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ABSTRACT
We propose a novel methodology to select host galaxy candidates of future pulsar timing array
(PTA) detections of resolved gravitational waves (GWs) from massive black hole binaries
(MBHBs). The method exploits the physical dependence of the GW amplitude on the MBHB
chirp mass and distance to the observer, together with empirical MBH mass–host galaxy
correlations, to rank potential host galaxies in the mass–redshift plane. This is coupled to a
null-stream-based likelihood evaluation of the GW amplitude and sky position in a Bayesian
framework that assigns to each galaxy a probability of hosting the MBHB generating the GW
signal. We test our algorithm on a set of realistic simulations coupling the likely properties
of the first PTA resolved GW signal to synthetic all-sky galaxy maps. For a foreseeable
PTA sky-localization precision of 100 deg2, we find that the GW source is hosted with
50 per cent (90 per cent) probability within a restricted number of �50(�500) potential hosts.
These figures are orders of magnitude smaller than the total number of galaxies within the PTA
sky error-box, enabling extensive electromagnetic follow-up campaigns on a limited number
of targets.

Key words: black hole physics – gravitational waves – pulsars: general.

1 IN T RO D U C T I O N

Multimessenger astronomy with gravitational waves (GWs) has
long been anticipated as one of the ‘Holy Grails’ for the under-
standing of the Universe. After a long wait, the first spectacular
confirmation of its potential came with the detection of GWs from
GW170817 (Abbott et al. 2017a), a binary neutron star coalescence
(BNS) at about 40 Mpc distance, accompanied by a bright electro-
magnetic (EM) signal observed at all wavelengths (Abbott et al.
2017c). The wealth of fresh information brought by this event has
been the key to confirming several theoretical speculations, from
the short gamma-ray burst–BNS merger connection (Abbott et al.
2017d) to the synthesis through r-processes of the heavy elements
permeating the Universe (Chornock et al. 2017), and opened a new
way to do cosmology with standard sirens (Schutz 1986; Abbott
et al. 2017b; Fishbach et al. 2018). All of this has been achieved
thanks to the excellent sky-localization and distance information
provided by LIGO–Virgo, an intense follow-up campaign, and
the presence of a bright, distinct EM counterpart that could be
easily singled out from other possible candidates. The small size
of the sky-localization error-box was crucial, since it allowed

� E-mail: jgoldstein@star.sr.bham.ac.uk

systematic scanning of a relatively low number of possible galaxy
hosts.

Realizing the full potential of multimessenger astronomy might
prove more difficult in the low-frequency band relevant to space-
based interferometers such as LISA (Amaro-Seoane et al. 2017) and
pulsar timing arrays (PTAs Verbiest et al. 2016), where the expected
loudest sources involve inspiral and merger of massive black hole
binaries (MBHBs) at cosmological distances (Sesana, Vecchio &
Colacino 2008; Klein et al. 2016). Merging MBHBs are not per se
expected to produce EM signals, so multimessenger efforts need
to rely on some distinctive signature in the emission of the gas
that might be accreted by the system during the inspiral and final
coalescence (Tang, MacFadyen & Haiman 2017). Even so, it is not
clear what that signature would be and a range of possibilities have
been proposed, from periodicity (e.g. Sesana et al. 2012) to peculiar
spectral features (e.g. Tanaka, Menou & Haiman 2012), and EM
chirps (e.g. Haiman 2017).

The situation is particularly challenging for PTAs. Besides detect-
ing a stochastic gravitational wave background (GWB) produced
by the superposition of many MBHB systems (e.g. Phinney 2001;
Sesana et al. 2008; Ravi et al. 2012), PTAs also have the capability
to detect and localize in the sky particularly loud MBHBs (Sesana,
Vecchio & Volonteri 2009; Ravi et al. 2015; Rosado, Sesana &
Gair 2015; Kelley et al. 2018). Mingarelli et al. (2017) predict that
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in 10 yr, the first resolved binary could be detected. Strategies for
optimizing PTA for single source detection (by allocating observing
time and targeted searched for new pulsars) have been proposed by
e.g. Burt, Lommen & Finn (2011), Simon et al. (2014, by identifying
‘hot spots’ from nearby galaxy clusters), and Lam (2018). However
both the prediction of Kelley et al. (2018) and the optimization for
a detection of Lam (2018) are complicated by the difficult to model
red noise of the pulsars.

When looking for an EM counterpart to the first PTA resolved
binary detections, one faces three main problems. First, the sky-
localization is expected to be relatively poor (of the order of
hundreds of deg2; Sesana & Vecchio 2010; Goldstein et al. 2018).
Secondly, the detected GW signal is likely to be monochromatic.
The absence of observable frequency evolution (chirp) of the
waveform prevents one from separating the source mass from
the distance, since only the overall amplitude A and frequency
f are measured. Last, the signal evolves slowly in time, with a
periodicity of the order of years. Associated counterparts might
be identified through peculiar features in the source luminosity or
through potential peculiarities of the galaxy host (Sesana et al. 2012;
Tanaka et al. 2012; Burke-Spolaor 2013). In any case there is no
clear smoking-gun event such as a transient counterpart, as is the
case for a BNS merger.

It is therefore crucial to find a way to identify the most promising
host galaxy candidates among the millions of objects falling within
the source sky location error-box. In this paper, we develop a
Bayesian framework to identify the most likely hosts by matching
the information contained in a hypothetical PTA detection to
candidate galaxy properties. The key point around which our
analysis is built is that individually resolvable sources in the PTA
band necessarily have a large strain amplitude A (Rosado et al. 2015;
Kelley et al. 2018), which can result only from particularly massive
and/or nearby MBHBs. We show that this allows one to exclude at
high confidence the vast majority of the galaxies in the error-box,
significantly reducing the number of candidates.

To demonstrate this, we consider a synthetic PTA and inject
GW signals with properties compatible to the first single sources
to be detected by future PTAs, drawn by following the procedure
described in Rosado et al. (2015). We then use the null-stream
analysis developed in Goldstein et al. (2018) to construct the 3D
likelihood function of the signal amplitude A and sky-localization
θ , φ. We extract a mock catalogue of galaxies from the synthetic all
sky maps obtained by Henriques et al. (2012) from the Millennium
Simulation (Springel et al. 2005) and use Bayesian inference to rank
host candidates.

The paper is organized as follows. In Section 2 we lay out the
mathematical basis of our experiment, including the construction of
a likelihood from null-streams and the Bayesian framework for the
computation of a host galaxy probability. This framework is then
applied in Section 3 to a number of representative simulations with
results laid out in Section 4 and the main conclusions and outlook
presented in Section 5.

2 MATH E M AT I C A L F R A M E WO R K

2.1 Signal model and null-stream sky-localization

PTAs are capable of reconstructing the incoming direction of a
deterministic GW source via triangulation (Babak & Sesana 2012;
Boyle & Pen 2012), providing that three or more millisecond pulsars
(MSPs) contribute to the detection. We consider, for simplicity, a
circular, monochromatic MBHB. The emitted GW can be written

in the form (Jaranowski, Królak & Schutz 1998)

h+(t) = A+ cos (2ψ) − A× sin (2ψ) (1)

h×(t) = A+ sin (2ψ) + A× cos (2ψ), (2)

where ψ is the GW polarization angle and

A+ = A
1

2
(1 + cos ι2) cos (2πf t + φ0) (3)

A× = A(cos ι) sin (2πf t + φ0). (4)

The two polarization amplitudes A+, A× are modulated with the
observed GW frequency f and are related to the intrinsic amplitude1

A = 4
(GMz)5/3(πf )2/3

Dl
(5)

via the inclination angle to the line of sight ι. The amplitude A is a
function of the source redshifted chirp mass

Mz = (1 + z)M = (1 + z)
(M1M2)3/5

(M1 + M2)1/5
, (6)

and of its luminosity distance

Dl = (1 + z)DH

∫ z

0

dz′

E(z′)
. (7)

In the above equations, M1 and M2 are the masses of the two black
holes forming the binary, z is the source redshift, DH = c/H0, and
E(z) =

√
�M(1 + z)3 + �	, with �M and �	 being the fractional

mass and cosmological constant energy content, H0 the Hubble
constant and assuming a standard flat 	CDM universe (Planck
Collaboration XIII 2016).

The GW induces into the pulse time of arrival a redshift of the
form

z(t, Ω̂) = F+(Ω̂)h+(t) + F×(Ω̂)h×(t), (8)

where the ‘antenna beam patterns’ F+ and F× depend on the angle
between the incoming GW direction Ω̂ and the known position
of the MSP (see e.g. Anholm et al. 2009). In practice, PTAs are
sensitive to the two wave polarizations h+, h× that depend on the
vector of parameters (A, ι, f, ψ , φ0, θ , φ), where we decomposed
the incoming wave direction Ω̂ on to its (θ , φ) coordinates in the
sky.

In Goldstein et al. (2018) we developed a null-stream-based
analysis (see also Zhu et al. 2015 and Hazboun & Larson 2016)
that, among other things, can be used to infer the amplitude and
incoming direction of the GW source. Since for an individual GW
source there are only two polarizations, but an array of N allows
measurement of N independent time (or frequency) series, it is
possible to apply a matrix transformation that ‘collapses’ the signal
into two of these time series. This nulls the signal contribution in
all the others, hence constructing N − 2 null-streams. Formally,
the transformation takes the form (see Goldstein et al. 2018, for

1This definition of A is equivalent to the definition with a prefactor of 2
instead of 4 – which is also seen in the literature, e.g. in Babak et al.
(2016) – as that definition is accompanied by an additional factor of 2 in
equations (3) and (4).
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details):

M d =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h+

h×

η1

...

ηN−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ M n ≡ h + M n, (9)

where d represents the original N time series of the N pulsars
(including signal and noise n), M is the matrix transformation,
ηi = 0 are the null streams, and h is the combined vector of
GW polarizations and null streams. In practice this amounts to
the construction of N linear combinations of the timing residuals so
that the GW signal is present only in two of them and null in all the
others.

The null streams can then be used to construct the likelihood
function

l = −1

2

(
(Md − h)�((M−1)��M−1)(Md − h)

)
+ norm, (10)

where � is the inverse of the covariance matrix appropriate for the
expected noise of the detector. For a signal detected at frequency f,
marginalization of the likelihood over the parameters ι, ψ , φ, yields
the 3D likelihood function L(A, θ, φ). For an example L(A, θ, φ),
see Fig. 1.

In this work, we use the Goldstein et al. (2018) null-stream
pipeline to obtain L(A, θ, φ). However in principle any method
could be used to localize the source, as long as it can provide a
joint likelihood on the sky location and amplitude of the signal. The
framework for candidate host galaxy selection, which is introduced
in the following section, is written in term of a generic input
L(A, θ, φ).

2.2 Bayesian inference for galaxy host

Our goal is to combine the likelihood information L(A, θ, φ) with
individual galaxy properties to assess the probability of each given
galaxy to be the host of the detected GW source. The question we
want to answer in practice is: given the detection of a signal with
3D likelihood described by L(A, θ, φ), what is the probability that
a galaxy Gi described by a set of observed parameters λ – known
with prior probability p(λ|Gi) – is the host of the signal source? To
answer this question we need a theoretical model that connects the
strength and location of a putative GW signal to observable galaxy
parameters.

Since MBHBs reside in the centre of galaxies, the sky coordinates
of each specific galaxy (θG, φG) coincide with the sky coordinates
of the putative GW source. We therefore have θG = θ and φG = φ.
Furthermore, we see from equations (5) and (6) that the GW
amplitude A depends on the source chirp mass M and luminosity
distance Dl. This latter can be easily measured from the galaxy
spectroscopic redshift by assuming a fiducial cosmology. Whereas
M can be written in terms of the total binary mass M and mass
ratio q = M2/M1 (with M2 ≤ M1) as: M = Mq3/5/(1 + q)6/5, we
can assume the total mass to be related to the bulge mass via an M
− Mb relation of the form

log10

(
M

M�

)
= α + βlog10

(
Mb

1011M�

)
(11)

which connects the total binary mass to the observable galaxy bulge
stellar mass Mb. If we group the M − Mb constants α and β with

Figure 1. Example of L(A, θ, φ) as output by the null-stream pipeline. The
injected signal is for source A, with S/N = 12 (see Section 3). Top: Likelihood
marginalized over A (i.e. L(θ, φ) with an arbitrary normalization). The IPTA
pulsars are marked with stars, where the size of the star corresponds to the
noise level of the pulsar (with bigger stars for lower noise). The yellow
cross indicates the position of the injected source. Bottom: L(A|θs, φs) at
the source position (θ s, φs) (in black) and at some offset positions (θ s, φs

+ �) (in blue). The likelihoods are normalized only with respect to each
other. The red dashed line is placed at the injected amplitude value.

the galaxy parameters, the vector of seven parameters

λ = (Mb, Dl, θ, φ, q, α, β) (12)

is sufficient to connect a specific galaxy to the GW strain. All of
them but q, α, and β can be directly extracted from observations.

Formally the full calculation can be cast in term of Bayes’
theorem. Let P(Gi|d) be the probability of galaxy Gi being the
host galaxy, given some data d, then:

P (Gi |d) = P (Gi)

P (d)
P (d|Gi) = P (Gi)

P (d)

∫
p(d|λ)p(λ|Gi) dλ, (13)

where P(d) = ∑
iP(d|Gi) is the likelihood of the data marginalized

over all galaxies (or evidence). P(Gi) is the prior probability of Gi

being the host, which we take to be a constant, having no reason
a priori to prefer any particular galaxy. Of interest is the shape of
the distribution of P(Gi|d), so disregarding the constant prefactor
P(Gi)/P(d), we are left with the likelihoods P(d|Gi).

The likelihood of a specific galaxy Gi to be the host of the GW
source is given by the integral in equation (13) and is composed
of the probability of the data given the source parameters p(d|λ),
times the prior distribution on these parameters p(λ|Gi), integrated
over all the relevant variables given in equation (12).
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What is needed is an operational form for p(d|λ). First, the
amplitude A is independent on θ , φ and so

p(d|λ) = p(d|Mb, Dl, θ, φ, q, α, β)

= p(d|A, θ, φ) p(A|Mb, Dl, q, α, β). (14)

Secondly, A is a direct function of the chirp mass M and distance
only, we can therefore write

p(A|Mb,Dl, q, α, β) = p(A|M, Dl) p(M|Mb, q, α, β). (15)

Last, M is a function of q and M, and the latter is related to Mb by
the M − Mb relation. We therefore have

p(M|Mb, q, α, β) = p(M|M,q) p(M|Mb, α, β). (16)

Putting the chain together we get

p(d|Gi) =
∫

p(d|A, θ, φ) p(A|M, Dl) p(M|M,q)

p(M|Mb, α, β)p(Mb, Dl, θ, φ, q, α, β|Gi)

dMb dDl dθ dφ dq dα dβ dM. (17)

We can now specify the individual elements of equation (17) for
practical computational purposes.

(1) p(λ|Gi) = p(Mb, Dl, θ, φ, q, α, β|Gi) describes the prior
knowledge of each galaxy property and the underlying M − Mb

constants. We assume that all five galaxy parameters – so excluding
α and β – are independent so that the prior can be factorized as
p(λ|Gi) = ∏5

j=1 p(λj |Gi). In particular,

(i) Mb in real surveys is generally obtained from the galaxy
luminosity via bulge–disc decomposition. Mb is then computed
from the bulge luminosity by assuming a stellar mass function.
Typical uncertainties in this procedure can be up to a factor
of two (Longhetti & Saracco 2009). Nonetheless, as a first
approximation, we take Mb to be known exactly, reducing the
prior p(Mb) to a delta function (so the integral over Mb drops
out).

(ii) Dl is computed from the spectroscopic redshift of the
galaxy z via equation (7). Uncertainties on the cosmological
parameters H0,�M, �	 are of the order of a few per cent (Planck
Collaboration XIII 2016) and weak lensing is subdominant for the
z < 1 galaxies relevant here (Shapiro et al. 2010). We therefore
also assume Dl to be known exactly, reducing the prior p(Dl)
to a delta function, dropping the integration over Dl from the
likelihood marginalization.

(iii) θ , φ are generally determined with arcsecond precision,
which for any practical purposes can be treated as delta functions
as well.

(iv) q, the binary mass ratio, is essentially undetermined. We
therefore use a broad log flat prior between −2 ≤ log10(q) ≤ 0
(i.e. 0.01 ≤ q ≤ 1).

The impact of changing the adopted priors in the calculation are
discussed in Section 4.3.

(2) p(d|A, θ , φ) is directly proportional to the likelihood in the
3D amplitude-sky location space L(A, θ, φ) returned as a numerical
function with finite resolution by our null-stream-based parameter
estimation pipeline. Given the values of A, θ , and φ from the priors,
we select the numerical value from the sky pixel at (θ , φ) and the
closest sampled amplitude to A. The sampling range (10−17–10−14)
is big enough to cover the area of interest, so for values of A outside
this range, the likelihood is set to zero.

Figure 2. Prior on the M − Mb constants (α, β) constructed from the
compilation of M − Mb relations in Middleton et al. (2018), see the text in
Section 2.2. The prior is binned in a 10 × 10 regular grid with α ∈ [7.63,
8.63] and β ∈ [0.79, 2.14]. The pixels are normalized such that their sum is
one. Some combinations (α, β) have zero prior weight and are masked in
white.

(3) p(A|M,Dl) is determined by the GW quadrupole formula.
Given the system chirp mass and distance, the amplitude is univo-
cally determined by equation (5). We can thus write

p(A|M, Dl) = δ

(
A − 4

(GMz)5/3(πf )2/3

Dl

)
. (18)

(4) p(M|M,q) is similarly computed from the mathematical
definition of M in terms of M, q as

p(M|M,q) = δ

(
M − Mq3/5

(1 + q)6/5

)
. (19)

(5) p(M|Mb, α, β) is a core ingredient of the calculation. The
possibility of ranking galaxy hosts stems from the simple fact that
extremely massive black holes are hosted in extremely massive
galaxies, a relation that has to be handled with care. Once a specific
M − Mb relation of the form given by equation (11) with intrinsic
dispersion ε is given, the MBH total mass probability is described
by a lognormal prior

p(M|Mb)= 1√
2πε2

exp

⎧⎪⎨
⎪⎩−

[
log M

M� −
(
α + βlog Mb

1011M�

)]2

2ε2

⎫⎪⎬
⎪⎭

(20)

that we integrate from −3ε to +3ε around the minimum and
maximum expectation values of M [the range of M values being
due to the spread in (α, β)].

The M − Mb relation is quite uncertain, as demonstrated by
its many different flavours found in the literature. Using the
compilation of M − Mb relations of Middleton et al. (2018), we
construct an observationally motivated prior distribution in (α, β)
by the following procedure. We make many random draws of the
pair (α, β) uniformly from the ranges α ∈ [7.63, 8.63] and β ∈
[0.79, 2.14], and consider the pair valid if the resulting M − Mb line
falls within the region enclosed by the compiled sample of relations
in the range 106 M� < M < 1010 M�. The resulting probability
distribution p(α, β) is shown in Fig. 2. We then marginalize over the
parameters (α, β) in the computation of p(d|Gi) in equation (17). We
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assume ε = 0.3 throughout, which is the typical relation dispersion
value reported in the literature.

Using these assumptions, equation (17) reduces to a 4D integral
over M, q, α, and β. In the following, we show results where M −
Mb is always marginalized over (α, β) and we discuss the impact
of assuming a specific scaling relation in Section 4.3. In practice,
we transform variables to 10log (M) and 10log (q) and perform the
numerical integration in log space for these parameters.

3 PRACTICAL IMPLEMENTATION

3.1 Source selection

To test our method, we simulate plausible future detections of
single sources in PTA. We turn to work by Rosado et al. (2015)
who have studied large-scale simulations of MBHB populations
and the resulting GW signals that could be detected by PTAs.
They construct 20 000 models (with different observed MBH mass
functions, pair fractions, and MBH–galaxy relations) and drew
several Monte Carlo realizations of each model to build realistic
MBHB populations. They then considered the sensitivity of several
PTAs as a function of time and used simple detection statistics
to declare detection of either individual MBHBs or the overall
stochastic background. Although they find that it is more likely
that the background is detected first, eventually, individual sources
can also be confidently identified. For each of the simulations, they
record the properties of the first MBHB to be individually resolved
by the PTA under consideration. Therefore, their procedure informs
the likely parameters of the first resolvable MBHBs. We use it here
to get the parameters for our test injections, as follows.

The signal-to-noise ratio (S/N) of a circular MBHB in an array
of M pulsars can be written as

S/N =
[

M∑
i=1

(S/Ni)
2

]1/2

, (21)

where the S/N in the i-th pulsar is

(S/Ni)
2 = A2

4π2f 2Si

R(
δ). (22)

Here, A is the GW amplitude given by equation (5) and f is the
observed GW frequency. R(
δ) is a factor of the order of unity
that depends on the geometry of the system – including source
sky location and inclination, wave polarization angle, and pulsar
sky location – and on the duration of the PTA observation T (see
Rosado et al. 2015 for the full expression). Si is the noise in the i-th
pulsar that we consider to be of the form

Si = 2�tσ 2
i + Sh,rest, (23)

where the first term on the rhs is the rms noise level of the timing
residuals and the second term is the level of confusion noise given
by all other sources contributing to the overall GW signal.

To select suitable individual sources, we construct a mock version
of the IPTA using the 49 pulsars of IPTA DR1 (Verbiest et al.
2016). We consider the actual sky location and rms noise σ i of
each pulsar and assume bi-weekly observations (�t = 2 weeks)
for a timespan of T = 10 yr. Next, we generate 50 realizations of a
realistic population of circular, GW-driven MBHBs, based on one of
the models presented in Sesana (2013). The number of realizations
is chosen to produce a sample of individually resolvable sources
that is large enough to give us freedom to pick sources in desired
regions in the sky (see below). In particular we use a fairly optimistic

Table 1. Properties of the three test sources selected for this study.

Source M [M�] z f [nHz] A

A 3.18 × 109 0.62 7.44 0.96 × 10−15

B 5.36 × 109 0.57 5.94 2.05 × 10−15

C 3.69 × 109 0.18 5.18 2.40 × 10−15

model resulting in a characteristic GW strain hc = A(f/yr−1) with
A ≈ 1.3 × 1015, which is just at the edge of the most recent PTA
limits (Lentati et al. 2015; Shannon et al. 2015; Verbiest et al. 2016;
Arzoumanian et al. 2018).

In each model realization, we select the loudest GW sources
one-by-one and use all remaining MBHBs to consistently compute
Sh, rest. All potentially resolvable GW sources had S/N < 2 in the
adopted set-up. This is a good sanity check for our simulation;
in fact it is expected that no observable sources result from this
procedure, given that no single MBHB has been detected to date
either. To increase the S/N, we suppress the noise by multiplying
each rms residual σ i by a fudge factor η < 1. After decreasing η

to 0.2, we observe ≈30 sources (in 50 GW signal realizations) at
S/N � 5. We select three of those sources, which we name A, B,
and C.

Relevant parameters of the selected sources are listed in Table 1
and their location in the sky, relative to the IPTA pulsars, can be
seen in Fig. 4. We have intentionally picked three sources in areas
of different IPTA pulsar density. Because the response functions
depend on the angular distance between the pulsar and the GW
propagation direction (equation 8), the localization behaviour is
different for sources that are close to (good) pulsars than for those in
relatively empty regions of the sky (see also Section 4.1). Parameters
listed in Table 1 are consistent with distributions shown in Fig. 6 of
Rosado et al. (2015). The first resolvable sources are likely to be at
relatively low frequencies (few nHz) and can come from MBHBs
at moderate redshifts (up to z ≈ 1).

3.2 Source injection and likelihood evaluation

Each source is injected into a synthetic PTA based on IPTA data
release 1 (Verbiest et al. 2016). The sky location and relative white
noise level for each pulsar are kept the same as in IPTA DR1 (see
their table 4 under Residual rms). Practical limitations on the method
of Goldstein et al. (2018) mean the cadence and observation time of
each pulsar has to be the same, so these are averaged over. We adjust
the total observation time and/or reduce the noise in each pulsar by
a constant factor to set the S/N of an injected source at the values 7,
10, 12, and 15 (see Table 2). We choose 7 as the smallest S/N value
because it ensures a confident detection according to the F statistic
adopted by Rosado et al. (2015) (and used in this work). Assuming
a typical PTA and a false alarm probability of 0.001, a source with
S/N = 7 has a detection probability of ≈0.9. For each set-up, a
likelihood L(A, θ, φ) is obtained using three different realizations
of random white noise in the null stream pipeline. Summarizing,
we run a total of 36 simulations featuring:

(i) three different sources: A, B, C;
(ii) four values of detection S/N = 7, 10, 12, and 15;
(iii) three independent white noise realizations.

The likelihood is evaluated on a 3D grid in amplitude (A) and
sky location (θ , φ). A is evenly sampled in log space, assuming
a log flat prior between 10−17 and 10−14. The location parameters
θ (polar coordinate from 0–π ) and φ (azimuthal coordinate from
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Table 2. Adjustments made to the simulated IPTA-like array in order to fix S/N of the three injected sources A, B, and
C. The pulsar locations are kept the same as in IPTA DR1 (Verbiest et al. 2016), as are the relative white noise levels of
each pulsar. For S/N ≥ 10, the noise is decreased by a constant factor in all pulsars. The cadence �T and observation
time T are averaged over for all pulsars. Then T is adjusted to set the S/N at specific values, keeping �T as close to the
IPTA DR1 value as the Goldstein et al. (2018) method allows.

Source A B C

S/N
Per cent rms

IPTA T (yr) �T (s) × 105 T (yr) �T (s) × 105 T (yr) �T (s) × 105

7 100 12.8 2.12 10.7 2.03 12.2 2.76
10 80 21.3 2.71 16.0 2.33 12.2 2.11
12 80 29.8 2.64 26.7 2.69 18.4 2.20
15 70 34.0 2.52 32.0 2.70 24.5 2.54

0–2π ) are sampled over using a grid of equal area pixels. This grid
is constructed with the HEALpix algorithm (Górski et al. 2005)
via healpy.2 HEALpix allows the user to define a grid refinement
parameter n, which results in a number of pixels Npix = 12n2. We
choose n = 32, giving Npix = 12288 pixels of approximately equal
area of 3.36 deg2. For the likelihood calculation we use θ and φ at
the middle point of each pixel.

The sky error-box Ω90 is determined as the (smallest) area in the
sky containing 90 per cent of the total likelihood. For its practical
computation, the likelihood is first marginalized over A, which
gives L(θ, φ) at each sky location. Pixels are then ranked in an
array j = 1, ..., Npix in order of decreasing likelihood and their
cumulative likelihood is calculated. Ω90 is then composed by the
first K pixels (i.e. j = 1, ..., K) enclosing 90 per cent of the total
likelihood. For the sky area containing Ω90, we implement the next
level of HEALpix grid refinement (n = 64) that results in a smoother
likelihood, evaluated on smaller pixels of 0.84 deg2.

3.3 Mock galaxy catalogue for host selection

Having determined L(A, θ, φ), we need to draw a set of properties
of potential hosts from a realistic galaxy population. To this purpose,
we use a mock realization of the observed sky extracted from the
Millennium Run (Springel et al. 2005). The simulation evolves dark
matter particles over a volume (500/h Mpc)3, reconstructing the
clustering of dark matter haloes. Semi-analytic galaxy formation
models are then used to populate haloes with galaxies, tracking
their star formation, accretion, and merger history.

Although not ’state of the art’, the large volume of the Millenium
Run (683.7 Mpc side; Springel et al. 2005), compared to more recent
large-scale, fully hydrodynamical, simulations such as Illustris
(105.6 Mpc side; Vogelsberger et al. 2014) and EAGLE (100 Mpc
side; McAlpine et al. 2016), is relevant for our work. It ensures
more statistical variation in the resulting galaxies, and in particular,
a better sampling of the high mass tail of the distribution, which
is where the best candidate galaxies reside. We use the simulated
sky maps constructed by Henriques et al. (2012) that employ the
semi-analytic model of Guo et al. (2011), which has been shown to
reproduce a number of observed properties of galaxies, including
luminosity function, morphology, and clustering.

The sky maps are flux-limited to i < 21.0 (see Henriques et al.
2012, for full details). This results in galaxy catalogues that are
complete down to stellar masses of ≈1011M� at z = 0.5 and
≈4 × 1011M� at z = 1. We will show in Section 4 that all
credible hosts are above these completeness limits. We downloaded

2healpy.readthedocs.io

all galaxies with stellar masses of 5 × 1010 M� and higher at
z ≤ 1, which resulted in about 50 million objects. For each galaxy
we store the bulge mass Mb, coordinates in the sky (θ , φ) and
apparent redshift z. The latter is then converted to Dl by assuming
our fiducial cosmology (flat 	CDM with h0 = 0.73, �M = 0.25).
This information, together with a prior on the MBHB mass ratio q
and the aforementioned assumptions for the M − Mb relation, is all
we need to perform the calculation outlined in Section 2.2.

To limit data size, only galaxies that fall within Ω90 are
considered, which contain most of the relevant information. The
simplifying assumption is made that one of the galaxies in Ω90 is the
true source of the PTA signal, but there is a 10 per cent probability
it falls outside the error-box. For each galaxy, the likelihood of
being the GW source host is finally computed via equation (17),
where A is determined by the injected sources and all relevant
galaxy parameters are given by the mock catalogues and have prior
distributions as described in Section 2.2.

4 R ESULTS AND D I SCUSSI ON

For each experimental set-up (injected source and S/N with three
random noise realizations as in Section 3), we use the null stream
pipeline to obtain L(A, θ, φ) and determine Ω90, the results of
which we discuss here first in Section 4.1. Then, we perform the
calculation as described in Section 2.2 for each galaxy in Ω90.
This produces a population of p(d|Gi) from which we can obtain
a cumulative likelihood distribution. These results are shown in
Section 4.2.

4.1 Sky localization

First we look at the behaviour of Ω90 with increasing S/N for the
three different sources, which is shown in Fig. 3. The expected
trend Ω90 ∝S/N−2 is roughly followed by all sources, albeit not
perfectly, due to the small numbers of performed simulations for
each case. An exception is source A at S/N < 10, which shows a
much steeper slope. Although this is consistent with the ‘transition
zone’ identified in Goldstein et al. (2018) – signalling the S/N at
which the data start to be informative – sources B and C do not
behave the same way.

We conjecture that this is related to the specific position of the
sources, relative to the pulsars (see Fig. 4). When the source is close
to the location of the best pulsars (like A), the combined S/N from
all pulsars at the marginal detection level (S/N ≈ 7) is mostly due
to the contribution of these few, good pulsars (or possibly only one
good pulsar). The other pulsars have a very low individual S/N.
Therefore, the source is effectively triangulated by very few pulsars
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Figure 3. Sky-localization accuracy for the chosen sources A, B, and C at
signal-to-noise ratios 7, 10, 12, and 15. At each S/N, a marker indicates Ω90

for each of three runs with different noise realizations. The dashed lines give
the best fit of Ω90 ∝ (S/N )−2 for the points at S/N ≥ 10.

Figure 4. Localization capability of an IPTA-like array of pulsars for a
source at fixed S/N = 12. This map is interpolated from 192 localization
values obtained by injecting a source at 192 locations forming a grid of
equal sky area pixels (a HEALPix grid with n = 4; Górski et al. 2005). The
IPTA pulsars are marked with stars, where the size of the star corresponds to
the noise level of the pulsar (with bigger stars for lower noise). The circles
indicate the positions of sources A (blue, left), B (orange, middle), and C
(red, right).

making localization poor. At higher total S/N ≈ 10, more pulsars
contribute to the triangulation as their individual S/N increases. As
such, their is a steep improvement in sky-localization, steeper than
the canonical (S/N)−2 slope.

Conversely, when the source is far away from the majority of the
best pulsars (like B and C), a detection with S/N ≈ 7 already requires
contribution from several different pulsars, making triangulation
more effective. After this transition (the shaded area crossing in
Fig. 3), the standard S/N scaling continues for source A as well.

Apart from the trend, the localization accuracy of the three
sources vary by a factor of ∼20 between them. This is due to both
the inhomogeneous distribution of pulsars in the sky (Sesana &
Vecchio 2010) as well as the different quality of the pulsars in the
arrays (Babak et al. 2016), which is expected to cause a difference
in localization. The best localization, at high S/N, is achieved for
source A, sitting in the ‘sweet spot’ of the array (where most of the
pulsars, including the best ones, are). However, there is not simply
a monotonic increase of Ω90 for sources further away, since the

Figure 5. Cumulative likelihood of p(d|Gi). The likelihood data d is for the
IPTA set-up (as described in the text) with source A at S/N = 15 (one of
the random noise realizations). Vertical dashed lines identify the number of
galaxies making up 50 per cent (orange) and 90 per cent (blue) of the total
likelihood.

furthest source C has a better localization than source B. This is
also expected since, due to the shape of the PTA response function,
sources that are antipodal to the sky region that is best covered by
the array are better localized than sources that are orthogonal to that
region (see e.g. fig. 10 in Sesana & Vecchio 2010).

A further investigation of this is visualized in Fig. 4. Here we
inject a source with the same parameters as A at 192 different
locations in the sky into white noise, using a synthetic IPTA-like
array. The S/N is set to 12 everywhere, by scaling the amplitude
A of the GW signal. The map shows the resulting localization Ω90

at each point. A dipolar structure of Ω90 is notable, where sources
near the ‘sweet spot’ of clustered pulsars – which includes most of
the best pulsars – and to a lesser extent, sources near the antipodal
point are localized better than sources in between. This is related to
the quadrupolar nature of GWs, which results in a pulsar response
function that has this antipodal symmetry, as was also shown by
Sesana & Vecchio (2010).

In any case, the huge scatter in Ω90 warns of a potential risk
of an anisotropic sky coverage of the pulsars in the array. Should
the loudest resolvable GW sources be positioned at unfavourable
locations, their detection, even at moderate S/N ≈ 12, would allow
sky-localization accuracies of about 2000 deg2 only (an area con-
taining ∼2 million galaxies in our catalogue before any selection),
jeopardizing any effort to identify a possible EM counterpart.

4.2 Host candidate population

4.2.1 Number of credible host candidates

Our main results consist of a set of p(d|Gi) for the galaxies {Gi}
within Ω90 for each experimental set-up (Section 3). First, we
compute the cumulative likelihood distribution from these p(d|Gi).
We then define Nx to be the minimum number of galaxies needed to
sum to x per cent of the total likelihood

∑
ip(d|Gi). Specifically, we

look at N50 and N90 as proxies for the expected number of candidate
host galaxies.

An example can be seen in Fig. 5 for source A at S/N = 15
(the first random noise realization). Within Ω90 ≈ 60 deg2, there
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Figure 6. Number of candidate galaxies adding up to 50 per cent (N50,
circle markers) or 90 per cent (N90, square markers) of the total likelihood
to host the detected source, versus the sky-localization accuracy Ω90 for that
detection. Results are shown for source A (blue) at S/N = 10, 12, and 15, and
sources B (orange) and C (red) at S/N = 12 and 15. For each S/N three noise
realizations give a cluster of points at similar Ω90 values. The dashed lines
show fitted power laws per source (see Table 3 for the best-fitting powers).
The dot-dashed lines are fits to N50 for all sources, with power 0.64, and to
N90, with power 0.65.

Table 3. Best-fitting powers for the power-law fits to N50 and N90 as in
Fig. 6. These are obtained by minimizing the sum of squared errors on the
log Nx values.

Source N50 power N90 power

A 0.66 0.80
B 1.15 1.34
C 0.74 0.90
All 0.64 0.65

are ∼1.2 × 105 galaxies {Gi} in our mock catalogue that would
make detailed follow-ups for host identification impractical. The
potential benefit of our technique is apparent from the fact that of
those galaxies, only N90 = 409 make up 90 per cent of p(d|Gi), and
N50 = 34 make up 50 per cent of p(d|Gi).

The collection of N50 and N90 of all experimental cases for which
we obtained results can be found in Fig. 6. We can fit a power law
as Nx = c(Ω90/Ω

∗
90)p , with parameters c, p (the power) and Ω∗

90,
and x being either 50 or 90. By minimizing the sum of squared
differences between the predicted log values and the log of the
data points, we obtain best-fitting powers 0.64 and 0.65, for N50

and N90, respectively. Although naively one would expect a linear
proportionality between Ω90 and the number of potential hosts,
there is a significant scatter on the relation.

Tighter fits are obtained by treating the points for different
injected sources separately, with best-fitting powers as in Table 3.
These numbers show that fits to individual source data points are
generally steeper and closer to the expected linear dependence.
One of the causes of the shallower global fit appears to be the
larger N50 and N90 for source A with respect to sources B and C
at sky-localizations of ≈300 deg2, as shown in Fig. 6. (Source A
has S/N = 10 around this localization accuracy, while source B
and C have higher S/N = 15. Consequently, N90 and N50 for source
A includes galaxies with a lower bulge mass than for B and C,
resulting in a larger N90 and N50).

So while there is clearly a relation between the size of the
sky error-box and the number of candidate host galaxies, scatter

Figure 7. Locations of the best candidate host galaxies on top of the sky
location likelihood for the injected source A (located at the red cross). The
PTA has pulsar locations (pink stars) and relative noise levels of the IPTA
DR1, but is adjusted such that the total S/N = 15.0 (see the text). The 34 best
candidates sum to 50 per cent of the likelihood to be the host galaxy (N50 in
the orange diamonds) and an additional 375 sum to 90 per cent (N90 in the
white circles). For this example, the MBH − Mbulge relation is marginalized
over priors obtained from the literature (see the text).

is caused by factors related to the detailed source properties.
Nonetheless, as a rule of thumb, we expect that for a resolvable
PTA signal located in the sky with a precision of ≈100 deg2, we can
identify few hundreds (few tens) galaxies in which the source sits
with 90 per cent (50 per cent) confidence. Compared to all galaxies
with stellar mass >5 × 1011 M� at z < 1 falling in the error-
box, these numbers restrict the pool of realistic hosts by nearly
three (four) orders of magnitude, making realistic detailed follow-
up campaigns feasible.

We also calculated p(d|Gi) and Nx for source A at S/N = 7, which
has a very poor sky-localization of about 2.8 × 104 deg2 (67 per cent
of the sky). The expected number of candidate hosts becomes very
large, and also disobeys the trend discussed above. We conjecture
that this is due to the localization likelihood distribution not having
a single peak for the low S/N case, so potential hosts are allowed to
be anywhere in the localization error-box, which is most of the sky.

4.2.2 Host candidate sky distribution and clustering

Apart from the number of galaxies that make up a significant fraction
of the likelihood

∑
ip(d|Gi), we can also look at the properties of

these galaxies. The parameters from the mock galaxy catalogue are
Mb, Dl, θ , and φ. First, the sky locations of galaxies within N50 or
N90 for the example case (source A at S/N = 15) are shown in Fig. 7.
They are plotted on top of the localization likelihood L(θ, φ) of the
injected source. The galaxies follow the shape of the localization
area because we only used galaxies within Ω90. Moreover, it can be
seen that there is a relatively higher concentration of N50 galaxies
in the highest likelihood pixels. Hence, L(θ, φ) must contribute
more to the selection of candidates than simply what we get from
selecting the ones in Ω90.

We further investigate this statement using the clustering of good
candidate galaxies – the N50 galaxies – for all of the experimental
cases. Fig. 8 simultaneously shows a measure of the concentration
of the localization likelihood L(θ, φ) and of the concentration of
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256 J. M. Goldstein et al.

Figure 8. Comparison between the concentration of the sky-localization
likelihood and of the locations of good candidate host galaxies. With the
fractional area of Ω90 on the x-axis, the fractional localization likelihood in
this area on the first y-axis (left, solid lines), and the fractional number of N50

galaxies on the second y-axis (right, dashed lines) (see the text for details.)
The quantities are normalized between 0 and 1 so that all experimental cases
fit on the same scale. This plot includes all three injected sources (A in blue,
B in orange, and C in red), for S/N = 12, 15.

N50 galaxies. The sky error-box Ω90 consists of a number of pixels
Npix that are sorted in descending L(pixi) order. Starting with the
best pixel, we iteratively increase this number by adding the next
best pixel. The size of the included area is recorded as the fraction
of the number of pixels over the total in Ω90, i.e. npix/Npix. The
concentration of the localization likelihood then is the likelihood in
npix as a fraction of the total, i.e.

∑n

i L(pixi)/
∑N

i L(pixi).
We compare this with the concentration of good candidate hosts,

as the fractional number of N50 galaxies in the selected pixels. The
distributions are spread out, but there is no significant difference
between the sky likelihood and candidate host concentration, i.e. the
host probability follows the sky-localization distribution. We there-
fore conclude that it is valuable to include detailed sky-localization
information when selecting candidate host galaxies, rather than only
making a selection based on the total sky-localization area.

4.2.3 Host candidate mass and redshift

Secondly, we consider the other two parameters from the catalogue,
the bulge mass Mb, and luminosity distance Dl. Fig. 9 shows their
distribution among candidate hosts for the example case, where
Dl has been converted into redshift. This figure best visualizes the
key idea behind our method. Since A ∝ M5/3/Dl – and there is
a proportionality M ∝ M

β

b and an almost linear proportionality
between Dl and z at z < 1 – there is only a stripe in the mass–redshift
plane defining the region of possible galaxy hosts. Moreover, since
the first detection of a resolved PTA source will necessarily involve
a very strong signal from a very massive binary system, this region
lies at the highest masses. Due to the steep decay of the high mass
end of the galaxy mass function, only few credible host candidates
can be identified.

In the example shown, galaxies belonging to N50 or N90 are bound
by a line of slope 3/(5β) in the log Dl(z) − log Mb plane (where β

is the M − Mb constant marginalized over our prior), as expected
by the GW amplitude scaling. There is however a large mixing of
galaxies with different likelihoods in this plane due to their specific

Figure 9. Distribution of bulge masses and redshifts of the candidate host
galaxies of the example case source A with S/N = 15. The blue squares
mark galaxies that make up N90 and the orange triangles mark the best
candidates which make up N50. All other galaxies that fall within the sky-
localization error-box Ω90, but form the lowest 10 per cent of the total
likelihood

∑
ip(d|Gi), are marked with (dark) grey circles. The dashed grey

lines are lines of constant GW amplitude (as in equation 5).

Figure 10. Logarithmic histogram of the redshifts of candidate host galax-
ies per source. The counts from the six experimental cases with S/N = 12,
15, and 3 noise realizations are averaged over. The foreground (hatched)
histograms are N90 candidates, and the background (filled) histograms are
all (i.e. N100) candidates from the selected sky error-box. Injected redshift
values for each source are indicated by a dashed line (see also Table 1).

sky location. For example, there are a few very massive galaxies
that fall into the lowest 10 per cent of the likelihood, which is due
to an unfavoured sky position. Note that there are N50 candidates
across the whole range of redshifts in our sample.

The redshift of the injected source A is 0.62 (Table 1), so it is
not a surprise that candidate hosts for this source have redshifts
across the whole range 0–1. To explore this further, we look at the
redshifts of candidate host galaxies for all injected sources and S/N
values. Fig. 10 shows a number of histograms of z on a logarithmic
scale. For each source A, B, and C, the results of S/N = 12 and
15 (with three noise realizations per S/N) are combined. We make
a comparison between the redshift distribution of the candidate
galaxies pre-selected within the sky error-box (the background
histograms), and the N90 candidates selected with out method (the
foreground, hatched histograms).

Compared to the prior distribution, lower redshifts are preferred.
However, for all injected sources, there are a significant number of
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candidates at redshifts z > 0.6. Even though the injected redshift for
source C (z = 0.18) is much lower than four sources A and B, the
redshift distributions of candidate hosts differ only slightly, which
reflects the fact that redshift is degenerate with mass in our method.

The turnover in the total number of galaxies in the error-box
seen in Fig. 10 at z > 0.5 is due to the i = 21 flux limit of the
adopted galaxy catalogues, which result in severe incompleteness
of lower-mass galaxies. Fig. 9, however, shows that typical galaxies
belonging to N90 have Mb > 2 × 1011 at z = 0.5 and Mb > 4 × 1011

at z = 1. The adopted catalogue is therefore complete in the mass–
redshift range where potential GW galaxy hosts live.

Fig. 9 also shows that the distribution of credible galaxy hosts of
resolvable PTA sources peaks at z � 0.2, whereas two out of three
of our selected signals (A and B) lie around z ≈ 0.6. GW sources
were picked according to their sky location, therefore A, B, and C
are not an unbiased sample and are not necessarily representative
of the actual redshift distribution of the first GW resolved signals.
However, there are several systems at z > 0.5 in the sample of 30
resolvable sources found in Section 3, and also Rosado et al. (2015)
found that the peak of the first resolved PTA sources is at z ≈ 0.5.

High z sources are more common despite there being less
potential host galaxies at such redshifts. This indicates that the
likelihood of a galaxy to be a host is not only connected to its sky
location and its position in the M–z plane, considered in this work.
The other key parameter is likely to be the absolute galaxy mass
(regardless of redshift). There is evidence – both from observations
and from cosmological simulations (see e.g. results compiled in
fig. 1 of Sesana et al. 2016) – that the galaxy merger rate at
low redshift is a strong function of the galaxy mass, with massive
galaxies merging more often.

Since the MBHB population simulated in Section 3 consistently
takes this fact into account, the resulting MBHB population is
naturally skewed towards high masses. Conversely, our host se-
lection method only picks galaxies based on the GW amplitude
given the combination of redshift and bulge mass, and therefore
chooses relatively more lighter galaxies. However, because of these
candidates’ lower masses, they are less likely to have undergone
a major merger (and hence host a GW source) compared to the
few more massive ones picked at higher redshift. This suggests
that combining our method with a (prior) probability of hosting
an MBHB based on galaxy mass only (Rosado & Sesana 2014;
Mingarelli et al. 2017) can somewhat break the intrinsic mass–
redshift degeneracy, further reducing the numbers of credible galaxy
hosts.

4.3 Assumptions and approximations

Although simulations performed in this work are realistic in many
aspects, few assumptions and choices had to be made to make their
total runtime manageable.

Several assumptions were made in the connection of the chirp
mass of the GW source to the bulge mass of the host galaxy. First,
we assumed a log-flat prior on −2 ≤ logq ≤ 0, based on the broad q
distribution of merging binaries found in cosmological simulations
(Kelley, Blecha & Hernquist 2017). Although this is not necessarily
representative of the q distribution of real MBHBs, we tested that
different choices have only a minor impact on the results (see also
Holgado et al. 2018; Inayoshi, Ichikawa & Haiman 2018; Sesana
et al. 2018).

Secondly, we did not consider errors in the measurements of
galaxy Mb and Dl. The latter does not matter; for any practical
purposes, galaxy redshifts can be determined almost exactly, and

estimates of Dl are only affected by galaxy-peculiar velocities and
uncertainties in the knowledge of the cosmological parameters,
resulting in a negligible few per cent error. Conversely, the former
can be significant, as bulge mass determination can be uncertain
within a factor of two. This is likely to impact our results, spreading
the host probability distribution thus returning more host candidates.
Some tests on a limited number of set-ups found that including an
uncertainty of a factor of two on the galaxy bulge mass results in
roughly a factor of two more candidate hosts galaxies.

Last, we marginalized over the uncertainty in the M − Mb relation.
Assuming a specific M − Mb relation instead can affect our results,
especially if the relations predict relatively higher or lower black
hole masses than the marginalized relation. As an example, we ran
some test cases assuming the M − Mb relation from Kormendy & Ho
(2013), which associates relatively higher black hole masses given
the galaxy bulge mass. The number of candidate host galaxies in
these cases is increased by a factor ranging between ∼3 and ∼8
with respect to the marginalized M − Mb case. Conversely, for a
‘pessimistic’ M − Mb relation such as Shankar et al. (2016) – which
predicts relatively lower black hole masses especially for high-mass
galaxies – the number of candidates is a factor ∼2 to ∼4 lower.

Due to computational limitations, we ran a limited number of
simulations. Although we checked robustness of the results against
the specific noise realization, we only picked one sky location
for each source. This may make cosmic variance a factor in the
determination of the number of galaxy hosts. To test this, for a
selected GW source, we performed some rigid rotations of the
Millennium sky and counted N50 and N90 for each of them. Although
numbers vary, the scattering is consistent with that observed in
Fig. 6.

An important assumption of our method is that the true host of
the detected GW signal is present in the galaxy catalogue. This is
guaranteed only for complete catalogues. Real catalogues based on
observations never are, and the simulated catalogue from Henriques
et al. (2012) reflects this by selecting galaxies based on observational
criteria. This results in a number of missing galaxies – more towards
higher redshifts. However, for the most part these are the small
galaxies (which are more difficult to observe) and are not relevant
host candidates. Since at redshifts z � 1 only the most massive
galaxies are selected in N90 (see Fig. 9); this is unlikely to affect
the results for N90 and N50, but it is a possible source of error. As
there are good candidates up to z = 1, it is also possible that there
are a small number of potential N90 galaxies at z > 1 that were not
included.

Finally, it should be kept in mind that we selected the 90 per cent
sky location credible region. By selecting N50 and N90 in this
region, the actual probability to find the true host in these sets
is 0.9 × 0.5 = 0.45 and 0.9 × 0.9 = 0.81, respectively.

5 C O N C L U S I O N

In this paper, we proposed a novel methodology to select host galaxy
candidates of the first individual GW sources observed by pulsar
timing arrays. Since PTA source localization is expected to be of
several deg2 at best, up to several million galaxies might end up in
the sky error-box. Classifying the most promising host candidates
is therefore of paramount importance to increase the chances
of true host identification via dedicated follow-ups. Our method
exploits the GW strength dependence on chirp mass and distance,
together with empirical MBH mass–host galaxy correlation, to
rank galaxies in the mass–redshift plane. We frame this concept
in the Bayesian language, together with the null-stream-based sky-
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localization method developed in Goldstein et al. (2018), to assign
each galaxy a probability of hosting the MBHB generating a specific
GW signal.

To test our method, we performed realistic simulations by
drawing GW sources from detailed MBHB population models based
on observed merging galaxies, by employing the actual IPTA pulsar
sky locations and rms values to build the array, and by selecting
host candidates based on formation and evolution models. We
considered different GW source sky positions and detection S/N
and investigated the ensemble of credible host galaxy candidates.
In particular, we defined N50 and N90 to be the smallest numbers
of galaxies having a collective 50 and 90 per cent chance of being
the true host of the GW source, respectively, assuming the true host
is among the prior selection of candidates. Our key results can be
summarized as follows:

(i) N50 and N90 are, respectively, nearly four and three orders of
magnitude smaller than the number of galaxies with stellar mass
M∗ > 5 × 1010 M� at z < 1 found in the 90 per cent confidence
sky location region Ω90;

(ii) N50 and N90 should roughly be proportional to Ω90. We find
a sublinear proportionality, although with large scatter;

(iii) despite the large scatter, a useful rule of thumb is that for
Ω90 = 100 deg2, N50 � 50 and N90 � 500;

(iv) although the distribution of potential hosts peaks around z <

0.2, it has a long tail that extends up to z � 1.

Our methodology can therefore effectively select the most likely
host galaxy candidates, which might have a major impact on future
multimessenger observations of MBHBs. For typical PTA sky-
localization precision of hundreds of deg2, instead of following
up millions of galaxies, we can choose to accept the risk of missing
the true host with 55 per cent (19 per cent) probability and monitor
only the ≈100 (1000) most promising ones. There is significant
uncertainty on these numbers, mainly due to the uncertainty in the
M − Mb relation (see Section 4.3).

The applicability of our method obviously relies on the avail-
ability of photometric and spectroscopic data from all-sky surveys
necessary to identify potential galaxy hosts and to estimate their
stellar (and bulge) masses. Since the most credible galaxy can-
didates are necessarily very massive (and/or particularly nearby),
relatively shallow surveys are sufficient for this scope. Catalogues
from SDSS (Alam et al. 2015; covering ≈1/4 of the sky), Pan-
STARRS (Kaiser et al. 2002; ≈3/4 of the sky), LSST (LSST Science
Collaboration 2009; ≈1/2 of the sky), and Gaia (Gaia Collaboration
2016, all sky) will provide enough imaging, photometric, and
(possibly) spectroscopic information for reliable mass estimates
via, e.g. spectral energy distribution fitting (see e.g. Longhetti &
Saracco 2009; Duncan et al. 2014).

Note that a positive host identification chance increase of less
than a factor of two comes at the expense of following up a factor of
10 more galaxies. The follow-up strategy can therefore be optimized
based on the future number of resolved PTA sources and on available
observing facilities. Reducing the number of credible host is critical
mostly because our knowledge of MBHB signatures is poor (see
e.g. Dotti, Sesana & Decarli 2012). One therefore has to collect all
possible hints to build up confidence that the true host have been
found. This might require, for example, multiple photometric and
spectroscopic optical and IR follow-up of the candidates to unveil
any observational hint of an accreting MBHB, deep-field imaging to
assess the presence of post merger features such as stellar tails and
shells (e.g. Lotz et al. 2008), integral field spectroscopy to identify
the presence of a ‘dry’ MBHB via kinematic signatures in the stellar

distribution (Meiron & Laor 2013), deep X-ray observations to
unveil the presence of an obscured AGN and its possible high-
energy signatures (Koss et al. 2018), and many more.

The upcoming ELT (Gilmozzi & Spyromilio 2007) and JWST
(Gardner et al. 2006) will be particularly suited for the optical
and near-infrared follow-ups mentioned above, whereas the X-ray
satellite Athena (Nandra et al. 2013) can potentially survey the 100
most probable hosts within less than 1 d of observation time. Clearly,
the fewer the candidates, the more extensive the follow-up campaign
can be, thus enhancing the chances of a positive detection. Archival
data can also be used to identify hints of, e.g. periodic variability
matching the frequency of the GW source. This can be done in the
optical and, possibly, in X-ray with LSST and eROSITA (Merloni
et al. 2012) archival data, respectively.

Finally, the mismatch between the credible host redshift distri-
bution identified with our method and the expected distribution of
the first PTA sources predicted by Rosado et al. (2015) indicates
that a more efficient galaxy host selection can be performed when
the mass-dependent galaxy merger probability is folded into the
calculation (see also Mingarelli et al. 2017). By doing so, the mass–
redshift degeneracy intrinsic in our method might be alleviated,
further decreasing the number of credible hosts. We plan to further
pursue this line of investigation in future work.
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