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ABSTRACT

We present a new approach to model selection and Bayes factor determination,

based on Laplace expansions (as in BIC), which we call Prior-based Bayes Informa-

tion Criterion (PBIC). In this approach, the Laplace expansion is only done with

the likelihood function, and then a suitable prior distribution is chosen to allow ex-

act computation of the (approximate) marginal likelihood arising from the Laplace

approximation and the prior. The result is a closed-form expression similar to BIC,

but now involves a term arising from the prior distribution (which BIC ignores)

and also incorporates the idea that different parameters can have different effective

sample sizes (whereas BIC only allows one overall sample size n). We also consider

a modification of PBIC which is more favorable to complex models.
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1. Background

1.1. The original BIC (Schwartz, 1978)

Suppose that we observe Xi = (Xi1, . . . , Xip) ∼ g(xi | θ) for i = 1, . . . , n. Here

θ = (θ1, . . . , θp) is a unknown vector and, in Schwartz’s derivation of BIC, g(x | θ) is
an exponential family. Then the log-likelihood function is

l(θ) = log f(x | θ) = log

(
n∏

i=1

g(xi | θ)

)
,
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where x = (x1, . . . ,xn). The goal of [24] is to find a simple approximation to the

marginal density

m(x) =

∫
f(x | θ)π(θ)dθ,

where π(θ) is a prior density for the unknown θ, and use the approximation for model

comparison.

Result 1.1 (Schwartz (1979)). Let θ̂ be the MLE of θ. Then, under reasonable con-

ditions and as n → ∞,

BIC ≡ −2l(θ̂) + p log n = −2 logm(x) + c+ o(1) ,

where c is a constant.

Schwartz then suggested comparing two models M1 and M2, using

∆BIC = BIC2 − BIC1 ,

preferring M2 (M1) as this is negative (positive). Clearly this is equivalent to basing

the model comparison on the Bayes factor (odds) of M2 to M1, with the approximation

B21 ≡
m2(x)

m1(x)
=

exp
(
−1

2BIC2

)
exp

(
−1

2BIC1

) exp(1

2
(c2 − c1)

)
(1 + o(1)) ≈

exp
(
−1

2BIC2

)
exp

(
−1

2BIC1

) . (1)

1.2. Problems with general use of BIC

BIC is an excellent tool for the class of problems for which it was developed. Unfortu-

nately, it is today used ubiquitously, for completely different classes of problems. We

here outline some of the issues with using BIC inappropriately.

Problem 1. The term exp
(
1
2(c2 − c1)

)
in (1) is ignored by BIC.

This could have been a serious problem even with proper use of BIC, except that

there happens to be pseudo-prior distributions that yield BIC itself ([23]), i.e. for which

the term exp
(
1
2(c2 − c1)

)
= 1. These pseudo-priors are not real priors, in that they are

centered at the mle’s of each model, which is a problematical double use of the data.

Nevertheless it is comforting that there is at least some type of prior distribution that

yields BIC exactly.

Problem 2. What is n?

(i) A common mistake in specifying n: Note that, in Schwartz’s setup, there are n

vector observations of dimension p, so that there are a total of np real observations.

It is common to mistakenly use n∗ = np as the sample size in BIC, rather than the

correct n.

(ii) Different parameters can have different n.
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Example 1.2 (Group means). For i = 1, . . . , p and l = 1, . . . , r, suppose we observe

Xil = µi + ϵil,

where ϵil ∼ N(0, σ2). If σ2 were known, this would be exactly the setup of Schwartz,

and the sample size for µ = (µ1, . . . , µp) would be r. In effect, each µi has a sample

size of r associated with it. But, if σ2 is unknown, the parameter is θ = (µ1, . . . , µp, σ
2)

and it is not reasonable to also associate the sample size of r to σ2, in that we know

there are p(r − 1) degrees of freedom associated with the mle of σ2.

An alternative argument is to note that the observed information matrix Î = (Îjk),

with (j, k) entry

Îjk = − ∂2

∂θj∂θk
log f(x | θ)

∣∣∣
θ=θ̂

is given by

Î =

(
r
σ̂2 Ip×p 0

0 pr
2σ̂4

)
,

where σ̂2 = 1
pr

∑p
i=1

∑r
l=1(Xil − X̄i)

2. The information matrix suggests that the effec-

tive sample size for each µi is r, while the effective sample size for σ2 is pr. Whether

we use p(r − 1) or pr for the sample size associated with σ2 will not typically make

much difference, whereas the difference with using r, instead, will be quite large.

(iii) Different observations can have different observed information content.

Example 1.3. Suppose each independent observation, Xi, i = 1, . . . , n, has probabil-

ity 1/2 of arising from the N(θ, 1) distribution and probability 1/2 of arising from the

N(θ, 1000) distribution. Clearly half the observations are essentially worthless, and

the ‘effective sample size’ is n/2.

Example 1.4 (Findley’s BIC counterexample.). One of the famous counter examples

against inappropriate use of BIC is in [11]. Suppose the observations are

Xi =
1√
i
· θ + ϵi, where ϵi ∼ N(0, 1), i = 1, . . . , n , (2)

and we are comparing the models H0 : θ = 0 and H1 : θ ̸= 0. It turns out that the

mle for θ is consistent under H1 (a necessary condition to apply BIC), but that BIC

is inconsistent if 0 < |θ| < 1, in that BIC will then declare H0 to be the true model

as n → ∞. The problem here is that, even though the information about θ goes to

∞ as n grows, it grows much more slowly than n (actually, the information grows at

roughly log n rate), and BIC erroneously assigns the rate to be n.
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Problem 3. What is p?

Just as n is often not clearly defined for use in BIC, the parameter dimension p is

often not clearly defined (see also [22].)

Example 1.5 (Random effect group means). Consider hierarchical or random effect

versions of the group means problem, where it is assumed that

µi ∼ N(ξ, τ2) ,

with ξ and τ2 being unknown. The number of parameters might appear to be p + 3

(the means, along with σ2, ξ and τ2), but one could, alternatively, integrate out µ =

(µ1, . . . , µp) (since it has a known distribution) obtaining

f(x | σ2, ξ, τ2) =

∫
f(x | µ, ξ, σ2)π(µ | ξ, τ2)dµ

∝ 1

σ−p(r−1)
exp

{
σ̂2

2σ2

} p∏
i=1

exp

{
− (x̄i − ξ)2

2(σ
2

r + τ2)

}
.

The marginal likelihood will be the integral of this, with respect to a prior π(σ2, ξ, τ2),

so that, if one is really viewing BIC as an approximation to the marginal likelihood,

it would be correct to set p = 3.

Problem 4. What if p grows with n?

BIC is based on an asymptotic argument with p fixed and n growing, but often p

is growing with n; BIC then does not apply. If one were to erroneously apply BIC

in such a situation, one could end up with inconsistency, as shone by Stone in [26]

for the group means example, with known variance σ2 = 1 for simplicity. Indeed, in

comparing models H0 : µ = 0 and H1 : µ ̸= 0 for the group means problem with

r = 2,

∆BIC = BIC1 − BIC0 = −2

p∑
i=1

x̄2i + p log 2 ,

which, under H0, behaves like p(log 2−1) → −∞ as p grows, thus incorrectly selecting

model H1.

1.3. Variants of BIC

Noting the limitations of BIC, researchers have proposed a host of generalizations,

many of which have performed better than BIC under specific scenarios. Many of these

methods arise from the variations in retaining the number of terms in the Laplace ap-

proximation of the Bayes Factor ([19]). One variant – called the HBIC – ([14]) retains

the third term in the Laplace approximation of the Bayes Factor. A simulation study
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by [17] shows that HBIC performs better in model selection for structural equation

models than does the usual BIC. Following HBIC, Bollen et. al. [7] developed a similar

criterion, called the Information matrix-based Bayesian Information Criterion (IBIC),

which retains more terms in the Bayes Factor approximation and outperforms BIC

and HBIC in many scenarios. [7] also proposed another criterion, named the scaled

unit information prior (SPBIC), which generalizes the interpretation of the unit infor-

mation prior in the context of BIC. For approximation of Bayes factors as the model

dimension grows, [4] proposed another approximation, named GBIC. Following [4], a

generalization of BIC for the general exponential family was proposed by [8], and a

new BIC for change point analysis was proposed by [25]. Some other extensions of BIC

include techniques for comparing graphical models ([12]) and singular models ([9]).

1.4. Overview of the paper

Section 2 presents a proposal to generalize BIC, in order to overcome the problems

mentioned above. It is based on use of a specific (robust) prior distribution in the

computation of the approximate marginal likelihood of a model. Section 3 discusses

a critical aspect of the definition of PBIC, namely the need to determine the ‘effec-

tive sample size’ corresponding to each parameter in a model. Section 4 presents an

alternative called PBIC*. It employs an empirical Bayes prior in computation of the

marginal likelihood approximation, resulting in answers more favorable to complex

models. Section 5 illustrates the use of PBIC and PBIC* in the normal linear model;

it is of interest that PBIC and PBIC* correspond to exact marginal likelihoods here.

Illustrations in the section are simple linear regression, testing the equality of normal

means with known unequal variances, Findley’s counterexample, and the group means

problem, where consistency results for PBIC and PBIC* are established as p → ∞.

2. The PBIC solution

We propose a solution to these problems that depends only on software that can com-

pute mle’s and observed information matrices. The basis of the solution is a modified

Laplace approximation to m(x) for reasonable default priors.

2.1. Two important preliminaries

One should analytically integrate out any parameter that has a distribution given

other parameters, if it is possible to do so. For example, in the hierarchical group

means example, base the analysis on the marginal likelihood f(x | σ2, ξ, τ2), rather

than the full likelihood.

We will be utilizing the Laplace approximation, which is most accurate ([28, 20])

if the parameter space is transformed to be all of ℜp. Transformation to ℜp will also
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be necessary for the subsequent step of the analysis. As an illustration, in the (non-

multilevel) group means example, transform to ν = log σ2. Then θ = (µ1, . . . , µp, ν) ∈
ℜ(p+1). Note that one then works with the transformed mle log σ̂2 and the transformed

observed information matrix

Î
∗
(µ, ν) =

(
r
σ̂2 Ip×p 0

0 pr
2

)
.

In the multilevel group means example, both σ2 and τ2 would need to be transformed

in this fashion.

2.2. PBIC and PBIC* definitions

Suppose θ = (θ(1),θ(2)), where θ(2) denotes the parameters that are common to all

models under consideration (e.g. an intercept in linear regression). Changing notation,

let p denote the dimension of θ(1) and q denote the dimension of θ(2); note that p will

typically vary from model to model, while q is fixed. Partition the observed information

matrix for a model accordingly, as

Î =

(
Î11 Î12

Î21 Î22

)
, and define Σ−1 = Î11 − Î12Î

−1

22 Î
t

12 . (3)

(If there are no common parameters to all models, then Σ = Î
−1

.) Change variables to

ξ = Oθ(1), whereO is an orthogonal matrix such thatΣ = OtDO, withD = diag{di}
for i = 1, . . . , p, and define ξ̂ = O θ̂(1) (the transformed mle). The choice of O does not

affect the definition below. For each transformed parameter ξj , let n
e
j be the effective

sample size corresponding to that parameter. This is the most difficult aspect of the

construction, but equals the intuitive choices of parameter sample size discussed in

the earlier examples; formal definitions will be presented in Section 3. Then PBIC is

defined as

PBIC ≡ −2l(θ̂) + log |Î22|+
p∑

i=1

log(1 + ne
i )− 2

p∑
i=1

log
(1− e−vi)√

2 vi
, (4)

where vi = ξ̂2i /[di(1+ne
i )]. For a certain natural prior distribution, PBIC will be shown

to be accurate, as an approximation to −2 logm(x), up to a o(1) term as n → ∞ (for

fixed dimension p). Note that, if there are no common parameters to all models, then

PBIC = −2l(θ̂) +

p∑
i=1

log(1 + ne
i )− 2

p∑
i=1

log
(1− e−vi)√

2 vi
. (5)

In the classic case considered by Schwartz, all ne
i would equal a common n, and the

first two terms in this expression are then BIC (up to a o(1) term); the ‘constant’
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ignored by BIC is the final term in (5).

To summarize results in one place, here is an alternative version of the approxi-

mation, one which is more favorable to complex models; its development is given in

Section 4:

PBIC∗ ≡ −2l(θ̂) + log |Î22|+
p∑

i=1

log(1 + ne
i )− 2

p∑
i=1

log

(
1− e−min{vi,1.3}

)√
2vi min{vi, 1.3}

. (6)

Note that, if dealing with only normal mean parameters, PBIC and PBIC* are

exact as an approximation to −2 logm(x), as discussed below. This would mean, for

instance, that when dealing with p → ∞, there would be no need to worry about the

accuracy of the approximations.

Here are the steps in the derivation of PBIC.

2.2.1. Laplace approximation

By a Taylor’s series expansion of l(θ) about the mle θ̂, with ∇ denoting the gradient

and Î being the observed information matrix as defined earlier,

m(x) =

∫
f(x | θ)π(θ)dθ

=

∫
el(θ)π(θ)dθ

=

∫
exp

[
l(θ̂) + (θ − θ̂)t∇l(θ̂)− 1

2
(θ − θ̂)tÎ(θ − θ̂)

]
π(θ)dθ(1 + o(1))

= el(θ̂)

∫
e−

1

2
(θ−θ̂)tÎ(θ−θ̂)π(θ)dθ(1 + o(1)) , (7)

where o(1) denotes a term that goes to zero as the sample size n grows. Technical

conditions for the validity of this Laplace approximation can be found in, e.g., [28, 20];

the key assumption needed is that θ̂ occurs on the interior of the parameter space,

so that ∇l(θ̂) = 0. (If not true, the analysis must proceed as in [10, 15, 16]). Also,

the presence of o(1) assumes that p is fixed as n grows. We will nevertheless use this

approximation, even as p grows with n, relying on the considerable evidence that the

Laplace approximation is quite generally accurate.

Note that we do not use the more common version of the Laplace expansion which

involves π(θ) in the Taylor’s expansion because we will be choosing π(θ) so that

the integral in this expression can be evaluated in closed form. In particular, this

means that, if we are dealing with the situation where θ is the mean parameter of

a normal model, then the computations herein will be entirely closed form, with no

approximation being involved (and no need to then worry about p growing with n).

2.2.2. Choosing a good prior π(θ)

Assume that the transformations in Section 2.1 have been made.
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Step 1. Recall that θ = (θ(1),θ(2)), where θ(2) denotes the common parameters to all

models. We will utilize a prior distribution

π(θ) = (2π)−qπ(θ(1)) ,

where π(θ(1)) is defined later. The key point is that, since θ(2) is common to all models,

it can be assigned a constant prior density (see, e.g., [5, 1]); choosing the constant to

be (2π)−q is to simplify the resulting expression. With the definitions given in (3),

integrating out θ(2) results in the expression

m(x) = el(θ̂)

∫
exp

(
−1

2
(θ − θ̂)tÎ(θ − θ̂)

)
(2π)−qdθ(2)π(θ(1))dθ(1)(1 + o(1))

= el(θ̂)|Î|−1/2

∫ exp
(
−1

2(θ(1) − θ̂(1))
tΣ−1(θ(1) − θ̂(1))

)
|Σ|1/2

π(θ(1))dθ(1)(1 + o(1)) .

Step 2. Change variables to ξ = Oθ(1), where O is an orthogonal matrix such that

Σ = OtDO, with D = diag(di) for i = 1, . . . , p. (The choice of O does not matter in

the following.) Note that ξ̂ = O θ̂(1).

For this model, we will utilize a prior distribution that is independent in the ξi, i.e.,

π(ξ) =
∏p

i=1 πi(ξi). Then we can write

m(x) = el(θ̂)|Î|−1/2

[
p∏

i=1

∫
1√
di
e
− (ξi−ξ̂i)

2

2di πi(ξi)dξi

]
(1 + o(1)). (8)

For πi(ξi), in a similar situation, Jeffreys ([18]) recommended the Cauchy(0, bi) density
1

π
√
bi

1
(1+ξ2i /bi)

, where bi is chosen to represent unit information for ξi (see [21]; also to

be discussed later). A prior that yields almost the same results is

πR
i (ξi) =

∫ 1

0
N

(
ξi

∣∣∣ 0, 1

2λi
(di + bi)− di

)
1

2
√
λi

dλi , (9)

which is well-defined if bi ≥ di. Interestingly, this prior is very similar to the Cauchy

prior no matter what di happens to be (as shown in the Appendix), so we will interpret

this prior (and bi) exactly as we would with the Cauchy prior. The attraction of πR

is that the ensuing computations can be done in closed form. That one can have all

the advantages that Jeffreys pointed out are possessed by the Cauchy prior for model

selection, while maintaining closed form expressions, is a significant advantage when

dealing with large model spaces. This prior was extensively discussed in [2], as a robust

prior (hence the R label) for estimation problems, but its even greater value for model

selection was not recognized. (This type of prior was first utilized in [27] in shrinkage

estimation.) See also [1], where a multivariate version of this prior is utilized for model

selection in normal linear models.
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With the prior in (9), the integral in (8) is straightforward to evaluate in closed

form (first integrate over ξi, then over λi) yielding

m(x) = el(θ̂)|Î|−1/2

 p∏
i=1

1√
(di + bi)

(
1− e−ξ̂2i /(di+bi)

)
√
2 ξ̂2i /(di + bi)

 (1 + o(1)) . (10)

Step 3. Define the unit information, bi, by

bi = ne
idi , where ne

i = effective sample size for ξi ; and recall vi =
ξ̂2i

di(1 + ne
i )

. (11)

Definitions of the effective sample size will be given in Section 3. It will be the case

that ne
i ≥ 1 so that bi ≥ di (the condition mentioned earlier for πR to be well defined).

Then (10) becomes

m(x) = el(θ̂) |Î|−1/2

|D|1/2

p∏
i=1

1√
1 + ne

i

(1− e−vi)√
2 vi

(1 + o(1)).

Since |Î| = |Σ−1||Î22| = |D−1||Î22|, we thus have that

−2 logm(x) = PBIC + o(1) ,

with PBIC defined in (4).

3. Defining ‘effective sample size’ nj, for parameter ξj

The most difficult aspect of dealing with PBIC turns out to be defining the effective

sample size corresponding to a parameter. We first present a solution for linear models,

and then suggest a possible solution for the general case.

3.1. Effective sample sizes in linear models

Suppose that all models under consideration are linear models of the form

Y = X∗α+Xβ + ε, where ε ∼ N(0,Γ), Γ known , (12)

with dimensions Y [n×1], X
∗
[n×q], α[q×1], X [n×p], β[p×1], ε[n×1] and Γ[n×n]. Here X

∗α

is a common term present in all models (e.g., an intercept in linear regression), but

Xβ will differ from model to model. This fits into the framework for PBIC by defining

θ(1) = β and θ(2) = α.

Since α will be integrated out in PBIC, only the effective sample size for linear

functions of β will be needed. The first step of the process is to orthogonalize the
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parameters by transforming α to α∗ = α+ (X∗tΓ−1X∗)−1X∗tΓ−1Xβ and defining

X̃ = (I −X∗(X∗tΓ−1X∗)−1X∗tΓ−1)X . (13)

Since X∗α + Xβ = X∗α∗ + X̃β, the linear part of the model has not changed in

this reparameterization, but now X̃
t
Γ−1X∗ = 0, so that α and β are orthogonal.

There are two important aspects of this. First, since X∗ has not been altered, the new

α∗ can still be considered common parameters in each model, and will be integrated

out in PBIC, so that their changed definition is irrelevant. Second, β has not been

transformed, crucial because we wish effective sample sizes for linear functions of β

Write Γ = σRσ, with σ = diag{σ1, . . . , σp}, where R is the correlation matrix, and

define C [p×p] to be the diagonal matrix with entries cii = max
j

{|X̃ji|/σj}. [3] gave, as

the general definition of the effective sample size (called TESS), for any scalar linear

transformation ξ = v β (v is [1× p]) of β,

ne =
|v|2

vC(X̃
t
Γ−1X̃)−1C vt

. (14)

Example 3.1 (Group means example). Assume Yij = µi + εij for i = 1, .., p groups,

and j = 1, .., ri replicates in the ith group, and that the εij are i.i.d. N(0, σ2). Compu-

tation yields that TESS for µi is n
e
i = ri, as is to be expected. Note that ri could be

1, which can be seen to be the lower bound on TESS for linear models when Γ = σ2I.

Example 3.2 (Orthogonal and related designs). Assume that X has orthogonal

columns with entries ±ai ̸= 0, and that Γ = σ2I. Simple computation here shows

that ne
i = n for each βi.

Note that the effective sample size here is n, in contrast to the group means problem

where the effective sample size can be as low as ri = 1. Indeed, it can be shown that,

when Γ = σ2I, TESS will always be between 1 and n, with both limits attainable.

Example 3.3 (Heteroscedastic independent observations). Assume Yi = µ + εi, εi

independent, εi ∼ N(0, σ2
i ), i = 1, . . . , n. Here the effective sample size is

ne =

∑n
i=1 1/σ

2
i

maxi{1/σ2
i }

.

Consider the particular case where, for i = 1, . . . , n1, we have Yi ∼ N(µ, σ2
1), whereas

for the remaining n2 = n − n1 observations, Yi ∼ N(µ, σ2
2), where σ2

2 is much larger

than σ2
1; thus, intuitively, only the first n1 observations count. Then, unless n2 is large,

ne =
n1/σ

2
1 + n2/σ

2
2

1/σ2
1

= n1 + n2
σ2
1

σ2
2

≈ n1 .
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3.2. A general definition of effective sample size

Suppose one has independent observations (x1, . . . ,xn). A possible general definition

for the ‘effective sample size’ follows from considering the information associated with

observation xi arising from the single-observation expected information matrix I∗
i =

O′(I∗i,jk)O, where

I∗i,jk = −E

[
∂2

∂θj∂θk
log fi(xi | θ)

] ∣∣∣
θ=θ̂

.

Since I∗jj =
∑n

i=1 I
∗
i,jj is the expected information about ξj , a reasonable way to define

the effective sample size, ne
j , is

• define information weights wij = I∗i,jj/
∑n

k=1 I
∗
k,jj ;

• define the effective sample size for ξj as

ne
j =

I∗jj∑n
i=1wijI∗i,jj

=

(
I∗jj

)2
∑n

i=1

(
I∗i,jj

)2 .

Intuitively,
∑

wijI
∗
i,jj is a weighted measure of the information ‘per observation’, and

dividing the total information about ξj by this information per case seems plausible

as an effective sample size.

Unfortunately, this does not seem to always be an effective definition; for instance, it

does not reduce to TESS for all linear models. This should thus be viewed as primarily

a starting point for future investigations of effective sample size in non-linear models.

4. PBIC*: a version more favorable to complex models

Recall, from [23], that BIC can be thought of as arising from unit information priors

for each model that are centered at the model likelihood. This choice of prior seems

highly favorable to more complex models, since the prior gives virtually all of its mass

to a modest neighborhood of the likelihood for each model.

In contrast, PBIC utilizes unit information priors that are centered at 0 and, hence,

can give little mass to the region of high model likelihood. The fat tails of the prior

do result in reasonable answers (cf. [18, 1]), but it is of interest to investigate an

intermediate solution.

The intermediate solution is to keep the prior centered at 0, but choose the scales

of the prior, bi, so that the prior will extend out to the likelihood. In our setup, this

can be implemented by choosing the bi so as to maximize m(x) in (10); thus we are

effectively choosing the prior in our class that is most favorable to each model. Clearly

this does allow the prior to give more mass to the region of high model likelihood, but

does not allow complete concentration of mass in this region.

Since this prior is maximizing the marginal likelihood among the given class, it can

be viewed as the empirical Bayes prior in the class. It was also a choice popularized
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in the ‘robust Bayes’ literature (c.f. [6]), and was used in [7] to develop a related

generalization of BIC.

The bi that maximizes (10) can easily be seen to be

b̂i = max{di,
ξ̂2i
w

− di}, with w s.t. ew − 1 = 2w, or w ≈ 1.3 .

Unfortunately, the resulting version of BIC has serious problems; in particular it will

typically not be consistent as n → ∞ in that, if ξi is zero, the prior will concentrate

about zero at such a fast rate that the models with and without ξi are essentially

equivalent (and one will fail to select the model without ξi with probability approach-

ing 1.) This same lack of consistency afflicts the developments in [7] and the robust

Bayesian choices.

The obvious solution is simply to prevent b̂i from becoming too small, and the

obvious constraint is to restrict it to the region [ne
idi,∞). This yields the recommended

choice

b∗i = max{ne
idi,

ξ̂2i
1.3

− di}. (15)

This will avoid inconsistency as n → ∞ in that, as long as b∗i → c with c a nonzero

constant, the resulting prior behaves asymptotically when ξi = 0 as a fixed prior, and

fixed priors will yield consistency as n → ∞. (Consistency when the effective sample

sizes do not grow is a more delicate issue, discussed in Section 5.5.)

Replacing bi with b∗i , (10) becomes

m(x) = el(θ̂)|Î|−1/2

[
p∏

i=1

1√
di(1 + ne

i )max{1, vi/1.3}

(
1− e−min{vi,1.3}

)
√
2 min{vi, 1.3}

]
(1 + o(1))

= el(θ̂)|Î|−1/2

[
p∏

i=1

1√
di(1 + ne

i )

(
1− e−min{vi,1.3}

)√
2vi min{vi, 1.3}

]
(1 + o(1)) .

The resulting approximation to −2 logm(x) is given in (6).

5. PBIC and PBIC* for the linear model

5.1. The expressions

Consider the normal linear model framework in (12) and assume the orthogonaliza-

tion discussed there has been carried out. This does not change PBIC, but is more

convenient because we can ignore the common orthogonal parameter α∗, and focus

only on the other parameters β, with the associated model

Y = X̃β + ε, where ε ∼ N(0,Γ), Γ known , (16)

12



with X̃ given by (13).

Following the PBIC algorithm, note that Σ−1 = X̃
′
Γ−1X̃. Change variables to

ξ = Oβ, where O is an orthogonal matrix such that Σ = OtDO, with D = diag(di)

for i = 1, . . . , p. Then, for each ξj = Ojβ, define n
e
j using (14) with v = Oj , and let ξ̂j =

Ojβ̂, where β̂ = (X̃
′
Γ−1X̃)−1X̃

′
Γ−1Y . Finally, recalling that vi = ξ̂2i /[di(1 + ne

i )],

PBIC and PBIC* are given by

PBIC = S2 + C +

p∑
i=1

log(1 + ne
i )− 2

p∑
i=1

log
(1− e−vi)√

2 vi
(17)

PBIC* = S2 + C +

p∑
i=1

log(1 + ne
i )− 2

p∑
i=1

log

(
1− e−min{vi,1.3}

)√
2vi min{vi, 1.3}

, (18)

where S2 is the usual residual sum of squares corresponding to (12) and

C = log(|Γ|) + n log(2π) = log(|Γ|) + n log(2π) .

Note that C is the same constant in any model under consideration, and hence it can

be ignored in comparing models or determining Bayes factors.

In what follows we describe some important Linear Model examples. There are

more, including correlated observations and autoregressive models, in [3].

5.2. Simple linear regression

Let Yi = α+Xi β + ϵi, ϵi
i.i.d.∼ N(0, σ2), so that

Y =

 1 X1

...
...

1 Xn

 (
α

β

)
+

 ε1
...

εn

 , where ε ∼ N(0, σ2I) .

Suppose we are considering two models M0 : β = 0 and M1 : β ̸= 0. Computation

under M1 yields X̃ = (X1−X, . . . ,Xn−X)′, so that Σ = σ2/s2x = σ2/
∑n

i=1(Xi−X)2.

Also, from (14),

ne =

∑n
i=1(Xi −X)2

maxi{(Xi −X)2}
=

s2x
maxi{(Xi −X)2}

. (19)

Finally, d = Σ = σ2/s2x, v = β̂2/[d(1 + ne)], and

S2 =
1

σ2

(
|Y |2 −

(
∑n

i=1(xi − x̄)yi)
2∑n

i=1(xi − x̄)2

)
=

1

σ2
(|Y |2 − s2xβ̂

2)

complete the terms needed to define PBIC and PBIC* under M1. Under M0, we only

13



need S2 = 1
σ2 |Y |2; thus, with v = β̂2/[σ2(s−2

x + (maxi{(Xi −X)2})−1)],

∆PBIC = −s2xβ̂
2

σ2
+ log

(
1 +

s2x
maxi{(Xi −X)2}

)
− 2 log

(1− e−v)√
2 v

.

∆PBIC* is the obvious modification of this.

5.3. Testing equality of two means with unequal variances

Consider comparing two normal means via the test H0 : µ1 = µ2 versus H1 : µ1 ̸= µ2,

where the associated known variances, σ2
1 and σ2

2 are not equal. The linear model is

thus

Y = Xµ+ε =



1 0
...

...

1 0

0 1
...

...

0 1


(

µ1

µ2

)
+

 ε11
...

ε2n2

 , ε ∼ N(0, diag{σ2
1, . . . , σ

2
1︸ ︷︷ ︸

n1

, σ2
2, . . . , σ

2
2︸ ︷︷ ︸

n2

}) .

Defining α = (µ1+µ2)/2 and β = (µ1−µ2)/2 places this in the linear model comparison

framework, where we are comparing M0 : β = 0 versus M1 : β ̸= 0 with the covariate

matrix

B = X

(
1 1

1 −1

)−1

=
1

2



1 1
...

...

1 1

1 −1
...

...

1 −1


.

Under M1, computation yields

X̃ =

(
n2

n∗σ2
2

, . . . ,
n2

n∗σ2
2

,− n1

n∗σ2
1

, . . . ,− n1

n∗σ2
1

)′
with n∗ =

(
n1

σ2
1

+
n2

σ2
2

)−1

,

so that

d = Σ =

(
σ2
1

n1
+

σ2
2

n2

)
.
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Also, from (14),

ne =

(
σ2
1

n1
+ σ2

2

n2

)
max

{
σ2
1/n

2
1, σ

2
2/n

2
2

} = min

{
n2
1

σ2
1

,
n2
2

σ2
2

}(
σ2
1

n1
+

σ2
2

n2

)
,

and v = β̂2/[d(1 + ne)].

A special case is the standard test of equality of means when σ2
1 = σ2

2 = σ2. Then

ne = min

{
n1

(
1 +

n1

n2

)
, n2

(
1 +

n2

n1

)}
.

While this may look unusual, looking at the extremes indicates why this is reasonable.

Indeed, as say n1 → ∞, note that ne → n2. In this scenario, we perfectly learn µ1,

so the test of mean equality is really just a test that µ2 equals this known mean,

based on n2 observations. Attempting to utilize BIC with an adhoc choice of n, such

as (n1 + n2)/2, would clearly be a disaster here.

5.4. Findley’s counterexample to BIC

For the simple linear model in (2), computation yields that, under H1 : θ ̸= 0,

d = Σ =

(
n∑

i=1

1

i

)−1

, ne =

n∑
i=1

1

i
, S2 = |Y |2 − θ̂2

n∑
i=1

1

i
.

It follows that

∆PBIC = −θ̂2
n∑

i=1

1

i
+ log(1 +

n∑
i=1

1

i
)− 2 log

(1− e−v)√
2 v

, v =
θ̂2

d(1 + ne)
.

Since
∑n

i=1
1
i = log n+O(1) and θ̂2 → θ2 (because the mle is consistent here),

∆PBIC = −θ2(log n+O(1)) + log(log n)− 2 log

(
1− e−θ2)
√
2 θ2

+ o(1) .

Under H0 : θ = 0, ∆PBIC = log(log n) + log 2 + o(1) → ∞ and, under H1 : θ ̸= 0,

∆PBIC → −∞. Thus PBIC is consistent as n → ∞. Essentially the same argument

shows that PBIC* is consistent.

5.5. Consistency of PBIC and PBIC* as p → ∞ in the group means

problem

Bayes model selection rules for fixed priors and fixed p are virtually always consistent

as the sample size n → ∞. This type of consistency transfers over to rules such as
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PBIC and PBIC* because the priors from which they arise converge to fixed priors as

n → ∞ with p fixed.

There is nothing within Bayesian theory, however, that guarantees consistency of

Bayes rules when the dimension p also grows. Indeed, it turns out that consistency

is then a very delicate property, that can easily be violated by even standard Bayes

rules. The group means problem provides a simple illustration.

Example 5.1. Consider the group means problem with known σ2 = 1 and effective

sample size ni = r fixed, and reduce to the sufficient statistics X̄i ∼ N(µi, 1/r) for

i = 1, . . . , p. Consider comparison of the null model M0 : µ1 = · · · = µp = 0 with the

full model M1 : all µi nonzero. Suppose the µi are independently assigned N(0, τ2i )

priors. Then it is easy to show that consistency obtains under M1 as p → ∞ if and

only if V ≡ limp→∞
1
p

∑p
i X̄

2
i satisfies V ≥ limp→∞

1
p

∑p
i τ

2
i , assuming the limits exist.

(This example was brought to our attention by J.K. Ghosh.)

After reflecting upon this, it might seem surprising that any prior could achieve

consistency as p → ∞. However, [4] computed Laplace approximations to the marginal

density, for this problem, that produced consistent Bayes factors when p grows with n.

They used a multivariate Cauchy prior, which does not result in a closed form Bayes

factor, as arises with PBIC and PBIC*. The next theorem indicates the situation

involving consistency for PBIC and PBIC*.

Theorem 5.2. For the group means problem with fixed r, PBIC and PBIC* are con-

sistent under M0 as p → ∞. Under M1 and assuming that τ2 = limp→∞
1
p

∑p
i µ

2
i

exists, PBIC and PBIC* are

consistent if τ2 >
log 2 + log(1 + r) + 1

r
; inconsistent if τ2 <

log 2 + log(1 + r)− 1

r
.

(20)

Proof. We utilize (17) and (18) as the definitions of PBIC and PBIC*, but will ignore

C since it is common to all models. Note that the ne
i = r, S2

1 =
∑p

i=1

∑r
j=1(xij − x̄i)

2,

S2
0 = S2

1 + r
∑p

i=1 x̄
2
i , vi = rx̄2i /(r + 1) under M1 and vi = 0 under M0. Thus PBIC

and PBIC* become, with subscripts denoting the model,
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PBIC0 = PBIC*0 = S2
0 = S2

1 + r

p∑
i=1

x̄2i ,

PBIC1 = S2
1 + p log(r + 1)− 2

p∑
i=1

log
1− e−vi

√
2 vi

= S2
1 + p log[2(r + 1)]− 2

p∑
i=1

log
1− e−vi

vi
,

PBIC*1 = S2
1 + p log(r + 1)− 2

p∑
i=1

log

(
1− e−min{vi,1.3}

)√
2 vi min{vi, 1.3}

= S2
1 + p log[2(r + 1)]− 2

p∑
i=1

log

(
1− e−min{vi,1.3}

)√
vi min{vi, 1.3}

.

It is straightforward to show that

1− e−vi

vi
< 1 and

(
1− e−min{vi,1.3}

)√
vi min{vi, 1.3}

< 1 ,

so that ∆PBIC = PBIC1 − PBIC0 and ∆PBIC* = PBIC*1 − PBIC*0 satisfy

∆PBIC (∆PBIC*) < p log[2(r + 1)]− r

p∑
i=1

x̄2i ≡ A(p) .

Under M0, r
∑p

i=1 x̄
2
i ∼ χ2

p, so that

A(p) = p log[2(r + 1)]− p

(
1 +O

(
1
√
p

))
→ ∞ as p → ∞ ,

establishing consistency under M0.

To show inconsistency under M1, note that r
∑p

i=1 x̄
2
i ∼ χ2

p(λp), with noncentrality

parameter λp = r
∑p

i=1 µ
2
i . Thus

A(p) = p log[2(r + 1)]− (p+ λp)

(
1 +O

(
1√

p+ λp

))
→ ∞

if τ2 = limp→∞ λp/[rp] < (log[2(1 + r)− 1]) /r, establishing the inconsistency result.

To investigate consistency of PBIC and PBIC* under M1, note that(
1− e−min{v,1.3})√

v min{v, 1.3}
≥ 1− e−v

v
≥ 1

1 + v
. (21)
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Also, because of concavity, E[log(1 + v)] ≤ log(1 + E[v]). Thus,

E

[
log

1− e−vi

vi

]
≥ −E[log(1 + vi)] ≥ − log(1 + E[vi]) = − log

(
1 +

1 + rµ2
i

1 + r

)
.

Using this inequality and the fact that
∏

i ω
1/p
i ≤ (

∑
ωi)/p), it follows that

2

p
E

[
p∑

i=1

log
1− e−vi

vi

]
≥ −2 log

p∏
i=1

(
1 +

1 + rµ2
i

1 + r

)1/p

≥ −2 log

[
1

p

p∑
i=1

(
1 +

1 + rµ2
i

1 + r

)]
= −2 log

(
2 + r + λp/p

1 + r

)
.

Hence, by the law of large numbers,

lim
p→∞

1

p
∆PBIC ≤ log[2(r + 1)] + 2 log

(
2 + r + r τ2

1 + r

)
− lim

p→∞

(
1 +

λp

p

)(
1 +O

(
1√
p+ λ

))
= log[2(r + 1)] + 2 log

(
2 + r + r τ2

1 + r

)
− (1 + rτ2)(1 + o(1)) .

Let B(r, τ2) denote the right hand side above (without the o(1) term). If B(r, τ2) < 0,

then ∆PBIC goes to −∞ as p → ∞, and we have consistency.

Differentiating with respect to τ2 shows that B(r, τ2) is decreasing in τ2, so that, if

we can find a value of τ2 for which B(r, τ2) < 0, then any larger value of τ2 will also

work. As a candidate, consider τ2c = [c+ log(1 + r)]/r. Then

B(r, τ2c ) = log[2(r + 1)] + 2 log

(
2 + r + c+ log(1 + r)

1 + r

)
− (1 + c+ log(1 + r)) .

Differentiating this with respect to r shows that it is decreasing in r so that all we

need to show is that τ2c works for r = 1. Indeed,

B(1, τ2c ) = log[4] + 2 log

(
3 + c+ log 2

2

)
− (1 + c+ log 2) < 0 ,

if c > 1.67. Since 1+log 2 = 1.693 > 1.67, the condition for consistency of PBIC in the

theorem is established. And because of (21), the same condition ensures that PBIC*

is consistent.

Note that, if r is moderately large, PBIC and PBIC* are consistent underM1, unless

τ2 is extremely close to 0, i.e., unless the nonzero means are extremely close to 0; it is

not surprising that it is difficult to distinguish between M1 and M0 in this situation.

There is a gap in the theorem between the consistency and inconsistency conditions

under M1. The gap is quite large for small r, but shrinks as r grows. A more refined
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analysis would reduce the gap, but the theorem does convey the basic messages about

consistency.

More generally, M0 could be a group means model containing some zero and some

nonzero means. If M0 is nested in M1 and the number of additional nonzero means in

M1 goes to ∞, then the theorem still applies, since the common nonzero means will

be integrated out at the beginning and will not affect the analysis.

6. Appendix

To see that the prior in (9) is almost the same as πC , the Cauchy(0,b) prior (we drop

the i subscripts in this appendix), consider the extremes.

Theorem 6.1. For b ≥ d,

lim
|ξ|→∞

πC(ξ)

πR(ξ)
=

2
√
b√

π(b+ d)
∈ (0.80, 1.13),

πC(0)

πR(0)
=

2d√
bπ(

√
b+ d−

√
b− d)

∈ (0.80, 1.13).

Proof. Note that

πR(0) =
1

2
√
π

∫ 1

0

1√
d+ b− 2λd

dλ =

√
b+ d−

√
b− d

2d
√
π

.

Hence

πC(0)

πR(0)
=

2d√
bπ(

√
b+ d−

√
b− d)

.

It is straightforward to show that
√
b(
√
b+ d−

√
b− d) is decreasing in b ≥ d, with a

maximum of
√
2d and minimum of d. Thus

√
2/π ≤ πC(0)/πR(0) ≤

√
4/π, which (to

2 decimal places) is the result above.

To prove the result as |ξ| → ∞, separately integrate over Γ1 = (0, |ξ|−3/2) and

Γ2 = (|ξ|−3/2, 1) in (9). For λ ∈ Γ1, note that (d+ b− 2λd)−1 = (d+ b)−1+O(|ξ|−3/2),

so that

(d+ b− 2λd)−1/2 = (d+ b)−1/2 +O(|ξ|−3/2) ,

exp

(
− ξ2λ

d+ b− 2λd

)
= exp

(
− ξ2

d+ b

[
λ+O(|ξ|−3)

])
= exp

(
− ξ2

d+ b

)(
1 +O(|ξ|−1)

)
.
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Hence the integral over Γ1 is

1

2
√
π

∫ |ξ|−3/2

0

(
1√
d+b

+O(|ξ|−3/2)
)
exp

(
− ξ2λ

d+b

) (
1 +O(|ξ|−1

)
dλ

=
√
d+b

2
√
πξ2

(
1− exp

(
−
√

|ξ|
d+b

))(
1 +O(|ξ|−1

)
.

Noting that exp (−ξ2λ/[d+ b− 2λd]) is decreasing in λ, it is immediate that the inte-

gral over Γ2 is bounded above by

exp (−
√

|ξ|/[d+b])

2
√
πd

∫ 1
|ξ|−3/2

1√
d+b−2λd

dλ

=
exp (−

√
|ξ|/[d+b])

2
√
πd

(√
d+ b− 2|ξ|−3/2d−

√
b− d

)
= o(|ξ|−2) .

It follows that

lim
|ξ|→∞

πC(ξ)

πR(ξ)
= lim

|ξ|→∞

2
√
π[π−1ξ−2

√
b(1 +O(|ξ−2))]

√
d+ b ξ−2(1− exp (−

√
|ξ|/[d+ b]))(1 +O(|ξ−1)) + o(|ξ|−2)

=
2
√
b√

π(b+ d)
.

It is straightforward to show that
√

2/π ≤ 2
√
b/
√

π(b+ d) ≤
√

4/π, yielding (to two

decimal places) the conclusion.
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