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to incorporate different techniques for fault tolerance. This paper is devoted to discussing
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1. Introduction

SpiNNaker is an application specific design intended to model large biological neural networks - the name “SpiNNaker”
being derived from ‘Spiking Neural Network architecture’. It consists of a toroidal arrangement of processing nodes, each
incorporating a purpose-built, multi-core System-on-Chip (SoC) and an SDRAM memory (Fig. 1). Neurons are modelled in
software running on embedded ARM968 processors; each core is intended to model a nominal 1000 neurons. Small-scale
SpiNNaker systems have successfully been used as control systems in embedded applications [1], providing robots with
real-time stimulus-response behaviour as described in [2]. However the ultimate aiming of the project is to construct a ma-
chine able to simulate up to 10° neurons in real time. To put this number in context some small primates have brains with
slightly lower neuron counts whereas the human brain has roughly 86 times this number [3]. To reach this number of
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Fig. 1. Overall view of SpiNNaker.
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Fig. 2. SpiNNaker chip and boards.

neurons more than one hundred thousand integrated circuits will be needed (half of which are SpiNNaker chips and the
other half SDRAMs).

A system of this scale may be expected to suffer component failures and many features of its design are included to pro-
vide a certain degree of fault tolerance. These features can sometimes be justified on cost alone: the overall yield for the
100 mm? SpiNNaker SoC was estimated, using public domain yield statistics on a 20-core, at 50% fault-free chips, 25% sin-
gle-fault chips, 10% two-fault chips and the remaining 15% will be unusable due to critical failures. Early test on the produc-
tion chip (in Fig. 2) show similar, if rather better, yield characteristics (see Section 4). The 35% of chips having one or two
faults would not be usable without fault tolerance features. Fault tolerance is addressed at a number of levels, not least
the application itself, which is intrinsically fault-tolerant. SpiNNaker incorporates measures to enable continued function
in the presence of faults; in fact it has been designed as a power- and cost-effective fault-tolerant platform.

The major defence against faults in such a system is the massive processing resource. Processors are almost free and ded-
icating a small proportion of the processing power for system management and reconfiguration yields significant distributed
‘intelligence’ without much impact on the application. From the outset the intention has been to allocate one core on each
SoC entirely to system management; if this eventually proves insufficient it is simple to delegate a second core to this task.
Cores devoted to system management can identify and map around failed devices at run time.

Particular attention has been paid to inter-chip communications where link failures or transient congestion may be rou-
ted around rapidly without software intervention. Finally some more conventional techniques - such as automatic CRC gen-
eration and checking and watchdog timers — are employed in each processing node. As a large-scale system has not yet been
built the full possibilities of software reconfiguration have yet to be explored. However statistical models of the architecture
have been developed and used to verify the principles, and the hardware mechanisms themselves have been tested in silicon
in small-scale (4 chip) systems. The construction of a larger machine is in progress.

2. Background

This section reviews common terminology on fault-tolerance and microelectronics, introducing several important con-
cepts related to SpiNNaker and putting in context how fault tolerance is addressed.
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Throughout this paper, we differentiate between soft and hard errors. Soft errors are transient errors - usually produced
by electromagnetic noise - that affect the state of a bit to an extent that it swaps its value (from O to 1, or vice versa). Cosmic
rays are nowadays the main cause of soft errors [4]. In contrast, hard errors are permanent errors due to physical defects,
usually introduced during fabrication. Some authors consider a third type of error, intermittent failures in which a component
is barely stable and behaves irregularly as correct or as erroneous, the main triggers for one behaviour or the other being
environmental factors (such as temperature, or voltage) [5]. We consider intermittent failures as hard failures and deactivate
components that exhibit this behaviour.

All units within a SpiNNaker chip are provided with two levels of reset. A ‘soft’ reset is a signal to the state machines to
abandon their operation at the next convenient opportunity, thus allowing any handshakes to complete first. The ‘hard’ reset
involves switching off a component and restarting it in order to reach its initial state. Note that the latter is really intended
only for power-up.

Globally Asynchronous Locally Synchronous (GALS) technology offers the possibility of synchronous and asynchronous logic
to coexist, obtaining the best of each world [6]. Most devices use synchronous logic whereas communication between them
is implemented using asynchronous fabrics. GALS simplifies development and reduces power consumption but, in contrast,
makes fault tolerance difficult due to the lack of time awareness.

The three main elements for fault-tolerance are the Host, the System Controller and the Monitor Processor and Process.
The Host is a regular computer which runs an application that interfaces with SpiNNaker giving the Host a range of control
operations over the hardware. The Host is in charge of starting the system, uploading neural applications and data and look-
ing after the status of the system once it starts its execution. It includes a User Interface that allows exploration of the status
of SpiNNaker components (see Fig. 3). The Monitor Process is the application in charge of controlling the status of each chip
components. It requires a dedicated core, namely the Monitor Processor, which is selected during the boot-up process from all
the functional cores. The Monitor Process uses the System Controller, a specialized piece of hardware, to detect and try to heal
failing components. The System Controller supports soft and hard resets of the different components within a chip and also
communicates with the System Controller in neighbouring chips.

Watchdog devices are added to the design in order to supervise the correct operation of critical components such as the
Monitor Process, or the communication ports. If a component does not respond for a predetermined amount of time, the
watchdog will apply ‘soft’ reset first, only resorting to ‘hard’ reset if this fails. If both resets fail the watchdog will mark
the component as faulty in the System Controller so that the Monitor Process can switch it off or, alternatively, try more elab-
orated nursing.
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Fig. 3. User Interface showing the status of the chips in a 48-chip board. The hexagonal shape represents the actual connection of the chips in a 48-chip

board.

gradient represents the load of each node’s core. Red rep-
resents a core failure. 16 worker cores belonging to a chip
are arranged in a 4x4 grid. Most cores have low load
black/blue tones (< 25%). In this example there are 8 chips
which have a 1-core failure and, in addition, the chip in 6,7

has 4 core failures.

means the link is working. Red means the link is faulty or
disconnected. All the links in the periphery of the board
are disconnected. The southwards link in chip 5,7 has a
failure, the chip cannot receive from its neighbour in that
direction. However as links are unidirectional, it can send
packets in that direction (note that northwards link in 5,6

is green).
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Table 1
Relative area of the different components within a SpiNNaker chip. See
Fig. 4(a) for the actual overlay.

Component Relative area (%)
Tightly coupled memories (x18) 50

ARM cores (x18) 29

System NOC 11

Router 6.7

System SRAM memory 0.96

SDRAM interface 0.75
Phase-locked loops (x2) 0.67

Ethernet interface 0.65

ROM memory 0.25

SpiNNaker’s fault tolerance relies mainly on redundancy: 18 cores, 6 output links, 2 PLLs (phase locked loops) and the
memory subsystem. The main strength of this redundancy is that components do not have their identifiers hard-coded,
and therefore the functionality of one component can be covered seamlessly by any redundant one. Practically, this means
that critical components such as the Monitor Processor are extremely reliable.

Table 1 shows the relative areas of the different components of the chip to put in context their likelihood of fail. The larg-
est part of the chip is devoted to cores and TCMs, the most redundant and therefore less critical components of SpiNNaker.

3. Overview of SpiNNaker
3.1. Application-induced architecture

SpiNNaker simulates spiking neural networks using Izhikevich [7] and Leaky Integrate and Fire [8] models which emulate
the dynamics of biological neural systems. However SpiNNaker has an architecture general enough to run other flavours of
application [9]. For example it also supports Multilayer Perceptron models [10] and other non-neural applications such as
ray-tracing, many body interaction, finite element analysis and analogue circuit simulation.

Spiking neural systems have abundant parallelism and no explicit requirement of coherence as only local information is
used by the neurons. The process is as follows: each neuron has a membrane potential which is affected by incoming stimuli
(signals). If the membrane potential exceeds a given threshold, the neuron discharges and fires a signal (a so-called spike)
which is transmitted to all neurons connected through a synaptic connection, typically in the order of 10% [11]. Biological
neurons work in a noisy environment [12] and, indeed, die during normal operation (adult humans lose about one neuron
per second [13]). Thus their operation is neither perfect nor deterministic.

The SpiNNaker architecture reflects this behaviour. Neurons are modelled as event-driven applications executed by the
processing cores. Spikes are represented by short network packets (40 bits) using Address-Event Representation (AER), a for-
mat widely used in neural network models [14-16]. Packets are multicast routed in hardware with the on-chip routers rep-
licating them as necessary to reach all their destinations.

Given that digital electronics are orders of magnitude faster than the biological process - for example, biological spikes
are propagated through an axon for up to 20 ms while transmitting a packet through the SpiNNaker interconnection network
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Fig. 4. Architecture of a SpiNNaker chip.
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should take a few microseconds at most - it is possible to multiplex many neurons onto a processor and many spikes onto a
network although the consequence of a single-point failure can easily be more serious than the loss of one neuron.

3.2. SpiNNaker chip

The basic unit of the system is the SpiNNaker chip (Fig. 4), custom GALS SoC with a network router and 18 cores sharing
some resources such as a SRAM, a boot ROM, a System Controller, an Ethernet interface and an 128Mbyte off-chip (but in-
package, see Fig. 2) SDRAM.

Each processing core is an ARM968, with two private tightly coupled memories for instructions (ITCM) and data (DTCM),
some peripherals - including direct access to the Comms NoC - and a bridge to the shared resources.

4. Fault tolerant architecture

From Section 3 some fault-tolerant features will already be apparent. Firstly the application itself is robust against minor
perturbations in timing and should tolerate a percentage of missing spikes and neurons. Secondly, there is a huge hardware
resource available which provides a high degree of redundancy.

Although each node has 18 cores, the intended use does not require any specific number of cores, merely (any) one to
provide node control and some others to run the application. Indeed for cost purposes it is intended to use some flawed de-
vices; yield estimates suggest that this may improve the usability of manufactured dice from 50% to around 80%. Based on
the area use of the die the majority of flaws may be expected to be in local memories; these may leave a core degraded but
still usable although the simplest action is still to shut it down.

Preliminary evidence from the first batch of fabricated chips suggests these estimates to be appropriate if slightly pessi-
mistic. Of 46 chips, 30 (65%) were flawless chips, 12 (26%) have 17 working cores and 4 (9%) have more serious problems. Of
the 12, 11 have private memory faults and one a peripheral logic fault. From this small sample it seems likely that 42 of 46
(93%) dice will be serviceable because manufacturing faults can be tolerated. This represents an increase of roughly 40% in
terms of achievable computing power (from 540 to 744 cores).

This redundancy can also be used to protect against (less likely) run-time faults by offloading work. By keeping a stand-by
core on each node a run-time fault can be accommodated without too much effort, particularly as the majority of the data is
held in the separate, shared SDRAM. The SDRAM devices are ‘known good’ before packaging. Each provides a node with more
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than its anticipated store requirement, thus there is capacity to test and map around any dubious region. This is one of the
tasks for the local Monitor Processor.

In addition to redundancy, a number of features have been included either as design considerations or specifically for
fault-tolerance. Fig. 5 shows a map of the expected failure types and the mechanisms provided to reduce their impact in
the usability of SpiNNaker.

5. Diagnostics and dynamic configuration

System routines can clearly be split into two: (i) power-on testing and initial configuration, and (ii) isolation and recon-
figuration during normal operation. In either case, the interaction between hardware and system software in each chip is
coordinated by the Monitor Processor which maintains a continuously updated state (good, fault, disabled, etc.) of the chip
components. The System Controller can disable or reconfigure chip components. In extreme failure cases the System Con-
troller can be accessed from a neighbouring SpiNNaker chip using a local debug facility.

5.1. Power-on diagnostics and configuration

Each SpiNNaker chip performs diagnostics and initialization using minimal system software stored in the Boot ROM. In
this stage each processing core performs a power-on self-test and initialisation of its private peripherals. Healthy cores then
compete to access the System Controller monitor election register, the winner becoming the Monitor Processor. The remain-
ing cores simply register their state in the System Controller and stall until the Monitor completes the node configuration
(including detailed chip-level tests, initialising shared resources and detecting any connected Ethernet port). All chip-level
results are stored in the System Controller.

After this step, nodes enter a listening mode awaiting external instructions. The host machine designates one or more
Ethernet attached nodes to receive the system image to be executed by the Monitor Processors. The image is transmitted
in blocks to the Ethernet attached Monitors which compile the image, perform a CRC check and copy it to their local memory
where it can be executed. The system image informs the host machine and propagates itself to its neighbours; these neigh-
bours send it forward their neighbours, and so on. This way the system image is flood-filled in a redundant manner as each
chip will receive several copies of the system image (see below). Once system boot is complete, the Monitor Processors test
connections to neighbouring chips to record any faulty link or neighbour.

The host nominates one Ethernet-attached chip as the Reference Chip, making it the origin address, (0, 0), of the network,
notifying it of the topological characteristics, such as the number of chips. The Reference Chip then broadcasts its address to
its six neighbours, and so on. This generates a second wave through the network that enables each chip to compute its rel-
ative address in the network topology and configure point-to-point routing tables.

5.1.1. Evaluation of flood filling policies

Data loading can be done via several flood-fill strategies, each offering different performance and fault resilience compro-
mises. Several of these strategies were evaluated previously [17], but when that evaluation was performed, broadcast packets
were addressed to all neighbours and consequently most strategies had to use point-to-point (unicast) packets, with the con-
sequent overloading of the injection ports. To overcome this overhead a selective multicast able to forward packets to a sub-
set of the neighbours was included in the final design.

The following evaluation considers several strategies using this selective multicast. Fig. 6 summarizes the results of an
event-driven simulation of the application loading process in the largest system configuration (256 x256 nodes). The top
two graphs consider SpiNNaker systems without failures and are intended to show the performance (time consumed in
the floodfill). The bottom two consider systems with different link failure configurations and show the resilience level pro-
vided by each strategy. Next we explain how these graphs can be interpreted.

Seven different flood-fill policies were considered in the simulations:

e bcast sends the packet to all neighbouring chips.

e 2msg sends the packet only to the neighbours in the positive X and Y directions. This is the minimum number of neigh-
bours required to perform an efficient flooding.

e 3msg sends the packet to the neighbours in positive X, Y and XY diagonal.

e 5msg sends the packet to all the neighbours but the one the original packet was received from.

e randP sends the packet in the positive X and Y directions and in addition randomly to each of the other directions with a
P% probability. We considered 25% (rand25), 50% (rand50) and 75% (rand75) in our evaluation.

In the simulations considering several Ethernet ports, nodes located at (0, 0), (128, 128), (128, 0) and (0, 128) are connected
to the host.

The results without failures in Fig. 6(a) and (b) show that (i) different flooding strategies provide diverse performance
levels, (ii) given the 2D-pipelined nature of the application loading procedure, the loading times are not affected substan-
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tially by the network size; and (iii) similarly, the number of Ethernet-connected nodes does not affect significantly the time

required to load the application.

The configurations with failures - see Fig. 6(c) and (d) - present the normalized number of undelivered packets. Points
that are not shown in the plot mean that the loading process was successful. The failure distributions considered in this

study are the following.

e vert represents a configuration where all the links along the Y-axis in the bisection are treated as faulty, leading to a net-

work split in vertical columns.

e horiz represents a similar configuration, but affecting the horizontal axis.

e cross represents the union of horiz and vert. Small-scale examples of these three configurations are shown in Fig. 7.

e The remaining configurations represent uniform random sets of link failures: 1536 (rnd1), 3072 (rnd2), 6144 (rnd3),

12,288 (rnd4) and 24,576 (rnd5).
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Fig. 7. Examples of the cuts used in this experimental work. Diagonal links are not cut, so the network is not completely split.
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In general, those strategies sending more packets are less likely to lose packets but at the price of increasing the time
required to finalize the whole process. In all cases, it will take only from 5 to 15 ms to load an application completely. Results
also show that increasing the number of Ethernet connections improves robustness, especially in scenarios with multiple
failures.

We conclude that the SpiNNaker configuration process is efficient, scalable and robust. Moreover, there is a reasonable
range of distribution strategies that allow trade-offs between speed and fault-resilience.

5.2. Run-time reconfiguration

During regular operation, the Monitor Processor periodically checks and updates the state of chip resources, including the
state of the links to its neighbours, in the System Controller. Any Monitor Processor can activate the neighbour diagnostic and
recovery routine if it suspects a neighbour chip is not working properly. This nurse Chip will ‘peek and poke’ the remote Sys-
tem Controller to identify any healthy cores. It will first try to change the remote Monitor Processor, then try to overcome a
Boot ROM failure by copying the boot-up code to the remote System RAM and remapping the remote Boot ROM and System
RAM. Finally, the Nurse Chip will reset the remote chip to attempt to recover from a transient fault. If nothing works, the
failed chip is isolated by disabling its clocks.

When cores or chips are detected to be faulty, the system tries to migrate their functionality (typically neurons) to other
cores. This process is in principle straightforward, however depending on the failure some of the neural information may be
impossible to recover. For example, to migrate from a chip because it cannot access its SDRAM, only the neural information
stored in local memory can be recovered. The way to regenerate unrecoverable information will depend on the executed
application but, as discussed before, losing neurons is acceptable in a biological brain and therefore it may be so in the sim-
ulated application.

When routers or links stop working properly, part of the routing tables may need to be reconstructed dynamically to
avoid unreliable areas of the network. When a route is destroyed, the system can generate new routes by the back propa-
gation of a routing key from the destination node to the source node. The host system will collect the required information
from this procedure and will generate and propagate the updated routing tables. Alternatively, a distributed reconfiguration
may rely on the Monitor Processes around the failing components for the generation and propagation of the updated routing
tables.

Finally, each SpiNNaker chip is provided with a watchdog timer which detects when the Monitor Processor has not re-
sponded for a long time. When this is detected, the recovery process first tries to recover the Monitor Processor by soft reset-
ting it. If this measure does not solve the problem, then it hard resets the chip, forcing the System Controller to select another
core as a Monitor Processor.

6. Communications fault tolerance

Given that the supported application is communication-intensive the interconnection fabric of SpiNNaker is another crit-
ical component and therefore great effort has been devoted to design a robust and stable infrastructure.

6.1. On-chip and off-chip communication

The Comms NoC connects the processing cores via a custom on-chip router offering a bandwidth of up to 1 GByte/s. The
Communications Controller within each processing core handles packets on behalf of its simulated neurons and interfaces
with the Comms NoC. Together the on-chip router and the self-timed fabric seamlessly extend on-chip communications onto
inter-chip connections.

The Comms NoC has 18 ports for internal use of the processing cores and six ports to communicate with six adjacent chips
(Fig. 4). External ports contain two independent, unidirectional self-timed chip-to-chip interfaces, one for transmitting and
the other one for receiving data; i.e. a failure in a link or interface only affects one of the directions. Asynchronously arriving
packets to the router are arbitrated and serialised. The router can process one packet per clock cycle. It is expected that the
average traffic demand will be much lower than this. In the event of a ‘collision’ packets can be delayed arbitrarily and buf-
fering between routers helps to accommodate this. Packets are checked for integrity on arrival at the router; faulty packets
are dropped into a register where they can be examined by the local Monitor Processor. Faults may be caused by corruption
in transit - indicated by parity and framing errors — or by being outdated.

AER packet routing is done with a 1024 entry associative look-up table. Each table entry has its own bitmap mask that
will be applied to the source address before it is compared with the table entries in order. If an address is not found then the
packet is default routed to the port opposite the one it came from. Table entries are therefore only used when packets turn or
bifurcate. Each table entry can be deactivated independently if not functioning properly; there is therefore some flexibility
(potential redundancy) in the way table entries are used. As the table uses standard cell latches the soft error rate is expected
to be very low.

Packets may be replicated to any subset of the router’s outputs. They are sent when all the desired outputs are ready to
accept them, stalling until this time. In the event of an output being blocked this could cause problems and backlog the rou-
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ter. Thus, after a programmable interval, the router attempts to route around any blocked (or broken) external links through
a so-called emergency route. If this still fails after another programmable interval the offending packet is dropped into a local
register and the subsequent packet is tried instead. The Monitor Processor may be interrupted to examine the dropped pack-
et and resend it - perhaps suitably modified - later.

Emergency routed packets take advantage of the triangular topology to try to reach their destinations, as shown in Fig. 8.
Emergency routes are always adjacent to the intended path and the subsequent turns are therefore predefined. This is coded
into the short packet header.

A particular concern is the possible occurrence of (network-level) deadlock. Conventional HPC networks avoid the forma-
tion of such chains by means of complex combinations of topology, routing algorithms and flow-control techniques [18]. Gi-
ven that routing is application specific a different approach to deadlock avoidance was required. As neural applications do
not require delivery guarantees, a time-out based, packet-dropping mechanism suffices, provided that the proportion of lost
packets is low.

6.2. Topological robustness

To assess the robustness of the two-dimensional triangular torus topology we tested how it loses connectivity in the pres-
ence of link failures. A typical manufacturing process can be expected to produce components with a functional life of well
over 10 years. With a very pessimistic scenario model of a 5-year mean time to failure (MTTF) with sigma of 2 years, the
expected number of link failures in a complete SpiNNaker system (65,536 nodes) for any given day (F4.y) would lie between
160 and 360.

We contrasted SpiNNaker topology with regular two- and three-dimensional tori for 65,536 nodes. The 2-D topologies are
arranged as square networks of 256 x 256 nodes whereas the 3-D torus is arranged as a 64 x 32 x 32 network.

We assessed how the three topologies lose node-connectivity as the number of link failures increases from 1 to 65,536. A
depth-first search algorithm was used to calculate this figure for 10° random uniform failure configurations. The average of
these 10° runs is plotted in Fig. 9. In the figure we can see that the triangular two-dimensional torus implemented in SpiN-
Naker provides a robustness level similar to a three-dimensional torus. Both topologies can support up to 8,192 random link
failures without any of the nodes losing connectivity with the rest of the system, more than one order of magnitude above
(Fday). On average tens of thousands of link failures are required to lose one or more nodes. This robustness motivates the use
of the triangular torus topology in SpiNNaker.

Direct Route

Fig. 8. Regular (direct) and emergency routes from a chip to a neighbour.
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6.3. Interconnect stability under severe degradation

The packet dropping mechanism provides a deadlock-free interconnection network. However, there is a loss of informa-
tion that has to be assessed. Spiking neuron systems can work when a few messages are lost but, even in very pessimistic
scenarios, the number of dropped packets should be low (below 1 packet per million. Approximatelly 1 packet each 1,500
cycles in the following experiments). Simulation has verified that the network can deal with loads well-above the expected
without significantly impacting applications (packet delay is acceptable) [21].

The simulations model a 256 x 256 network considering scenarios in which the network suffers different levels of hard
failures. To account for the real-time constraint, this section investigates the temporal evolution of the system and focuses on
stability, understood as the variability (which should be low) of the figures of merit and assesses the effectiveness of the
emergency routing mechanism.

6.3.1. Simulation model of the SpiNNaker network

A simplified model of the SpiNNaker interconnection infrastructure has been implemented in INSEE [19]. It includes the
topological description of the system and a model of the router.

Time is modelled in terms of abstract network cycles the time to route and forward a packet (1 network cycle ~ 10 pro-
cessor cycles). A network node represents a complete SpiNNaker chip, with all its cores and its router. Nodes are modelled as
independent traffic sources that inject packets following a Bernoulli temporal distribution that can be parameterized to gen-
erate any chosen injection rate. The spatial distribution of the traffic is uniform.

All ports are modelled as a single four-packet queue. If this is full and the node tries to inject a packet, it is dropped. Com-
munications are point-to-point. Routing tables are not implemented, using Dimension Order Routing instead. This emulates
the expected shape of communications — two straight lines with one inflection point [20]. As discussed in Section 5, the SpiN-
Naker system is aware of network failures and can modify its routing tables to avoid conflictive areas. In contrast, DOR is
oblivious and therefore unaware of network failures so our results should be taken as pessimistic

The experiments consider systems with 0 to 1024 link failures which covers scenarios well above Fg,y (as discussed be-
fore). Consequently this evaluation should be understood as a worst-case study.

6.3.2. Experiments and discussion of results

In the following experimental work, we will use the maximum network load expected during regular operational levels of
SpiNNaker which was derived in previous research [21]. We show the evolution of a SpiNNaker network degrading progres-
sively from 0 to 1024 random link failures which are introduced at the beginning of every sampling period (5,000 cycles). The
figures of interest are accepted load, number of dropped packets and packet latency figures (average and maximum). Router
parameters are fixed to the values suggested by previous experiments [21]. To assess the impact of emergency routing on
system stability, we plot results without (Fig. 10a) and with this mechanism (Fig. 10b).

1 2 4 8 16 32 64 128 256 512 1024

500
450
400

0.0125

0.0100

o
350 H
2, 300 0.0075 &
Qo [
% 250 3z
o > 5
2 © 200 0.0050 §
£
150 g
3

100 0.0025

50
D d packet:
o Ml R 0.0000
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000
Simulation clock
(a) Without emergency routing
500 8 16 32 64 128 256 00125
450

400 00100
350 3
£ 4 300 0.0075
K 9
g 5 250 3
o > 5
o © 200 0.0050 &
=
150 8
a

100
50

0.0025

Dropped packets

0.0000
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000
Simulation clock

(b) With emergency routing

Fig. 10. Temporal evolution of accepted load, latency figures and dropped packets for a 256 x 256 gradually degrading SpiNNaker system.
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To better understand the graphs, notice that the X-axis measures time (cycles). The labels at the top (1, 2, 4,...,1024) indi-
cate the total number of failures at the corresponding time: during the first 5 kcycles the network is fully operative, from 5k
to 10k there is a single link failure, from 10k to 15k there are two failures, and so on. Each performance metric has its own
unit, indicated in the Y-axes: packets (for the dropped packets line), cycles (for the average and maximum delay lines) and
packets/cycle/node (for the accepted load line). Note that plotted data, including the number of dropped packets, are not
cumulative, but correspond to 10-cycle measurement periods.

Fig. 10(a) shows how the progressive introduction of failures results in a high variability of performance metrics when
emergency routing is not activated. Accepted load drops by up to 25%, maximum delay noticeably fluctuates and the number
of dropped packets grows linearly with the number of link failures. For clarity, in the graphs the Y-axis is bounded by 0 and
500, which leaves out the number of dropped packets for 512 failures (around 800) and 1024 failures (around 1600). We can
see that even with a single failure the system with emergency routing deactivated (approx. 1 packet dropped every 50 cy-
cles) noticeably exceeds the acceptable limit.

In contrast, evolution with the emergency routing activated, Fig. 10(b), shows very stable performance metrics. Only
some minor peaks in the maximum delay can be observed. The most remarkable difference is in the number of dropped
packets: no packets are dropped for experiments with fewer than 512 failures. Considering that these scenarios are well be-
yond the described pessimistic range of failures (160-360), we can confirm that the emergency routing plays a major role in
improving fault tolerance at the network level. It is also worth noticing that, in all cases, when failures are introduced in the
system we do not observe significant transient periods. This means that, after a failure, the system reaches a stable situation
very rapidly.

The conclusion is that the SpiNNaker interconnection network provides a highly stable communications fabric for the
real-time simulation of spiking neurons. Even under very pessimistic scenarios the interconnection network does not show
significant performance fluctuations and degrades gracefully.

6.4. Chip-to-chip interfaces

The self-timed communication fabric is implemented using handshake protocols because of their advantages for large
networks:

e Chips can be interconnected without regard to wiring delays which simplifies machine construction as some chips will be
adjacent on a PCB whilst others may require considerable cabling or buffering with potential for delays and skew.

e Power economy by limiting logic transitions (no clock information is transmitted).

e Adequately high speed is retained.

e Well suited to short, intermittent transmissions — appropriate for neural communications.

There is, however, a significant drawback to handshaking links: in the presence of noise they are prone to deadlock. In this
subsection these are deadlocks at the interface level, not to be confused with the previously discussed network-level
deadlocks.

A handshake link can be thought of as passing a data token from the sender to the receiver which the handshake returns so
that the next data can be sent. Noise on the link may not only corrupt the data but also this control information, removing or
introducing other tokens so that the sender and receiver lose coherence. In the most serious case, a lost token can result in
each waiting for the other and the data link cannot recover. Timeout is not possible as there is no concept of time, only
sequencing.

The on-chip network uses Silistix CHAIN [23] interconnection with 3-of-6 return-to-zero (RTZ) coding [22]. This provides
a convenient symbol set with 20 codes of which 16 are used. A separate channel provides an End-of-Packet (EoP) marker. The
inter-chip links use a different protocol to balance speed, pin usage and (particularly) power consumption. Each four bit to-
ken is encoded as a 2-of-7 code (21 possible codes of which 17 are used: 4 bits plus EoP [24]). To reduce the number of tran-
sitions a non-return-to-zero (NRZ) coding is used.

Noise glitches on the inter-chip wires introduce extra transitions, potentially in both the forward and return paths; these
must be detected and recovered from at each end of the link. The off-chip wiring is the most likely place for noise to be in-
duced and it is assumed that such noise will cause a short glitch (i.e. two extra transitions) on a wire. Glitches will be rea-
sonably uncommon, therefore data integrity is not addressed in hardware; detection of damaged packets can be delegated to
system software if any recovery is to be attempted. The hardware simply has to keep running.

The majority of the fault tolerance resides in the receiver (Fig. 11) where various stages filter out potential problems.

e NRZ to RTZ Conversion: The problem for the first stage of the receiver is that it may not know the level of an input wire at
its reset time. This is overcome using a phase converter comprising two parallel RS flip-flops (Fig. 12) which acts as a tran-
sition detector which is set by one or more input transitions. It is cleared locally between the detection of a symbol and its
external acknowledgement. Two transitions are made per symbol. When at least two such phase converters are set, it is
assumed that an input flit has been captured and passed to the next stage.
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e 2-0f-7 to 3-of-6 Conversion: The flit is then searched by the symbol converter (Fig. 13) using an asynchronous state

machine with Muller C-elements [25,26]. In the absence of errors exactly one of these will be set but a glitch may have
set more. The output is therefore filtered with a priority encoder based on mutual exclusion elements which chooses a
single, legal, ‘one-hot’ code. There is no attempt to choose the ‘correct’ code - that information is not available - but
any legal code will prevent a deadlock. It is then a simple matter to generate a 3-of-6 code with an auxiliary EoP line
appropriate for the NoC.

Flit Counter: Glitches can easily insert extra flits into a packet but it is important that no packet exceeds a maximum
length. A flit counter is added to keep track of the number of flits and, if it exceeds a given threshold an extra EoP is
inserted, notifying explicitly a framing error. The counter is reset on reception of an EoP.

Transmitter: The only external input is the handshake acknowledge line. A phase converter detects at least one transition
and treats that as the acknowledgement, further transitions being ignored until sending the next flit. When a transmitter
is reset its state is 'ready to send’. Similarly, when a receiver is reset it sends an acknowledgement. If the reset occurred
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Table 2
Simulation results for chip-to-chip interface designs.
Protocol converter Conventional (%) Fault-tolerant (%)
Glitches 47.98 48.54
Error-free packets 91.97 82.96
Deadlocks 1.60 0.00

during reception this enables the transmitter to send again but if no acknowledgement was outstanding then there is a
spurious transition which is filtered by the transmitter. The glitch tolerance automatically provides a simple, robust, sin-
gle-ended reset capability which means that a node may be reset independently and still recover communication with its
neighbours.

6.4.1. Performance assessment

Our novel fault tolerant interface was compared with a conventional unit. Both circuits were simulated in Verilog han-
dling roughly a million packets each in an extremely noisy environment in which packets have a 50% probability of being
affected by a glitch. This noise level is exceedingly high and thus the number of packets corrupted should not be a concern.
Results of these simulations are shown in Table 2. Glitches represents the actual packet ratio affected by a glitch. Error-free
Packets represents the percentage of the packets affected by a glitch that were interpreted correctly i.e., those that have re-
sisted the glitch; Deadlocks represents the percentage of packets affected by a glitch that deadlocked the interface.

As expected our design did not deadlock whereas a conventional unit deadlocked roughly 2% of the times that a glitch
appears. This is very significant as a single deadlock has the potential to cripple a link permanently (until the whole system
is rebooted). Given the communication-intensive application model supported by SpiNNaker this would mean a network
becoming highly degraded very quickly if glitches appeared.

The price of the deadlock-free interface is that glitches alter the received data roughly 10% more often. This is acceptable
as glitches should be rare and erroneous packets can be detected and dropped.

6.5. Intra-chip connections

The asynchronous on-chip links are much less sensitive to noise-induced glitches, so they employ simpler logic. However
the potential for deadlock with handshake communications still applies. To alleviate this intra-chip interfaces are provided
with two levels of reset (soft and hard). Watchdog will apply soft reset first and if this does not solve the problem, it will
perform a hard reset of the entire node, thus disrupting chip operation - but not deadlocking the on-chip network.

7. Other fault-tolerant features
7.1. Clock redundancy

SpiNNaker chips have two independent PLLs with the intention of running the processors and the router at one frequency
(200 MHz) and the SDRAM at another (166 MHz) to improve overall performance. However clock sources can be switched so,
in the event of a PLL failure, all subsystems’ clocks can be derived from the same source. This may reduce performance on
that node but has no other consequence as the GALS interconnection is inherently adaptive.

7.2. GALS implications on fault tolerance

Using a GALS approach not only facilitates the SoC design process but also simplifies isolation of faulty components in run
time by supporting resetting or disabling on-chip components independently from the rest of the SoC.

7.3. Memory subsystem fault tolerance

Various RAM is spread across a SpiNNaker chip (private TCMs, on-chip SRAM and off-chip RAM) which, as explained be-
fore, are the main expected points of failure.

In principle it is possible to work-around hard failures in private memories but the degree of redundancy in the system
means our plan is simply to inactivate cores with permanent TCM failure(s). The SDRAMs have some spare capacity and are
mapped by the Monitor Processor so hard failures can be worked around.

Soft errors present a different challenge. The SDRAM is usually accessed in blocks via DMA. The DMA controller includes a
fully programmable CRC generator and checker so faulty blocks can be detected and subject to software recovery.

Private memories are not protected by error detection; this was a pragmatic decision to maximise the speed and capacity
of the chip. Soft errors in code space can cause a software crash resulting in some lost neural information. Recovery from this
should be achieved by the watchdog mechanism resetting the affected core. Corruption of data space may be detected by
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software limit checks or crashing or other erratic behaviour. There may be some loss of data or some erroneous neural firing
but the application should be robust enough to withstand this; it almost certainly happens in biological systems too!

7.4. Connecting with the outside world

A SpiNNaker system communicates with a host computer via Ethernet (Fig. 1) using TCP/IP. This communication is used
for different management actions, such as loading to the chip memories the application code or the neural connectivity
information. Although all chips have an Ethernet interface in practice only a few will make use of it to reduce power con-
sumption and maximize the computing resources available to neurons. Each Ethernet-connected chip translates frame-
based communication to inter-chip packet-based communication. The presence of several possible interfaces does, however,
eliminate another possible single-point failure.

8. Related work

Research in simulating biologically-plausible neural networks (brain-like systems) is not new. In the early 1990s a team
at U.C. Berkeley worked on the Connectionist Network Supercomputer [27]| which aimed to build a supercomputer specif-
ically tailored for neural computation as a tool for connectionist research. The system was a 2D mesh, with a target size of
128 nodes (scalable to 512). Each node would incorporate a general-purpose RISC processor plus a vector coprocessor, 16
MBytes of RAM and a router. As far as we know, the node was built (under the codename T0), but the system never operated
as a network. Experiments using up to five nodes in a bus configuration were discussed in [28].

More recently, the Microelectronics Division at the Technical University of Berlin worked on a project entitled Design and
implementation of spiking neural networks [http://mikro.ee.tu-berlin.de/spinn] whose objectives are similar to those of SpiN-
Naker. A product of this is the Spiking Neural Network Emulation Engine (SEE), an acceleration board implemented with
FPGAs interconnected via an on-board bus. SEE accelerators were able to perform neural computations 30 times faster than
a desktop PC [29]. However, as these boards cannot be connected to form a network, they are not able to scale to the mag-
nitudes of SpiNNaker.

Research on spiking neural networks has also used different off-the-shelf technologies such as FPGAs [30], graphic proces-
sors [31] and general purpose processors and accelerators [32], obtaining speed-ups of over two orders of magnitude com-
pared to software-only implementations.

The relatively small scale of these systems allowed the assumption of a complete absence of component failures and,
therefore, did not address reliability issues and did not incorporate fault-tolerant techniques.

As far as we know, there are only three active projects comparable to SpiNNaker in terms of simulation scale. First, the
Blue Brain project [http://bluebrain.epfl.ch/] aims to create biologically accurate functional models of the brain; however,
model complexity (far more intricate than SpiNNaker’s) only allows real-time execution of roughly a neuron per node
[33]. This is a low figure in comparison with the several thousand (simpler) neurons per node supported by SpiNNaker.

Secondly, DARPA’s System of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) project claims that it has
achieved the simulation of spiking neural networks the size of a cat’s brain [34] - 10° neurons - using Izhikevich models
like those supported by SpiNNaker. However their simulations run 2-3 orders of magnitude slower than real-time.

In contrast with the biologically-inspired SpiNNaker architecture, neither Blue Brain nor SyNAPSE contemplate the con-
struction of a custom architecture but use general-purpose supercomputers from the IBM BlueGene family, depending on the
underlying platform for their reliability and fault tolerance.

The IBM BlueGene/L consists of 64 K compute nodes, each based on PowerPC 400 processors. Additionally, it contains sev-
eral service nodes that reside outside the core [35] and communicate with it using Ethernet. This infrastructure is used for
booting, controlling and monitoring the system. System monitoring and job execution is done by the combined action of ser-
vice and I/O nodes which maintain log files. During boot-up service nodes can control the computing core to the lowest level
of granularity [36]. Service nodes can also directly write to and read from the device control registers of each processor. This
feature is useful for handling runtime problems and investigating any booting up issues. For fault tolerance at boot-up or at
run-time a self-test mechanism is kept in each chip to perform system diagnostics. The BlueGene supercomputer or others,
e.g., the Cray XT family of supercomputers [37,38], being general-purpose will provide solutions that do not match the
power-efficiency of SpiNNaker.

Last but not least, the FACETS project [39] is attempting to create a faster than real-time hardware system for the sim-
ulation of networks of large but unspecified size. This architecture, while biologically inspired, uses a fixed synapse and neu-
ron model and, therefore, is not a system as general as SpiNNaker. It employs analogue circuits to implement most of the
central dynamic functions. For these blocks what would constitute a ‘fault’ is not precisely defined since analogue circuits
exhibit a continuum of states. It is therefore relevant to discuss fault tolerance only with respect to the digital components:
the communications infrastructure of the design. The FACETS architecture uses wafer-scale devices [40] to achieve the nec-
essary connectivity. It uses AER signalling (similar to SpiNNaker), but with a circuit-switched, synchronous communications
subsystem. Systems of this kind are fault tolerant in the sense of being reconfigurable in the event of a failed link; however
they are not live-reroutable, thus the system provides no protection against transient faults nor does it permit packet recov-
ery or retransmission while the system is active. A failed link requires at least a local reconfiguration with possible further
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routing impact. FACETS authors discuss fault tolerance but only as a general property of neural systems; the system does not
include specifically designed fault-tolerant mechanisms. Thus the FACETS system, and its associated HICANN devices, once
again represent a very different system designed to solve a different problem: faster than real-time neural simulation, for
which power consumption is not a factor and fault tolerance merely a side effect rather than a design feature.

Outside of the field of brain-like systems we can cite a heterogeneous SoC with certain architectural similarities to SpiN-
Naker [41]. This consists of an array of processors connected over an on-chip NoC and containing various heterogeneous sys-
tem components. However, that project considers general-purpose applications within mission critical scenarios requiring
the robustness of triple modular redundancy. This approach is an expensive solution unsuitable for SpiNNaker. In addition,
their NoC appears to be a conventional synchronous design rather than the SpiNNaker self-timed communication fabric
which may difficult scaling up the system.

Reviewing the literature on general purpose multiprocessor systems we can see how memory fault tolerance efforts have
been devoted mainly to the interconnect structure [42], and to the use of ECC (originally following [43]), although this may
not be in itself sufficient [44]. Given that symmetric redundancy of memory is expensive, recent work has introduced the
concept of heterogeneous fault tolerance: graceful fall-back onto other components able to perform the same function, pos-
sibly with reduced performance [45,46]. Such an approach lowers overall hardware costs and represents a reasonable com-
promise in a power- or area-constrained design. Our asymmetric memory architecture follows this approach.

Implementing fault tolerance in direct networks (such as 3D tori) is complex and costly and, therefore, a hot research to-
pic. Current solutions are neither easy nor cheap to implement in silicon (see, for example, [47,48]). The simple emergency
routing mechanism implemented in SpiNNker has been shown to be very effective for this purpose.

9. Summary and conclusions

This paper has focused on introducing the broad collection of fault tolerance mechanisms implemented in SpiNNaker.
Such features are quite extensive, and we have presented descriptions of the principal mechanisms and, where available,
the pre-silicon assessment of their effectiveness. Some of the most important features discussed in this paper are the
following:

e A collection of system routines able to detect faults and to quickly recover from them when possible or to isolate com-
ponents and to reconfigure the system otherwise.

o A range of application loading policies offering different levels of resilience and performance which can be used depend-
ing on the level of system degradation.

e The use of GALS logic that facilitates the SoC design process, simplifies timing closure and simplifies the isolation of faulty
components but introduces weaknesses that have been overcome with custom-hardware.

e Asymmetric redundancy of the memory subsystem, granting graceful fall-back onto other components able to perform
the same function although with reduced performance. Such an approach lowers overall hardware costs and represents
a reasonable compromise in a power- or area-constrained design.

¢ A novel robust self-timed chip-to-chip interface circuit, resilient to noise-induced glitches preventing deadlocks.

e A stable communication fabric able to support communication demands exceeding those expected during regular
operation.

e The novel emergency routing mechanism helps to deal with congestion and network failures.

The main conclusion of this paper is that SpiNNaker is a well-balanced fault-resilient architecture in which fault-toler-
ance has been considered a fundamental foundation of its design. This should facilitate its scaling from the prototype, 4-chip
systems into practical, large-scale networks with over 1 million cores.
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