝑌𝑝) = 𝜃𝑛𝑓1(𝑌𝑝). (A37b) 

 By integrating Eq. (A36) and applying the boundary conditions provided in Eq. (A37), the LTE 

temperature field can be defined as 

𝜃𝐿𝑇𝐸(𝑌) = 𝐶𝐿𝑇𝐸 +
𝑘 (− 1

2 𝐶𝜇𝑈𝑌2(𝜔𝑛𝑓𝑌0 + 𝜔𝑠) + 𝜒 [1
2 𝐷𝑎𝑌0𝑌2 + 𝑐

𝑍2 𝐶𝜇 cosh(𝑍𝑌)])

𝐶𝜇𝑈(𝑘 + 𝐶𝜇𝑌0)
, (A38) 

where 𝜒 = (1 + 𝑄1(1 − 𝑌0) + 𝜔𝑛𝑓𝑌0 + 𝜔𝑠𝑌𝑝) and coefficient 𝐶𝐿𝑇𝐸  consists of lengthy long-form algebra not 

provided here. 
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Fig. 1. Schematic configurations of the model microreactor. 
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Fig. 2. Comparison of the present solution (symbols) with (a) temperature fields of Ref. [27] (lines)  and 

(b) Nu of Ref. [50] (lines) for both models. 
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Fig. 3. Dimensionless temperature variation for various values of (a,b) thickness of the walls and (c,d) 

thickness for the porous material for Models A and B. 
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Fig. 4. Dimensionless temperature variation for various values of nanoparticles volumetric concentration 

for Models A and B. 

( )a

( )b



36 

 

 

Fig. 5. Nusselt number verses thickness of the porous insert for various values of the walls’ thickness for 

Models A and B. 
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Fig. 6. Nusselt number verses thickness of the porous insert for various values of nanoparticles 

volumetric concentration for Models A and B. 
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Fig. 7. Nusselt number verses thickness of the porous insert for various values of internal heat generation 

in (a,b) nanofluid and (c,d) solid phase of the porous section for Models A and B. 
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Fig. 8. Dimensionless concentration profiles for various values of Darcy number for Models A and B. 
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Fig. 9. Dimensionless concentration profiles for various values of (a,b) walls’ thickness and (c,d) thickness 

of the porous insert for Models A and B. 
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Fig. 10. Dimensionless concentration profiles for various values of (a, b) clear section Soret number and 

(c, d) porous section Soret number for Models A and B. 
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Fig. 11. Dimensionless concentration profiles for various values of Damköhler number for Models A and 

B. 
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Fig. 12. Dimensionless species concentration profiles for various values of nanoparticles volumetric 

concentration for Models A and B. 
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